Spelling suggestions: "subject:"borohydride"" "subject:"borohydrides""
51 |
Synthesis And Characterization Of Ruthenium(0) Metal Nanoparticles As Catalyst In The Hydrolysis Of Sodium BorohydrideZahmakiran, Mehmet 01 April 2005 (has links) (PDF)
Sodium borohydride is stable in alkaline solution, however, it hydrolyses and generates hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. All of the catalyst having been used in the hydrolysis of sodium borohydride, with one exception, are heterogeneous. The limited surface area of the heterogeneous and therefore, have limited activity because of the surface area. Thus, the use of metal nanoclusters as catalyst with large surface area is expected to provide a potential route to increase the catalytic activity.
In this dissertation we report for the first time the use of ruthenium(0) nanoparticles as catalyst in the hydrolysis of sodium borohydride. The water dispersible ruthenium(0) nanoparticles were prepared by the reduction of RuCl3.xH2O with sodium borohydride and were stabilized by three different ligands dodecanethiol, ethylenediamine and acetate. Among these three colloidal materials the acetate stabilized ruthenium(0) nanoparticles were found to have the highest catalytic activity in catalyzing the hydrolysis of sodium borohydride. The acetate stabilized ruthenium(0) nanoparticles were characterized by tranmission electron microscopy (TEM), X-ray photoelectron spectroscopy and FT-IR spectroscopy. The particle size of the acetate stabilized ruthenium(0) nanoparticles was determined to be 2.62± / 1.18 nm from the TEM analysis. The kinetic of the ruthenium(0) nanoparticles catalyzed hydrolysis of sodium borohydride was studied depending on the catalyst concentration, substrate concentration and temperature. The activation parameters of this reaction were also determined from the evaluation of the kinetic data. This catalyst provides the lowest activation energy ever found for the hydrolysis of sodium borohydride.
|
52 |
Synthesis And Characterization Of Hydrogenphosphate-stabilized Nickel(0) Nanoclusters As Catalyst For The Hydrolysis Of Sodium BorohydrideMetin, Onder 01 May 2006 (has links) (PDF)
The development of new storage materials will facilitate the use of hydrogen as a major energy carrier in near future. In hydrogen economy, chemical hydrides such as NaBH4, KBH4, LiH, NaH have been tested as hydrogen storage materials for supplying hydrogen at ambient temperature. Among these chemical hydrides, sodium borohydride seems to be an ideal hydrogen storage material because it is stable under ordinary conditions and liberates hydrogen gas in a safe and controllable way in aqueous solutions. However, self hydrolysis of sodium borohydride is so slow that it requires a suitable catalyst. All of the prior catalysts tested for the hydrolysis of sodium borohydride are heterogeneous and, therefore, have limited activity because of the small surface area. Here, we report for the first time the employment of water dispersible metal(0) nanoclusters having a large portion of atoms on the surface as a catalyst for the hydrolysis of sodium borohydride.
In-situ formation of nickel(0) nanoclusters and catalytic hydrolysis of sodium borohydride were performed in the same medium. Nickel(0) nanoclusters are prepared from the reduction of nickel(II) acetylacetonate by sodium borohydride in aqueous solution and stabilized with hydrogenphosphate anions. The nickel(0) nanoclusters were characterized by using XPS, Powder XRD, FT-IR, UV-Vis and NMR spectroscopic methods. The kinetics of the nickel(0) nanoclusters catalyzed hydrolysis of sodium borohydride was studied depending on the catalyst concentration, substrate concentration, stabilizing agent concentration and temperature. Tha kinetic study shows that the nickel(0) nanocluster-catalyzed hydrolysis of sodium borohydride is first order with respect to catalyst concentration and zero order with respect to substrate concentration The activation parameters of this reaction were also determined from the evaluation of the kinetic data. The hydrogenphosphate-stabilized nickel(0) nanoclusters provide a lower activation energy (Ea= 55 kJ/mol) than bulk nickel (Ea=73 kJ/mol) for the hydrolysis of sodium borohydride.
