• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 12
  • 12
  • 8
  • 8
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 121
  • 121
  • 91
  • 47
  • 38
  • 21
  • 21
  • 20
  • 15
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Free Spectral Range Matched Interrogation Technique for Wavelength Demodulation of Fiber Bragg Grating Sensors

Rahimi, Somayyeh 20 January 2009 (has links)
Free Spectral Range Matched Interrogation (FSRMI) technique for wavelength demodulation of fiber Bragg grating sensors. We designed and tested a new wavelength demodulation system based on free-spectral-range-matched interrogation which employs a tunable fiber Fabry-Perot interferometer (FPI) and a multi-channel bandpass filter. This technique was deployed to test fiber Bragg gratings (FBG), long period gratings (LPG) and tilted fiber Bragg gratings (TFBG). In the experimental setup, a broadband source launches light into a fiber Bragg grating under test and the reflection/transmission spectrum is fed into a tunable FPI. By tuning an external bias applied to the FPI, the transmission spectrum of FPI scans over a wavelength range. The input optical signal is therefore selectively passed through the FPI and then fed into a four-channel bandpass filter followed by four photodetectors. The optical signal is converted to electrical signal by the photodiodes and is acquired by a data acquisition system. Since a bandpass filter with four channels are used in this interrogation system it can scan four distinguished wavelength ranges simultaneously and thus the scan rate is four time faster. We used this setup for doing some temperature and strain sensitivity measurements on some fiber gratings. Strain sensitivity measurements were done on FBG, TFBG and LPG and temperature sensitivity measurements were performed on TFBG. The strain and temperature sensitivity coefficients of these fiber Bragg grating sensors were obtained from experimental data. Our results show the potential of the integration of the FSRMI system with fiber Bragg gratings for temperature and strain multiple-sensor arrays with high sampling speed and high accuracy.
12

Free Spectral Range Matched Interrogation Technique for Wavelength Demodulation of Fiber Bragg Grating Sensors

Rahimi, Somayyeh 20 January 2009 (has links)
Free Spectral Range Matched Interrogation (FSRMI) technique for wavelength demodulation of fiber Bragg grating sensors. We designed and tested a new wavelength demodulation system based on free-spectral-range-matched interrogation which employs a tunable fiber Fabry-Perot interferometer (FPI) and a multi-channel bandpass filter. This technique was deployed to test fiber Bragg gratings (FBG), long period gratings (LPG) and tilted fiber Bragg gratings (TFBG). In the experimental setup, a broadband source launches light into a fiber Bragg grating under test and the reflection/transmission spectrum is fed into a tunable FPI. By tuning an external bias applied to the FPI, the transmission spectrum of FPI scans over a wavelength range. The input optical signal is therefore selectively passed through the FPI and then fed into a four-channel bandpass filter followed by four photodetectors. The optical signal is converted to electrical signal by the photodiodes and is acquired by a data acquisition system. Since a bandpass filter with four channels are used in this interrogation system it can scan four distinguished wavelength ranges simultaneously and thus the scan rate is four time faster. We used this setup for doing some temperature and strain sensitivity measurements on some fiber gratings. Strain sensitivity measurements were done on FBG, TFBG and LPG and temperature sensitivity measurements were performed on TFBG. The strain and temperature sensitivity coefficients of these fiber Bragg grating sensors were obtained from experimental data. Our results show the potential of the integration of the FSRMI system with fiber Bragg gratings for temperature and strain multiple-sensor arrays with high sampling speed and high accuracy.
13

