Spelling suggestions: "subject:"bragg itinerating"" "subject:"bragg ingratiating""
41 |
Investigation of pristine and oxidized porous siliconPap, A. E. (Andrea Edit) 21 June 2005 (has links)
Abstract
While numerous publications deal with the properties and applications of porous silicon (PS), some of the related topics are not complete or could be investigated from different aspects. Therefore, the main objective of this thesis is to provide novel information associated with the optical and chemical properties of PS.
For the investigations, various PS samples are manufactured by electrochemical dark etching of boron-doped p+-type Si wafers. Amongst others, (i) the wavelength-dependent refractive indices of freestanding PS monolayers having different porosities were obtained from optical transmission and reflection spectra in the 700–1700 nm wavelength range, and compared to those calculated from Bruggeman's effective medium approximation (EMA). The refractive indices of the PS samples are shown to be described well with the EMA. In addition, optical scattering at the air-PS interface was demonstrated. (ii) Multilayer stacks are created by alternating the porosities of PS layers within the same sample to form Bragg filters. The Bragg conditions of the filters are calculated and compared to optical transmission measurements. (iii) The oxidation of PS membranes in dry air is investigated with emphases on the reaction kinetics and on the structural changes of the porous matter. As revealed, oxidation proceeds faster in PS than in Si bulk. The formed SiO2 is amorphous and causes stress in the lattice of the residual Si skeleton. (iv) The effect of oxidation extent of PS layers on the growth mechanism of multi-walled carbon nanotubes (CNTs) is investigated. The density of the CNT network is found proportional to the oxidation extent of the substrates. (v) Finally, the chemically-reductive nature of PS is studied and exploited via the immersion plating method to deposit palladium and silver nanoparticles in the nanopores and on the surface of PS samples.
The presented novel results have potential in silicon-based technologies, including integrated active and passive optical components (waveguides, filters, antireflection coatings, optical gas/liquid sensors), electronic devices (electrochemical gas/liquid sensors, diodes, field effect devices) and selective chemical catalysis (substrates, growth templates).
|
42 |
The application of optical fibre Bragg grating sensors to an internal wind tunnel balancePieterse, Frederik Francois 04 June 2012 (has links)
D. Phil. / Conventional internal wind tunnel balances are designed and constructed to accommodate foil strain gauges which measure the deformation (strain) of the material. Foil strain gauge balances are known to be affected by electromagnetic interference and temperature. These balances are expensive and their manufacture is time consuming. With an increasing demand for higher accuracy, stiffness, increased resolution and temperature compensation, current balance designs are becoming inadequate. To overcome identified balance deficiencies a research programme in the application of optical Bragg gratings to wind tunnel balances was initiated. In this programme a new concept of using optical fibre Bragg grating sensors, with the advantage of using mechanical amplification to increase sensitivity, and the implementation of temperature compensation techniques was demonstrated on a simulated two component balance.
|
43 |
Novel Methods To Interrogate Fiber Bragg Grating SensorsMahesh, Kondiparthi 10 1900 (has links) (PDF)
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of ‘FBG length-refractive index strength’ combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This work acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.
A novel high sensitive FBG strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities
considering all major noise contributions are respectively of the order of 25 pε/ Hz and
1.2nε /
|
44 |
Real-time Interrogation of Fiber Bragg Grating Sensors Based on Chirped Pulse CompressionLiu, Weilin January 2011 (has links)
Theoretical and experimental studies of real-time interrogation of fiber Bragg grating (FBG) sensors based on chirped pulse compression with increased interrogation resolution and signal-to-noise ratio are presented. Two interrogation systems are proposed in this thesis.
