Spelling suggestions: "subject:"heretrojunction"" "subject:"adjunction""
1 |
Contact and Length Dependent Effects in Single-Molecule ElectronicsJanuary 2013 (has links)
abstract: Understanding charge transport in single molecules covalently bonded to electrodes is a fundamental goal in the field of molecular electronics. In the past decade, it has become possible to measure charge transport on the single-molecule level using the STM break junction method. Measurements on the single-molecule level shed light on charge transport phenomena which would otherwise be obfuscated by ensemble measurements of groups of molecules. This thesis will discuss three projects carried out using STM break junction. In the first project, the transition between two different charge transport mechanisms is reported in a set of molecular wires. The shortest wires show highly length dependent and temperature invariant conductance behavior, whereas the longer wires show weakly length dependent and temperature dependent behavior. This trend is consistent with a model whereby conduction occurs by coherent tunneling in the shortest wires and by incoherent hopping in the longer wires. Measurements are supported with calculations and the evolution of the molecular junction during the pulling process is investigated. The second project reports controlling the formation of single-molecule junctions by means of electrochemically reducing two axial-diazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in-situ between the molecule and gold electrodes. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond. Finally, the third project investigates the role that molecular conformation plays in the conductance of oligothiophene single-molecule junctions. Ethyl substituted oligothiophenes were measured and found to exhibit temperature dependent conductance and transition voltage for molecules with between two and six repeat units. While the molecule with only one repeat unit shows temperature invariant behavior. Density functional theory calculations show that at higher temperatures the oligomers with multiple repeat units assume a more planar conformation, which increases the conjugation length and decreases the effective energy barrier of the junction. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2013
|
2 |
Coherent and Dissipative Transport in Metallic Atomic-Size ContactsDai, Zhenting 15 November 2006 (has links)
Thin-film niobium mechanically controlled break junctions and resistively shunted niobium mechanically-controlled break junctions were developed and successfully microfabricated. Using these devices, high-stability atomic size contacts were routinely produced and investigated both in the normal and superconducting states. Investigations of the two-level conductance fluctuations in the smallest contacts allowed the calculation of their specific atomic structure. Embedding resistive shunts close to the superconducting atomic-sized junctions affected the coherence of the electronic transport. Finally, point contact spectroscopy measurements provide evidence of the interaction of conduction electrons with the mechanical degrees of freedom of the atomic-size niobium contacts.
|
3 |
Design of a Mechanically Controllable Break Junction to Measure Quantum Conductance of GoldSaaty, Kara January 2013 (has links)
A mechanically controllable break junction setup was designed, constructed and characterized. The mechanically controllable break junction technique is commonly used for measurement of quantum conductance of metals and single molecule conductance. The technique relies on resistance to external vibrations disrupting the atomic or molecular junctions formed and should be in a low electronic noise environment. Through a series of experiments the setup was found to have high mechanical stability and low electronic noise. The quantum conductance of gold was measured repeatedly and a histogram was plotted showing good agreement with the literature. The results indicate that with modifications, the setup can be used to measure the conductance of single molecule junctions and single molecule thermoelectric properties.
|
4 |
New Measurement Techniques and Their Applications in Single Molecule ElectronicsJanuary 2012 (has links)
abstract: Studying charge transport through single molecules tethered between two metal electrodes is of fundamental importance in molecular electronics. Over the years, a variety of methods have been developed in attempts of performing such measurements. However, the limitation of these techniques is still one of the factors that prohibit one from gaining a thorough understanding of single molecule junctions. Firstly, the time resolution of experiments is typically limited to milli to microseconds, while molecular dynamics simulations are carried out on the time scale of pico to nanoseconds. A huge gap therefore persists between the theory and the experiments. This thesis demonstrates a nanosecond scale measurement of the gold atomic contact breakdown process. A combined setup of DC and AC circuits is employed, where the AC circuit reveals interesting observations in nanosecond scale not previously seen using conventional DC circuits. The breakdown time of gold atomic contacts is determined to be faster than 0.1 ns and subtle atomic events are observed within nanoseconds. Furthermore, a new method based on the scanning tunneling microscope break junction (STM-BJ) technique is developed to rapidly record thousands of I-V curves from repeatedly formed single molecule junctions. 2-dimensional I-V and conductance-voltage (G-V) histograms constructed using the acquired data allow for more meaningful statistical analysis to single molecule I-V characteristics. The bias voltage adds an additional dimension to the conventional single molecule conductance measurement. This method also allows one to perform transition voltage spectra (TVS) for individual junctions and to study the correlation between the conductance and the tunneling barrier height. The variation of measured conductance values is found to be primarily determined by the poorly defined contact geometry between the molecule and metal electrodes, rather than the tunnel barrier height. In addition, the rapid I-V technique is also found useful in studying thermoelectric effect in single molecule junctions. When applying a temperature gradient between the STM tip and substrate in air, the offset current at zero bias in the I-V characteristics is a measure of thermoelectric current. The rapid I-V technique allows for statistical analysis of such offset current at different temperature gradients and thus the Seebeck coefficient of single molecule junctions is measured. Combining with single molecule TVS, the Seebeck coefficient is also found to be a measure of tunnel barrier height. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