|
53 |
ESTUDO DA REAÇÃO DE REDUÇÃO DE OXIGÊNIO SOBRE ELETRODOS À BASE DE TETRAMETÓXIFENILPORFIRINAS PARA APLICAÇÕES EM CÉLULAS A COMBUSTÍVEL DE BOROIDRETO DIRETO / STUDY OF THE OXYGEN REDUCTION REACTION ON ELECTRODES BASED OF TETRAMETÓXIFENILPORFIRINAS FOR APPLICATIONS IN CELLS FUEL BOROHYDRIDE DIRECTBotelho, Alielson Corrêa 10 June 2012 (has links)
Made available in DSpace on 2016-08-19T12:56:39Z (GMT). No. of bitstreams: 1
dissertacao Alielson.pdf: 883958 bytes, checksum: f6ca1ed8e1b56766025ce616aa4101fb (MD5)
Previous issue date: 2012-06-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The oxygen reduction reaction (ORR) in 1.0 mol/L KOH solutions catalyzed by FeTMPP/C and CoTMPP/C was investigated in absence and presence of BH4- anions with concentrations varying from 10-7 to 1.0 mol/L. Similar cyclic voltammetry and rotating disk electrode experiments have been also performed the commercial E-TEK Pt/C electrocatalysts. In absence of BH4- anions, the ORR proceeds via a direct 4 electron pathway on FeTMPP/C and Pt/C and via a peroxide pathway involving (2-electron process) on CoTMPP/C and Au/C catalysts. In addition, Pt/C presented the most positive onset potential for the reaction. In presence of BH4- anions, a drastic loss in the catalytic activity of the Pt/C electrode was observed, even for concentrations as low as 10-7 mol/L. The effect of temperature on the ORR was studied and from 20ºC up to 60ºC the diffusion limited current densities remained nearly constants. At 80ºC, a decrease in the current of density was observed, probably due to a decrease in the oxygen concentration and viscosity of the solution. Arrhenius plots [ln (k) vs. T-1] were used to evaluate the activation s energy (Ea) of the ORR in absence of borohydride and resulted in 47.6 kJ/mol and 50.3 kJ/mol for Pt/C and FeTMPP/C, respectively. In presence of borohydride in solution, the Ea value for Pt/C showed a pronounced decrease to 38.7 kJ/mol, due to borohydride oxidation as a parallel reaction, while for FeTMPP/C the value calculate was 52.7 kJ/mol, i.e., remained practically constant. Such results indicates that FeTMPP is an efficient catalyst for ORR in alkaline solutions and tolerant to BH4 anions. / A reação de redução de oxigênio (RRO) em solução KOH 1,0 mol/L catalisada por FeTMPP/C e CoTMPP/C foi investigada na ausência e presença de anions BH4- com concentrações variando de 10-7 a 1 mol/L. Experimentos similares com voltametria cíclica e eletrodo disco-anel e disco rotatório foram feitos em eletrocatalisadores Pt/C comercial da E-TEK e Au/C. Na ausência de BH4-, a RRO se processa via mecanismo 4 elétrons para eletrodos FeTMPP/C e Pt/C e via peróxido, ou seja, 2 elétrons sobre eletrodos CoTMPP/C e Au/C. Diante disto, o eletrodo Pt/C apresenta melhor potencial para a reação. Na presença de anions BH4-, foi observada uma drástica perda na atividade catalítica do eletrodo Pt/C até mesmo em baixas concentrações (10-7 mol/L). O efeito da temperatura sobre a RRO foi estudado na faixa de 20ºC a 60ºC manteve-se constante em relação às densidades de corrente. A 80ºC foi observada uma diminuição na densidade de corrente, muito provavelmente, devido à diminuição na concentração de oxigênio e a viscosidade da solução. Foi usada a relação de Arrhenius (ln K vs. T-1) para o calculo da energia de ativação da RRO na ausência de boroidreto resultando em 47.6 kJ/mol e 50.3 kJ/mol para Pt/C e FeTMPP/C, respectivamente. Na presença de boroidreto em solução, a energia de ativação da Pt/C mostrou uma diminuição considerável, devido a reação de oxidação dos anions BH4- acorrer paralelamente, enquanto que para o eletrodo FeTMPP/C aumentou para 52.7 kJ/mol, mantendo-se praticamente constante. Tais resultados indicam que o FeTMPP/C é um eficiente catalisador para a RRO em meio alcalino e tolerante a anions BH4-.