The Design of Fiber Optic Vibration Sensors

Lin, Yung-Li 05 August 2005 (has links)
Structural born vibration is the most concern issue for industry. Traditionally, the accelerometer is usually used as the major monitoring device for vibration. As the mechanism getting more and more complexity, more compact, tinier and more lighting, the traditional accelerometers are suffered from the loading effect. Its accuracy of measurement is suspected and cannot match the modern measurement requirement. Hence, the studies of fiber optic vibration sensors become an urgent issue in this era. The reflection wavelength of a fiber Bragg grating¡]FBG¡^is sensitive to the variation of the strain and temperature. Our sensor configuration is made of an interferometer and fiber Bragg grating. The vibration induces a strain of the fiber Bragg grating, and it makes a phase difference between those two light beams in the interferometer. A demodulation circuit is needed to detect the phase difference caused by the vibration. In this project, the aim is focused on the vibration measurement for some complicated rotational machines or structures. A fiber optic accelerometer will be designed and studied as a vibration monitor for the other subprojects. In this the thesis, two kinds of vibration sensor head are designed and studied, the first is a bending loss sensor head and the other is an optic fiber Bragg grating sensor head. The results are narrated as follows¡G¡]1¡^ The dynamic range of the bending loss sensing head is about 50 dB.¡]2¡^The dynamic range of the optic fiber Bragg grating sensing head is 38 dB with test frequency range between 100 ~ 400 Hz, the noise level is around 1.95 ¡Ñ 10-2 rad.
14

The Design of Fiber Bragg Grating Vibration Sensors

Chen, Chien-Cheng 14 July 2003 (has links)
The reflection wavelength of Fiber Bragg Grating is sensitive to the strain and the temperature¡¦s variation. We use Fiber Bragg Grating to be the sensor head and measure the vibration frequency in constant temperature environment. The vibration of object can make the sinusoidal strain to Fiber Bragg Grating, and it will make a little phase difference to the light of the fiber. Using the interferometer and demodulation system, we can measure the phase difference and vibration frequency. Our sensor configuration is made up of imbalance Mach-Zehnder interferometer and Fiber Bragg Grating. The two light of different path need different time to pass through the vibration source, so they make phase difference. We use the demodulation circuit to measure the phase difference causing by vibration and get the vibration frequency. Our experiment structure is a novel configuration of Fiber Bragg Grating vibration sensor. Its intensity of signal is larger than the intensity of original sensor configuration, about 4dB.The novel sensor configuration is easier spread than traditional accelerometer and it is designed of all fiber. The accuracy for measuring low frequency vibration is 99.971%. The Dynamic range of the system is more than 45dB. It is larger than the dynamic range of original sensor configuration, about 9dB. The smallest signal that can be measured is about 0.0075rad.
15

The Design of the Interferometric Fiber¡VOptic Microphone with FBG

LU, CHIEN-LI 17 July 2003 (has links)
Abstract The electrical microphone has came to maturity, which has some restrictions on high electromagnetic and wet environments¡CFiber-Optic sensor can improve the problems, because it has better characters in electromagnetic interference and wet environment than the traditional microphone. The structure of Sagnac interferometer is circulator, so the design of head to a sensor has to wind fiber around. Because the minimum radius of winded fiber has a threshold, we can not miniaturize the sensor-head. A typical Mach-Zehnder interferometer has to use high-coherence light source and the length of two arms in equality without any interference, so it is difficult in fabrication. If we make a microphone by FBG and Mach-Zehnder interferometer, and the advantage is that we can use low-coherence light source, and shorten the length of two arms in interferometer. By using the structure, the minimum measured pressure of sound is 0.6 Pa, and the dynamic range is 30dB.
16

The Configuration Design of Fiber Bragg Grating Hydrophones

Chou, Yu 22 July 2003 (has links)
In this paper, the fesibility of using a Fiber Bragg Grating (FBG) as a sensing scheme to detect the underwater acoustic signals is analyzed. When a FBG is disturbed by an underwater sound, the wavelength of the FBG is changed. Therefore, the central spectrum of the reflected light is shifted according to the wavelength change of the FBG. This spectrum can be detected by an imbalanced two-arm interferometer. Its transfer function will be studied. Also, the polarization induced signal fading of those two-arm interferometers will be studied.
17

A Phase-shifted Fiber Bragg Grating Based Humidity Sensor

Wang, Hao 20 August 2013 (has links)
A humidity fiber optic sensor based on phase-shifted (PS) Fiber Bragg gratings (FBG) is demonstrated. Compared to the standard FBG sensors, the peak of the PS-FBG slips into 2 narrow peaks and forms a sharp dip in the middle. As a result, the resolution of the measurement will be higher. The sensors used in the experiments were fabricated by coating the PS-FBG surface with a moisture-sensitive polyimide and is based on the strain effect caused by the swelling of the coating after moisture absorption. The same trend seen in a standard FBG sensor can be achieved, but with higher measurement resolution in environments differing by humidity and temperature. This thesis presents simulation and measurement results, including sensitivity and response time, of the PS-FBG sensor approach for humidity sensing, as compared to the standard FBG sensors. Stability and hysteresis are also discussed.
18