In the first interrogation system, a linearly chirped FBG (LCFBG) is employed as the sensing element. By incorporating the LCFBG in an optical interferometer as the sensor encoding system, employing wavelength-to-time mapping and chirped pulse compression technique, the correlation of output microwave waveform with a chirped reference waveform would provide an interrogation result with high speed and high resolution. The proposed system can provide an interrogation resolution as high as 0.25 μ at a speed of 48.6 MHz. The second interrogation system is designed to achieve simultaneous measurement of strain and temperature. In this system, a high-birefringence LCFBG (Hi-Bi LCFBG) is employed as a sensing element.
|
45 |
Photonic Dispersive Delay Line for Broadband Microwave Signal ProcessingZhang, Jiejun January 2017 (has links)
The development of communications technologies has led to an ever-increasing requirement for a wider bandwidth of microwave signal processing systems. To overcome the inherent electronic speed limitations, photonic techniques have been developed for the processing of ultra-broadband microwave signals. A dispersive delay line (DDL) is able to introduce different time delays to different spectral components, which are used to implement signal processing functions, such as time reversal, time delay, dispersion compensation, Fourier transformation and pulse compression. An electrical DDL is usually implemented based on a surface acoustic wave (SAW) device or a synthesized C-sections microwave transmission line, with a bandwidth limited to a few GHz. However, an optical DDL can have a much wider bandwidth up to several THz. Hence, an optical DDL can be used for the processing of an ultra-broadband microwave signal. In this thesis, we will focus on using a DDL based on a linearly chirped fiber Bragg grating (LCFBG) for the processing of broadband microwave signals. Several signal processing functions are investigated in this thesis. 1) A broadband and precise microwave time reversal system using an LCFBG-based DDL is investigated. By working in conjunction with a polarization beam splitter, a wideband microwave waveform modulated on an optical pulse can be temporally reversed after the optical pulse is reflected by the LCFBG for three times thanks to the opposite dispersion coefficient of the LCFBG when the optical pulse is reflected from the opposite ends. A theoretical bandwidth as large as 273 GHz can be achieved for the time reversal. 2) Based on the microwave time reversal using an LCFBG-based DDL, a microwave photonic matched filter is implemented for simultaneously generating and compressing an arbitrary microwave waveform. A temporal convolution system for the calculation of real time convolution of two wideband microwave signals is demonstrated for the first time. 3) The dispersion of an LCFBG is determined by its physical length. To have a large dispersion coefficient while maintaining a short physical length, we can use an optical recirculating loop incorporating an LCFBG. By allowing a microwave waveform to travel in the recirculating loop multiple times, the microwave waveform will be dispersed by the LCFBG multiple times, and the equivalent dispersion will be multiple times as large as that of a single LCFBG. Based on this concept, a time-stretch microwave sampling system with a record stretching factor of 32 is developed. Thanks to the ultra-large dispersion, the system can be used for single-shot sampling of a signal with a bandwidth up to a THz. The study in using the recirculating loop for the stretching of a microwave waveform with a large stretching factor is also performed. 4) Based on the dispersive loop with an extremely large dispersion, a photonic microwave arbitrary waveform generation system is demonstrated with an increased the time-bandwidth product (TBWP). The dispersive loop is also used to achieve tunable time delays by controlling the number of round trips for the implementation of a photonic true time delay beamforming system.
|
46 |
An oceanographic pressure sensor based on an in-fibre Bragg gratingBostock, Riccardo 27 April 2020 (has links)
Deep-ocean pressure measurements are a necessary component for ocean characterization and oceanographic monitoring. Some principle applications such as tsunami detection and ocean floor subsidence are reliant on deep-ocean pressure measurement data. The deep ocean is a challenging environment especially for pressure measurements; discerning pressure changes that are a small fraction of the ambient pressure calls for intelligent engineering solutions.
An ocean-deployable concept model of a pressure sensor is developed. The design is based on a diaphragm transducer intended for measuring hydrostatic pressure changes on the order of 1 centimeter of water (cmH2O) while exposed to ambient pressures several orders of magnitude greater for up to 2500 meters of water (mH2O). Two laboratory-scale pressure sensors are fabricated to test the fundamental principle of the proposed concept at lab-safe pressures. One is a single-sided sensor exposed to atmospheric pressure. The second sensor is a two-sided design that operates at a defined target depth pressure and measures the differential pressure across both faces of the diaphragm.