|
54 |
Estudo das reações de eletro-oxidação de hidrazina e íons borohidreto em eletrocatalisadores de níquel e cobalto em eletrólito alcalino / Study of the hydrazine and borohydride ions electro-oxidation reactions on nickel and cobalt based electrocatalysts in alkaline electrolyteDrielly Cristina de Oliveira 16 December 2016 (has links)
Compostos com alto conteúdo de hidrogênio, tais como hidrazina (N2H4) e íons borohidreto (BH4-), apresentam grande potencialidade como combustíveis em células a combustível ou em reformadores eletroquímicos para a geração de hidrogênio, uma vez que apresentam alta densidade de energia. Além disso, as reações de eletro-oxidação dessas espécies podem ser catalisadas por metais não nobres como Ni e Co, em eletrólito alcalino. Dessa forma, este projeto de pesquisa teve como objetivo a síntese e a investigação da atividade eletrocatalítica de eletrocatalisadores formados por nanopartículas de níquel e cobalto e por níquel em combinação com outro metal também ativo, como a platina, representados genericamente por NiO/C, Co3O4/C NiO-Pt/C, para a eletro-oxidação de hidrazina e de íons borohidreto. Os resultados eletroquímicos mostraram maiores atividades eletrocatalíticas, tanto para a eletro-oxidação de hidrazina quanto para íons borohidreto, para Co3O4/C em relação ao NiO/C, mas evidenciaram maior estabilidade para NiO/C. Tanto para NiO/C como para NiO-Pt/C, os experimentos mostraram que, em potenciais logo acima do de circuito aberto, a atividade eletrocatalítica origina-se da coexistência de espécies de Ni0 ou Pt0 e Ni-OH superficiais, onde a reação de eletro-oxidação de hidrazina é catalisada com efeito sinérgico bifuncional relacionado ao acoplamento de Ni-H ou Pt-H, gerado pela adsorção dissociativa de hidrazina (ou borohidreto), e Ni-OH, gerado pela descarga de OH- em baixos potenciais. Em altos sobrepotenciais, as correntes faradaicas aumentam significativamente e, para as duas reações, é proposto uma mecanismo de mediação de elétrons, no qual a hidrazina ou os íons borohidreto reduzem quimicamente o óxido de níquel ou de cobalto, com a geração de produtos destes combustíveis, e isto é seguido pela eletro-oxidação do metal, induzido pelo alto potencial do eletrodo, fechando o ciclo de mediação. Resultados de experimentos de DEMS online (Differential Electrochemical Mass Spectrometry), tanto para NiO/C ou Co3O4/C, quanto para NiO-Pt/C (somente para hidrazina neste caso), mostraram que as correntes faradaicas são seguidas pela geração do produto principal (N2 para o caso de hidrazina; BO2- para o borohidreto, sendo que este último não pode ser detectado por DEMS) em baixos sobrepotenciais e, em altos sobrepotenciais, o sinal do produto principal é acompanhado pelos sinais de H2 e de NH3, com comportamento similar. Este resultado evidencia que a reação de eletro-oxidação completa de hidrazina ou de íons borohidreto ocorre em maior extensão somente em baixos sobrepotenciais, sendo que, em altos sobrepotenciais, onde se tem a formação de óxidos de níquel ou de cobalto, as reações operam em maior extensão por vias incompletas de eletro-oxidação, para as quais tem-se a mediação de elétrons como mecanismo reacional. / High hydrogen content compounds, such as hydrazine (N2H4) and borohydride ion (BH4-) exhibit high prospect as fuel for fuel cells or electrochemical reformers for hydrogen generation, since they present high energy density. Moreover, their electro-oxidation reactions can be catalyzed on non-noble electrocatalysts, such as Ni and Co, in alkaline electrolyte. In this way, this project aimed the synthesis and the investigation of the electro-catalytic activity of nickel, cobalt and nickel/platinum nanoparticles based electrocatalysts, named as NiO/C, Co3O4/C and NiO-Pt/C, for hydrazine and borohydride electro-oxidation reactions. Electrochemical results showed high electrocatalytic activity of Co3O4/C for both reactions, (hydrazine and borohydride electro-oxidation), however NiO/C showed more stability. For both NiO/C and or NiO-Pt/C, the experiments showed that under potentials slightly above the open-circuit potential, the electrocatalytic activity comes from the co-existence of Ni0, Pt0 and Ni-OH on the surface. The hydrazine electro-oxidation reaction is catalyzed by a bi-functional synergistic effect related to the Ni-H or Pt-H coupling generated from dissociative adsorption of hydrazine (or borohydride), and Ni-OH, produced by OH- discharge in low potentials. In high overpotentials, the faradaic currents increase significantly for both reactions. An electron-mediated mechanism is proposed for this condition, where the hydrazine or borohydride ions reduces chemically the nickel or cobalt oxide, producing the reaction products from these fuels and, this is followed by the metal electro-oxidation, induced by the high potential of the electrode, completing the mediation cycle. For all electrocatalysts (only hydrazine for NiO-Pt/C), online DEMS (Differential Electrochemical Mass Spectrometry) results showed that the faradaic currents keep up with by the generation of the main product, in low potentials (N2 for hydrazine and BO2- for borohydride, but this last one cannot be detected by DEMS). In high overpotentials, the main product signal is followed by the signals, with similar behavior, of H2 and NH3. This result evidences that the complete hydrazine and borohydride electro-oxidation reactions preferentially occur in low overpotentials, whereas, in high overpotentials, when the nickel or cobalt oxides are present, the reactions occurs preferentially by incomplete pathways, in an electron-mediated mechanism.