Development of Fiber Bragg Grating Sensor Based Devices for Force, Flow and Temperature Measurement for Emerging Applications in Biomedical Domain

Shikha, * January 2016 (has links) (PDF)
Efficient and accurate sensing of various parameters is needed for numerous applications. In this regard, different categories of sensors play a significant role and different applications require diverse sensing mechanisms owing to the operating conditions and field constraints. Among the several sensor methodologies available, optical fiber sensors have found significant attention, because of their advantages such as negligible foot print, small mass, immunity to Electromagnetic Interference, etc. In the category of optical fiber sensors, Fiber Bragg Grating (FBG) sensors have found importance in many fields such as health monitoring of civil structures, environmental monitoring involving gas & humidity sensing, monitoring parameters like pressure, tilt, displacement, etc. In the recent times, FBGs have found applications in biomedical, biomechanical and biosensing fields. A FBG is a periodic change of the refractive index of the core of a single mode optical fiber along its longitudinal axis. The periodic modulation in the index of refraction is obtained by exposing a photosensitive germanium-doped silica fiber to an intense UV laser beam. FBGs, in the basic form, can sense strain and temperature. However, in recent years, several newer sensing applications of FBGs have been demonstrated. Some of the main features of the FBG sensor which qualify them for diverse sensing applications are high sensitivity, large operational bandwidth, multiplexing & multi modal sensing capability, etc. In this thesis work, FBG sensor based devices have been developed for newer applications in bio-medical fields for the measurement of force, flow and temperature. Particularly, novel transduction methodologies have been proposed, in order to convert the measurand parameter into a secondary parameter that can be sensed by the FBG sensor. The evaluation of the force required for a spinal needle to penetrate various tissue layers from skin to the epidural space is vital. In this work, a novel technique for dynamic monitoring of force experienced by a spinal needle during lumbar puncture using Fiber Bragg Grating (FBG) sensor has been developed. The Fiber Bragg Grating Force Device (FBGFD) developed, measures the force on the spinal needle due to varied resistance offered by different tissue layers during its traversal. The effect of gauge of the spinal needle used for the lumbar puncture procedure affects the force required for its insertion into the tissue. The FBGFD developed, has been further utilized for a comparative study of the force required for lumbar puncture of various tissue layers with spinal needle of different gauges. The results obtained may serve as a guideline for selection of suitable gauge spinal needle during lumbar puncture minimizing post puncture side effects on patients. The pulmonary function test carried out using a spirometer, provides vital information about the functional status of the respiratory system of the subject. A Fiber Bragg Grating Spirometer (FBGS) has been developed which has the ability to convert the rate of air flow into a shift in wavelength that can be acquired by the FBG sensor. The FBGS can dynamically acquire the complete breathing sequence comprising of the inhalation phase, pause phase and exhalation phase in terms of the air flow rate along with the time duration of each phase. Methods are adopted to analyse and determine important pulmonary parameters using FBGS and compare these parameters with those obtained with a commercially available hospital grade pneumotachograph spirometer. Thermal imaging is one of the emerging non-invasive neuro-imaging techniques which can potentially indicate the boundaries of a brain tumor. The variation in tissue surface temperature is indicative of a tumor existence. In this work a FBG temperature sensor (FBGTS) has been developed for thermography of a simulated tissue using Agar material. The temperature of the embedded heater which mimics a brain tumor along with the surface temperature of the tissue model, is acquired using FBGTSs simultaneously. Further, the surface temperatures are studied for varying heater temperatures as well as varying positions of the heater in the simulated tissue model. To conclude, FBG based devices have been developed in this work, for applications in biomedical domain, with appropriate transduction methodologies for sensing different parameters such as force, flow and temperature.
19

Transverse mode selection and brightness enhancement in laser resonators by means of volume Bragg gratings