The sensor design built for atmospheric pressure testing observed a mean experimental sensitivity of 6.05 pm/cmH2O in contrast to 6 pm/cmH2O determined theoretically. The percent error between the experimental and theoretical values is 0.83%. The second design was tested at target depth pressures of 10, 20, 40, and 60 psi (7, 14, 28, and 42 mH2O) and performance was within 5.8%, 2.8%, 0.7%, 4.0% respectively when considering percent error of the mean experimental and theoretical. The repeatability was sufficient for a given sample and pressure response within the range proposed in theory when a pressure preload was present to the diaphragm. Future work will aim at developing a design concept that incorporates a piston and is tested at a higher hydrostatic pressure system, and within ocean waters. A deployment plan and consideration of challenges associated with ocean testing will be accounted for. / Graduate
|
47 |
Šumové charakteristiky optického signálu zesíleného optickým vláknovým zesilovačem / Noise characteristics of the optical signal amplified by optical fiber amplifierDašovský, Jakub January 2017 (has links)
This master thesis deals with problematics of information transmission trough optical fiber and spreading of the electromagnetic field at wavelengths of light. There are analyzed characteristics of the optical signal, and described methods of measuring wavelength of the optical signal power and noise level of the useful signal. Another examined parameter is OSNR at the input and on the output of the optical fiber amplifier EFDA.
|
48 |
Vláknové difrakční struktury Point-by-Point / The Point-by-Point fiber diffraction structuresValášek, Martin January 2017 (has links)
The diploma thesis described the basic principles and characters of the long period fiber gratings (LPFGs). Our concern was to describe basic mathematical description of these gratings needed to their modelation and simulation. Consequently some exact models leading to changes in the shape of the spectrum LPFGs were suggested, these methods were the chirping, apodization and changes in the average refractive index navg. In the Matlab environment, programes for counting the important parametres LPFGs were created and meanwhile each model leading to the change in the shape of the spectrum was simulated.
|
49 |
Evaluation of Strain and Temperature Measurements with Fiber Bragg Grating for Loss Verification and Heat Transfer of Ball BearingsKarlsson, Alexander, Marcus, Eric January 2021 (has links)
Volvo Cars is in a change of producing only electric and hybrid cars by 2025.Subcomponent testing is a crucial part to ensure the quality of the individual buildingblocks in an electric machine. Any way of making these tests more reliable and less timeconsuming is of great interest at Volvo. Force and temperature on bearings are especiallyhard to measure accurately, because of their placement and dynamic behavior. Accurateand reliable measurements is also a vital part in creating realistic Computer-AidedEngineering (CAE) models for simulation purposes. Simulations on bearings could lead tobetter bearing choices and accelerate the design process. This could increase bearing lifeand increase the Electrical Vehicle (EV) range due to minimized friction losses. FiberBragg Grating (FBG) sensors is a technology that has some key advantages overconventional sensors. They are immune to EMI, smaller in size, can have multiple sensorsin one fiber and can measure multiple physical quantities at the same time. Volvo Cars isinterested in investigating whether this sensor technology could be a candidate forreplacing some of the current measurement setup configurations.The project was divided into three parts, validating sensor equipment, find method forinstallation and measurement on a bearing and development of a CAE model for bearinglosses and heat transfer. To validate the sensor equipment a Measurement SystemAnalysis (MSA) was performed on two FBG fibers, one FBG isolated from strain fortemperature measurement and one FBG array with multiple sensing points. From theMSA it could be seen that the FBG temperature sensor had a total uncertainty of 3.4 °CThe FBG array had a strain uncertainty of 1.04 μ𝜀 and a temperature uncertainty of 0.4 °C.The uncertainty of both the FBG array and the FBG temperature sensor is highlydependent on the calibration of the sensitivity constant. The force measurement on thebearing was done with a concept based on the wavelength difference, produced by strain,between two FBG sensors. The concept was tested in a dynamic component rig where anaxial force could be applied, and the wavelength difference measured. The temperatureon the outer ring of the bearing was measured using an FBG isolated from strain. The testresults were promising, but since the FBG is sensitive to temperature and strain theincreased temperature difference between the two fibers affected the results. Thecalibration method needs to be compensated for the increased temperature differencebetween the fibers which is generated when the rotational speed is increased, and thiscould not be done with a single temperature measurement. The two developed CAEmodels was both constructed in MATLAB and showed similar behavior with experimentaltests done by others. To validate the models, physical test for heat transfer and bearinglosses should be performed.