|
55 |
Antimicrobial Activity of Fractionated Borohydride-Capped and Electrochemical Colloidal SilverMarkopoulos, Marjorie M. January 2017 (has links)
No description available.
|
56 |
New main group and rare earth complexes and their applications in the ring-opening polymerisation of cyclic estersCushion, Michael Gregory January 2011 (has links)
This Thesis describes the synthesis and characterisation of new Main Group and Rare Earth alkyl, amide, alkoxide and borohydride complexes and their use as catalysts for the ring-opening polymerisation (ROP) of ε-caprolactone and rac-lactide. <strong>Chapter 1</strong> introduces ROP from an industrial and academic perspective, as well as polymer characterisation techniques. A literature review is given, with an emphasis placed on Main Group catalysts. <strong>Chapter 2</strong> describes the synthesis and characterisation of new homo- and hetero-scorpionate Main Group complexes. An introduction to homo- and hetero-scorpionate ligands is given, as well as a discussion of the ε-caprolactone and rac-lactide ROP activity displayed by the new complexes. <strong>Chapter 3</strong> describes the synthesis and characterisation of new neutral and cationic Main Group borohydride complexes supported by the tris(pyrazolyl)methane and tris(pyrazolyl)hydroborate ligands. A review of borohydride complexes is also given. The ε-caprolactone and rac-lactide ROP activity shown by the complexes presented is also discussed. <strong>Chapter 4</strong> describes the synthesis and characterisation of new mono- and di-cationic yttrium complexes supported by the tris(pyrazolyl)methane and triazacyclononane ligands. An introduction to the synthesis of neutral and cationic Rare Earth complexes is given. An overview of immortal ROP is also provided. The activity of the new complexes towards the immortal ROP of rac-lactide is also discussed. <strong>Chapter 5</strong> contains experimental details and characterising data for the new complexes reported in this thesis. CD Appendix</strong> contains .cif files for all of the new crystallographically characterised complexes.
|
57 |
Elaboration de films catalytiques co-alumine par dépôt électrophorétique pour l'hydrolyse du NaBH4 : développement du procédé dans une perspective de valorisation d'argiles naturelles du Liban comme supports de catalyseurs / Elaboration of catalytic films coblat-alumina by electrophoretic deposition for hydrolysis of NABH4 : developpement of this procedure for the valorization of natural clays from Lebanon as catalysys supportsChamoun, Rita 29 September 2010 (has links)
L’hydrolyse spontanée du NaBH4 en milieu aqueux est une réaction lente nécessitant l’emploi d’un catalyseur pour l’accélérer. Nous présentons ici l’élaboration de catalyseurs Co supporté sur αAl2O3 mis forme de films, plus appropriés pour des applications nécessitant un démarrage/arrêt à la demande de la génération d’H2. Les films sont déposés sur un substrat Cu par dépôt électrophorétique (DEP). Par ailleurs, des catalyseurs Co supporté sur différentes argiles naturelles (Kaolinite, Illite-A et Illite-B) en provenance du Liban ont été élaborés. Le Co a été déposé sur αAl2O3 par six voies différentes : 1. Imprégnation de Co sur film αAl2O3 ; 2. Précipitation de Co sur film αAl2O3; 3. Electrodéposition du Co sur film αAl2O3; 4. Codéposition du Co et de αAl2O3; 5. Codéposition de nanoparticules de Co et de αAl2O3 et 6. DEP de Co-αAl2O3. La voie 6 est la meilleure pour l’élaboration des films 1, 5, 10 et 15 mass.% Co-αAl2O3. Ces films (homogènes) et les catalyseurs Co-αAl2O3 ont été comparés pour leur réactivité et l’étude cinétique a donné des énergies apparentes d’activation identiques: 51.3 et 52.7 kJ mol-1, respectivement.Ensuite, des catalyseurs de 1, 5, 10 et 15 mass.% Co-argile ont été élaborés selon le même procédé que celui de Co-αAl2O3. Ces catalyseurs ont montré une réactivité pour l’hydrolyse du NaBH4, donnant notamment des énergies apparentes d’activation de 58.8, 51.5 et 58.1 kJ mol-1 pour 15 mass.% Co-Kaolinite, (Illite-A) et (Illite-B) respectivement. De plus, des films homogènes de 1, 5, 10 et 15 mass.% Co-Kaolinite ont été déposés avec succès sur Inox par DEP. Cette étude a montré le potentiel de ces argiles naturelles comme supports de catalyseur / NaBH4 hydrolysis reaction is slow in aqueous medium. Therefore, it can be accelerated by addition of a catalyst. In this work, catalytic films of Co supported over αAl2O3 have been synthesized since they are more convenient for applications requiring generation of H2 on demand. Co-αAl2O3 films were deposited on Cu plates by electrophoretic deposition method (EPD). Furthermore, catalysts of Co supported over different types of natural clay (Kaolinite, Illite-A and Illite-B) provided from Lebanon were also synthesized.Co was deposited over αAl2O3 following six routes: 1. αAl2O3 film impregnation; 2. Co precipitation over αAl2O3 film; 3. Co electrodeposition over αAl2O3 film; 4. Coelectrodeposition of Co from CoCl2 and αAl2O3; 5. Coelectrodeposition of Co nanoparticles and αAl2O3 and 6. EPD of Co-αAl2O3. Route 6 was found to be the best one for the fabrication of homogeneous films of 1, 5, 10 and 15 wt.