Anderson, Brian 01 January 2015 (has links)
The design of high power lasers requires large mode areas to overcome various intensity driven nonlinear effects. Increasing the aperture size within the laser can overcome these effects, but typically result in multi-transverse mode output and reduced beam quality, limiting the brightness of the system. As one possible solution, the angular selectivity of a diffractive optical element is proposed as a spatial filter, allowing for the design of compact high brightness sources not possible with conventional methods of transverse mode selection. This thesis explores the angular selectivity of volume Bragg gratings (VBGs) and their use as spatial transverse mode filters in a laser resonator. Selection of the fundamental mode of a resonator is explored using transmission Bragg gratings (TBGs) as the spatial filter. Simulations and experimental measurements are made for a planar, 1 cm long resonator demonstrating near diffraction limited output (M2 < 1.4) for aperture sizes as large as 2.0 mm. Applications to novel fiber laser designs are explored. Single mode operation of a multi-mode Yb3+ doped ribbon fiber laser (core dimensions of 107.8 ?m x 8.3 ?m) is obtained using a single transmission VBG as the filter in an external cavity resonator. Finally, a novel method of selecting a pure higher order mode to oscillate within the gain medium while simultaneously converting this higher order mode to a fundamental mode at an output coupler is proposed and demonstrated. A multiplexed transmission VBG is used as the mode converting element, selecting the 12th higher order mode for amplifications in an Yb3+ doped ribbon fiber laser, while converting the higher order mode of a laser resonator to a single lobed output beam with diffraction limited divergence.
20

Wavelength Accuracy Study for High-Density Fiber Bragg Grating Sensor Systems Using a Rapidly-Swept Akinetic-Laser Source

Egorov, Jacob 01 June 2016 (has links) (PDF)
This thesis studies the center wavelength accuracy of a Fiber Bragg Grating Sensor system that has a large number of sensor elements both as a function of wavelength and as a function of position. Determining the center wavelength of each of the fiber optic sensors is a critical parameter that ultimately determines sensor accuracy. The high density environment can result in degradation of accuracy of the center wavelength measurement. This thesis aims to quantify this measurement error both with theoretical and experimental studies. There are many sensing applications where optical fiber sensors are preferred over electrical sensors, such as the oil and gas industry where fiber optic sensors are used to monitor wells and pipelines due to their low signal degradation over long distances and immunity to harsh physical environments. Fiber Bragg grating (FBG) sensors in particular have widespread use because of their versatility, measurement sensitivity, and distributed multiplexing abilities. In conventional wavelength multiplexing, up to 50 FBG sensors are spread out over a band of 100nm, each with a center wavelength difference large enough so that each element can be individually measured. However, numerous sensing applications require several hundred to over a thousand sensors cascaded together on a single fiber. These sensor arrays use a combination of WDM and TDM for measurements, where many FBG sensors with the same center wavelength are separated by a long enough length of fiber so that the reflected signals are separated in time. These Wavelength-to-Time Domain Multiplexing (W-TDM) measurements are enabled by Insight Photonic’s new ‘akinetically’ swept, all-semiconductor laser. This laser is a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) device, capable of rapidly sweeping through different wavelengths without any moving parts. Attributes that make this laser superior to mechanically-swept lasers include: 1) short and long term consistent sweep-sweep reliability, 2) availability at many wavelengths, 3) a narrow linewidth with single longitudinal mode, and 4) the ability to do non-traditional sweep patterns that facilitate measurement of high-density sensor networks. In this thesis, experiments will be performed in the lab with the Insight VT-DBR laser to determine how accurately the center wavelength of a single Fiber Bragg grating can be measured. Experiments will also be performed with two and three FBGs to compare different algorithmic approaches to measurements. The second part of the thesis will simulate both single and multiple FBG sensor environments, comparing the center wavelength measurement accuracy results for different parameters including signal-to-noise ratios, wavelength point density, FBG loss and width, and multiple algorithmic approaches. The results of these experiments and simulations will demonstrate how accurate a FBG sensor system is at particular parameters, which will be useful to those designing a sensor network or performing similar experiments.

Page generated in 0.0495 seconds