|
50 |
Caractérisation des profils d'indice de réseaux de Bragg innovants en module et phase / Amplitude and phase index profile characterization of innovative fiber Bragg gratingsTsyier, Sergei 18 April 2013 (has links)
Récemment, de nouvelles techniques ont été développées pour la fabrication des réseaux de Bragg à profil complexe. Ces composants photoniques sont utilisés dans plusieurs applications émergentes telles que la compensation de la dispersion pour les systèmes de communication de longue portée, les lasers à fibre, multiplexeurs et détecteurs optiques. Le diagnostic après inscription devrait fournir les informations nécessaires pour l’amélioration de la fabrication des réseaux de Bragg. Nous savons que les propriétés spectrales du réseau de Bragg sont liées au profil d’indice Δn. Les techniques de mesure directes, telles que la diffraction latérale de Krug, permettent de retrouver l’amplitude de modulation d’indice le long du réseau. Cependant, ces techniques sont insensibles aux fluctuations de phase. Une méthode alternative de caractérisation indirecte fondée sur l’algorithme de Layer-Peeling (LP) a été proposée. Toutefois elle ne peut pas être appliquée à la caractérisation des réseaux longs en raison de la propagation du bruit de calcul. Dans cette thèse nous avons présenté une nouvelle technique pour la mesure directe de l’amplitude et de la phase du profil d’indice le long du réseau de Bragg fondée sur la luminescence bleue (LB) induite par l’irradiation UV. Nos résultats expérimentaux de la mesure du profil de modulation d’indice sont en bonne correspondance avec la méthode de Krug. La méthode que nous proposons peut être appliquée à la caractérisation des réseaux longs. Elle permet de retrouver simultanément l’amplitude de modulation d’indice Δnac(z), la fonction du chirp et détecter le changement de l’indice moyen Δndc(z). / N the last decade new techniques were developed for fabrication of sophisticated Fiber Bragg Gratings (FGBs). This has been motivated by the emergence of many applications such as dispersion compensation for long-haul communication systems, DFB fiber lasers, optical add/drop multiplexers, and optical sensors. Post-fabrication diagnostics should provide relevant information to enhance the FBG fabrication process. It is well known that the FBG spectral properties are related to the index profile Δn. Direct measurement techniques, such as the side diffraction method reported by P. Krug, allow determining the index modulation amplitude along the FBG. Nevertheless, these techniques provide no information about phase fluctuations. An alternative method of indirect characterization, based on the Layer-Peeling (LP) algorithm, consists in Bragg grating profile reconstruction from its complex reflectivity. However, the LP method is unstable when applied to characterize long FBGs (>1mm) due to the error propagation effect. In this thesis we have shown the principle of a novel technique for the direct measurement of amplitude and phase variations of the index modulation along an FBG based on the blue luminescence (BL). Our experimental results are in a good agreement with the according Krug characterization. The proposed method of FBG characterization in amplitude and phase using the UV induced BL can be applied to long gratings (up to tens of centimeters) having complex index modulation profiles. It allows retrieving simultaneously the index profile modulation Δnac(z) and the chirp function, localizing phase shifts, and also detecting the mean index change Δndc(z).
|
Page generated in 0.0756 seconds