% Co-αAl2O3. A comparative study on the reactivity of Co-αAl2O3 films and powder catalysts was done and the kinetic study gave similar values of the apparent activation energies: 51.3 and 52.7 kJ mol-1, respectively. Moreover, Co was supported over clay with the same method used for Co-αAl2O3. 1, 5, 10 and 15 wt.% Co-clay catalysts were tested for the hydrolysis reaction and the apparent activation energies obtained were as follows: 58.8, 51.5 and 58.1 kJ mol-1 for 15 wt.% Co-Kaolinite, (Illite-A) and (Illite-B) respectively. Homogeneous films of 1, 5, 10 and 15 wt.% Co-Kaolinite were successfully deposited over Inox substrate by EPD. It was concluded from this work that natural clays can be used as potential supports for Co catalysts in the hydrolysis of NaBH4
|
58 |
Remoção de mercúrio e arsênio em cação-azul, Prionace glauca / Mercury and arsenic removal in blue-shark, Prionace glaucaMacedo, Luciene Fagundes Lauer 30 April 2010 (has links)
Os cações são importantes recursos pesqueiros que podem apresentar concentrações de mercúrio (Hg) e arsênio (As) muitas vezes acima do limite de tolerância, o que os tornam impróprios como alimento. No meio aquático estes contaminantes são convertidos em espécies orgânicas, em especial metilmercúrio (MeHg) e arsenobetaína (AB), respectivamente. O MeHg é neurotóxico, sendo o sistema nervoso em desenvolvimento o mais susceptível. A AB é pouco tóxica, no entanto, o As inorgânico está envolvido em processos de estresse oxidativo, mutagênese e principalmente carcinogênese. Neste trabalho, foi avaliada a eficiência da cisteína na remoção de Hg, a ocorência de As total e inorgânico, e a redução de sua concentração com o emprego de borohidreto de sódio e de preparos para o consumo. A redução máxima de Hg, de 59,4%, com cisteína a 0,5% em pH 5,0, não foi reproduzida quando pretendida a reutilização da solução do aminoácido, importante do ponto de vista prático. O cação-azul continha elevados níveis de As total, 1,98 a 22,56 µg/g (base úmida), que foram removidos com borohidreto de sódio em 99%, demonstrando a alta potencialidade do método usado. O As inorgânico, presente na quantidade média de 0,0086 µg/g (base úmida), foi reduzido em 27,7%. O preparo para o consumo, por cozimento em água, do cação-azul em cubos (1-2 cm3), resultou em maior remoção de As total, de 65,9 a 71,2%; no cação grelhado a redução foi de 55,4 a 60,2%. As amostras, grelhadas ou cozidas, adicionadas de sal e limão enriquecido com ácido ascórbico, e as grelhadas contendo sal e sal com limão, apresentaram redução na concentração de As inorgânico de 30,1 a 42,8%. / The shark are important fishery resources that may have concentrations of mercury (Hg) and arsenic (As) often above the limit of tolerance, which makes them unsuitable as food. In the aquatic environment these contaminants are converted to organic species, particularly methylmercury (MeHg) and arsenobetaína (AB), respectively. The MeHg is neurotoxic, and the developing nervous system more susceptible. AB is slightly toxic, however, the inorganic As is involved in processes of oxidative stress, mutagenesis and carcinogenesis mainly. In this study, we evaluated the efficiency of cysteine to remove mercury, the occurrence of the total and inorganic As, and the reduction of their concentration with the use of sodium borohydride and preparations for consumption. The maximum reduction of Hg, 59.4%, with 0.5% cysteine at pH 5.0, was not reproduced when you want to reuse the solution of the amino acid, important practical point of view. The blue-shark contained high levels of the total As, 1.98 to 22.56 µg/g (wet weight), which were removed with sodium borohydride in 99%, demonstrating the high potential of the method used. The inorganic As, present in the average amount of 0.0086 µg/g (wet weight) was reduced in 27.7%. Preparation for consumption by baking in water, the blue-shark into cubes (1-2 cm3) resulted in greater removal of the total As, 65.9 to 71.2%; in the grilled shark the reduction was 55,4 to 60.2%. The samples, grilled or baked, added salt and lemon enriched with ascorbic acid, and the grilled containing salt and salt with lemon, presented reduction in the concentrations of inorganic As from 30.1 to 42.8%.
|
59 |
Synthesis And Characterization Of Water Soluble Polymer Stabilized Transition Metal(0) Nanoclusters As Catalyst In Hydrogen Generation From The Hydrolysis Of Sodium Borohydride And Ammonia BoraneMetin, Onder 01 December 2010 (has links) (PDF)
Metal nanoclusters exhibit unique properties which differ from their bulk
materials, owing to the quantum size effects. For example, the catalytic activity of
transition metal nanoclusters generally increases with decreasing particle size.
However, nanoclusters tend to be fairly unstable with respect to the agglomerate into
bulk metal in solution and thus special precautions have to be taken to avoid their
aggregation or precipitation during the preparation of such nanoclusters in solution.
In order to obtain stable nanoclusters dispersed in solution, a stabilizing agent is
usually added into the reaction system. The stabilization of metal nanoclusters in
solution can be achieved either by electrostatically by using charged ions such as
acetate ion or sterically by long chain molecules such as polymers. Polymers are one
of the most widely used steric stabilizers for the preparation of stable metal
nanoclusters in solution. The use of polymers as stabilizer for the synthesis of
transition metal nanoclusters provides advantegous regarding solubility,
conductivity, thermal stability and reusability. The metal nanoclusters stabilized by
polymers generally show higher catalytic activity, stability and optical properties. In
this dissertation we report the preparation and characterization of water soluble
polymer stabilized transition metal(0) (metal= Ni, Co and Ru) nanoclusters and their
v
catalysis in hydrogen generation from the hydrolysis of sodium borohydride
(NaBH4) and ammonia borane (AB) which are the best candidates as chemical
hydrogen storage materials for on-board applications. The water soluble polymer
stabilized nickel(0), cobalt(0) and ruthenium(0) nanoclusters were prepared by using
two different facile methods / (i) the reduction of metal precursors by sodium
borohydride in the presence poly(N-vinyl pyrrolidone) (PVP) in methanol solution
after 1h reflux, (ii) the in situ generation during the hydrolysis of ammonia borane in
the presence of poly(4-styrene sulfonicacid-co-maleic acid) (PSSA-co-MA). The
characterization of both type of polymer stabilized transition metal(0) nanoclusters
were done by using UV-Visible electronic absorption spectroscopy (UV-Vis),
transmission electron microscopy (TEM), high resolution transmission electron
microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction
(XRD) and FT-IR techniques. The catalytic activity of PVP stabilized nickel(0),
cobalt(0) and ruthenium(0) nanoclusters was tested in the hydrolysis of NaBH4 and
AB. The catalytic acitivity of PSSA-co-MA stabilized nickel(0), cobalt(0) and
ruthenium(0) nanoclusters was tested only in the hydrolysis of AB in which they
were in situ generated. The kinetics of hydrogen generation from both hydrolysis
reactions in the presence PVP or PSSA-co-MA stabilized nickel(0), cobalt(0) and
ruthenium(0) nanoclusters were studied depending on the polymer to metal ratio,
catalyst concentration, substrate concentration and temperature as well as the
activation parameters (Arrhenius activation energy (Ea), activation enthalpy (
|
60 |
Studies On Polymer Hydrogel Electrolytes For Application In Electrochemical Capacitors And Direct Borohydride Fuel CellsChoudhury, Nurul Alam 10 1900 (has links)
In recent years, electrochemical capacitors have emerged as devices with the potential to enable major advances in electrical energy storage. Electrochemical capacitors (ECs) are akin to conventional capacitors but employ higher surface-area electrodes and thinner dielectrics to achieve larger capacitances. This helps ECs to attain energy densities greater than those of conventional capacitors and power densities greater than those of batteries. Akin to conventional capacitors, ECs also have high cycle-lives and can be charged and discharged rapidly. But ECs are yet to match the energy densities of mid to high-end batteries and fuel cells.
On the basis of mechanism involved in the charge-storage process, ECs are classified as electrical double-layer capacitors (EDLCs) or pseudocapacitors. Charge storage in EDLCs and pseudocapacitors is brought about by non-faradaic and faradaic processes, respectively. Faradaic process, such as an oxidation-reduction reaction, involves the transfer of charge between electrode and electrolyte. By contrast, a non-faradaic process does not use a chemical mechanism and charges are distributed on surfaces by physical processes that do not involve any chemical reaction.
ECs employ both aqueous and non-aqueous electrolytes in either liquid or solid form, the latter providing the advantages of freedom from leakage of any liquid component, compactness, reliability and large operating potential-window. In the literature, polymer electrolytes are the most widely studied solid electrolytes. Complexation of functional-groups of certain polymers with cations results in the formation of polymer-cation complexes commonly referred to as solid-polymer electrolytes (SPEs). Mixing a polymer with an alkali metal salt dissolved in an organic solvent result in the formation of a polymer gel electrolyte. Organic solvents with low molecular-weights, such as ethylene carbonate and propylene carbonate, employed in polymer gel electrolytes are commonly referred to as plasticizers. When water is used as a plasticizer, the polymer electrolyte is called a polymer hydrogel electrolyte.
Part I of the thesis is directed to studies pertaining to Polymer Hydrogel Electrolytes for Electrochemical Capacitors and comprises four sections. After a brief survey of literature on polymer hydrogel electrolytes employed in ECs in Section I.1, Section I.2 of Part I describes the studies on electrochemical capacitors employing cross-linked poly (vinyl alcohol) hydrogel membrane electrolytes with varying perchloric acid dopant concentration. Acidic poly (vinyl alcohol) hydrogel membrane electrolytes (PHMEs) with different perchloric acid concentrations are prepared by cross-linking poly (vinyl alcohol) with glutaraldehyde in the presence of a protonic acid acting as a catalyst under ambient conditions. PHMEs are characterized by scanning electron microscopy and temperature-modulated differential scanning calorimetry in conjunction with relevant electrochemical techniques. An optimised electrochemical capacitor assembled employing PHME in conjunction with black pearl carbon (BPC) electrodes yields a maximum specific capacitance value of about 96 F g-1, phase angle value of about 79o and a discharge capacitance value of about 88 F g-1. Section I.3 of Part I describes the studies on cross-linked poly (vinyl alcohol)/ploy (acrylic acid) blend hydrogel electrolytes for electrochemical capacitors. Acidic poly (vinyl alcohol)/poly (acrylic acid) blend hydrogel electrolytes (BHEs) have been prepared by cross-linking poly (vinyl alcohol)/poly (acrylic acid) blend with glutaraldehyde in presence of perchloric acid. These acidic BHEs have been treated suitably to realize alkaline and neutral BHEs. Thermal characteristics and glass-transition behavior of BHEs have been followed by differential scanning calorimetry. Ionic conduction in acidic BHEs has been found to take place by Grötthus-type mechanism while polymer segmental motion mechanism is predominantly responsible for ion motion in alkaline and neutral BHEs. Ionic conductivity of BHEs has been found to range between 10-3 and 10-2 S cm-1 at 298 K. Electrochemical capacitors assembled with acidic PVA hydrogel electrolyte yield a maximum specific capacitance of about 60 and 1000 F g-1 with BPC and RuOx.xH2O/C electrodes, respectively. Section I.4 of Part I describes the studies on gelatin hydrogel electrolytes and their application to electrochemical capacitors. Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde under ambient conditions, and characterized by scanning electron microscopy, temperature-modulated differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 340 and 377 K depending on the dopant concentration. Ionic conductivity behavior of GHEs is studied with varying concentrations of gelatin, glutaraldehyde and NaCl, and conductivity values are found to vary between 10-3 and 10-1 S cm-1 under ambient conditions. GHEs have a potential window of about 1 V with BPC electrodes. The ionic conductivity of pristine and 0.25 N NaCl-doped GHEs follows Arrhenius behavior with activation energy values of 1.9×10-4 and 1.8×10-4 eV, respectively. Electrochemical capacitors employing GHEs in conjunction with black pearl carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of about 81 F g-1, 75o, and 0.03 s are obtained for 3 M NaCl-doped GHE, respectively. EC with pristine GHE exhibits continuous cycle life for about 4.3 h as against 4.7 h for the electrochemical capacitor with 3 M NaCl-doped GHE.
Unlike electrochemical capacitors, fuel cells do not store the charge internally but instead use a continuous supply of fuel from an external storage tank. Thus, fuel cells have the potential to solve the most challenging problem associated with the electrochemical capacitors, namely their limited energy-density. A fuel cell is an electrochemical power source with advantages of both the combustion engine and the battery. Like a combustion engine, a fuel cell will run as long as it is provided with fuel; and like a battery, fuel cells convert chemical energy directly to electrical energy. As an electrochemical power source, fuel cells are not subjected to the Carnot limitations of combustion (heat) engines. A fuel cell operates quietly and efficiently and, when hydrogen is used as a fuel, it generates only power and potable water. Thus, a fuel cell is a so called ‘zero-emission engine’.
In the past, several fuel cell concepts have been tested in various laboratories but the systems that are being potentially considered for commercial developments are: (i) Alkaline Fuel Cells (AFCs), (ii) Phosphoric Acid Fuel Cells (PAFCs), (iii) Polymer Electrolyte Fuel Cells (PEFCs), (iv) Solid-Polymer-Electrolyte-Direct Methanol Fuel Cells (SPE-DMFCs), (v) Molten Carbonate Fuel Cells (MCFCs) and (vi) Solid Oxide Fuel Cells (SOFCs).
Among the aforesaid systems, PEFCs that employ hydrogen as fuel are considered attractive power systems for quick start-up and ambient-temperature operations. Ironically, however, hydrogen as fuel is not available freely in the nature. Accordingly, it has to be generated from a readily available hydrogen carrying fuel such as natural gas, which needs to be reformed. But, such a process leads to generation of hydrogen with some content of carbon monoxide, which even at minuscule level is detrimental to the fuel cell performance. Pure hydrogen can be generated through water electrolysis but hydrogen thus generated needs to be stored as compressed / liquefied gas, which is cost-intensive. Therefore, certain hydrogen carrying organic fuels such as methanol, ethanol, propanol, ethylene glycol, and diethyl ether have been considered for fuelling PEFCs directly. Among these, methanol with a hydrogen content of about 13 wt. % (specific energy = 6.1 kWh kg-1) is the most attractive organic liquid. PEFCs using methanol directly as fuel are referred to as SPE-DMFCs. But SPE-DMFCs suffer from methanol crossover across the polymer electrolyte membrane, which affects the cathode performance and hence the cell performance during its operation. SPE-DMFCs also have inherent limitations of low open-circuit-potential and low electrochemical-activity. An obvious solution to the aforesaid problems is to explore other promising hydrogen carrying fuels such as sodium borohydride, which has a hydrogen content of about 11 wt. %. Such fuel cells are called direct borohydride fuel cells (DBFCs).
Part II of the thesis includes studies on direct borohydride fuel cells and comprises three sections. After a brief introduction to DBFCs in section II.1, Section II.2 describes studies on an alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. A peak power density of about 150 mW cm-2 at a cell voltage of 540 mV could be achieved from the optimized DBFC operating at 70oC. Section II.3 describes studies on poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells. This DBFC employs a poly (vinyl alcohol) hydrogel membrane as electrolyte, an AB5 Misch metal alloy as anode, and a gold-plated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. The performance of the PHME-based DBFC in respect of peak power outputs, ex-situ cross-over of oxidant, fuel, anolyte and catholyte across the membrane electrolytes, utilization efficiencies of fuel and oxidant as also cell performance durability under ambient conditions are compared with a similar DBFC employing a Nafion®-117 membrane electrolyte (NME). Peak power densities of about 30 and 40 mW cm-2 are observed for the DBFCs with PHME and NME, respectively. The PHME and NME-based DBFCs exhibit cell potentials of about 1.2 and 1.4 V, respectively, at a load current density of 10 mA cm-2 for 100 h.
Publications of Nurul Alam Choudhury
1. Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors, N. A. Choudhury, S. Sampath, and A. K. Shukla, J. Electrochem. Soc., 155 (2008) A74.
2. Cross-linked polymer hydrogel electrolytes for electrochemical capacitors, N. A. Choudhury, A. K. Shukla, S. Sampath, and S. Pitchumani, J. Electrochem. Soc., 153 (2006) A614.
3. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, N. A. Choudhury, S. Sampath, and A. K. Shukla, Energy and Environmental Science (In Press).
4. Cross-linked poly (vinyl alcohol) hydrogel membrane electrolytes with varying perchloric acid dopant concentration and their application to electrochemical capacitors, N. A. Choudhury, S. Sampath, and A. K. Shukla, J. Chem. Sc. (Submitted)
5. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, N. A. Choudhury, R. K. Raman, S. Sampath, and A. K. Shukla, J. Power Sources, 143 (2005) 1.
6. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells, N. A. Choudhury, S. K. Prashant, S. Pitchumani, P. Sridhar, and A. K. Shukla, J. Chem. Sc. (Submitted).
7. A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes, G. Selvarani, A. K. Sahu, N. A. Choudhury, P. Sridhar, S. Pitchumani, and A. K. Shukla, Electrochim. Acta, 52 (2007) 4871.
8. A high-output voltage direct borohydride fuel cell, R. K. Raman, N. A. Choudhury, and A. K. Shukla, Electrochem. Solid-State Lett., 7 (2004) A 488.
9. Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells, A. K. Shukla, R. K. Raman, N. A. Choudhury, K. R. Priolkar, P. R. Sarode, S. Emura, and R. Kumashiro, J. Electroanal. Chem., 563 (2004) 181.
|
Page generated in 0.0358 seconds