|
5 |
Measurement and Visualization of Electron Transfer at the Single Molecule LevelXing, Yangjun January 2009 (has links)
Molecular electronics based on bottom-up electronic circuit design is a potential solution to meet the continuous need to miniaturize electronic devices. The development of highly conductive molecular wires, especially for long distance charge transfer, is a major milestone in the molecular electronics roadmap. A challenge presented by single molecule conductance is to define the relative influence of the molecular "core" and the molecular "interconnects" on the observed currents. Much focus has been placed on designing conductive, conjugated molecules. However, the electrode-molecule contacts can dominate the responses of metal-molecule-metal devices. We have experimentally and theoretically probed charge transfer through single phenyleneethynylene molecules terminated with thiol and carbodithioate linkers, using STM break-junction and non-equilibrium Green's function methods. The STM break-junction method utilizes repeatedly formed circuits where one or a few molecules are trapped between two electrodes, at least one of which has nanoscale dimensions. The statistical analysis of thousands of measurements yields the conductance of single molecules. Experimental data demonstrate that the carbodithioate linker not only augments electronic coupling to the metal electrode relative to thiol, but reduces the barrier to charge injection into the phenyleneethynylene bridge. The theoretical analysis shows that sulfur hybridization provides the genesis for the order-of-magnitude increased conductance in carbodithioate-terminated systems relative to those that feature the thiol linker. Collectively, these data emphasize the promising role for carbodithioate-based connectivity in molecular electronics applications involving metallic and semi-conducting electrodes. One of the strategies for building molecular wires that can transfer charge over long distance is to incorporate metal ions into the conductive molecular core. Peptide nucleic acid (PNA) is a great candidate for this purpose. Studying the conductivity of PNA can not only contribute to a better understanding of charge transfer through biomolecules, but can also help develop better molecular wires and other building blocks of molecular electronics. We study the charge transfer of PNA molecules using the STM break-junction technique and compare with traditional macroscopic voltammetric measurements. By measuring the resistance of different PNA molecules, we hope to develop a deep understanding of how charge transport though PNA is affected by factors such as the number and type of natural and artificial bases, embedded metal ions, pH, etc. Self-assembled monolayers (SAMs) of porphyrins are of great interest due to their diverse applications, including molecular devices, nano-templates, electrocatalysis, solar cells, and photosynthesis. We combined a molecular level study of the redox reactions using electrochemical scanning tunneling microscopy (EC-STM) with a macroscopic electrochemical technique, cyclic voltammetry (CV), to study two redox active porphyrin molecules, TPyP (5,10,15,20-Tetra(4-Pyridyl)-21H,23H-Porphine) and 5, 10, 15, 20-tetrakis (4-carboxylphenyl)-21H, 23H-porphine (TCPP). We showed that the adsorbed oxidized TPyP molecules slowly change to brighter contrast, consistent with the appearance of the reduced form of TPyP, under reduction condition (0.0VSCE). The time scale of the slow reduction is in the order of tens of minutes at 0.0VSCE, but accelerates at more negative potentials. We propose that protonation and deprotonation processes play an important role in the surface redox reaction due to geometric restriction of the molecules adsorbed on the surface. EC-STM and CV experiments were performed at various pH values to investigate the mechanism of this anomalously slow redox reaction. Our results show that the increased concentration of H+ hinders the reduction of porphyrins, a feature that has not been reported preciously. This provides insight into the details of the surface redox reaction. / Chemistry
|
6 |
Syntéza π-elektronových systémů vhodných pro přenos a retenci náboje / The synthesis of π-electron systems suitable for transfer and retention of chargesNejedlý, Jindřich January 2021 (has links)
The aim of my Thesis was to develop a general synthetic methodology for the preparation of long helicenes equipped with suitable functional groups that control their solubility or serve as anchoring groups for attachment to metallic surfaces, especially gold. The well-established transition metal catalyzed [2+2+2] cyclotrimerization of triynes was selected as the key scaffold-forming transformation in the synthesis of long helicenes because of its high regioselectivity, atom efficiency, functional group tolerance and general robustness. A modular approach was used for the preparation of the starting oligoynes, thus enabling a high level of their structural diversity. Individual resorcinol- based aromatic building blocks were interconnected by Sonogashira cross-coupling reactions, providing complex cyclization precursors encompassing up to twelve alkyne units pre-arranged for the multiple [2+2+2] cycloisomerization to produce three six- membered rings from each set of three neighboring alkyne units. Thus, a small series of long helicenes with up to 19 rings constituting the helical scaffold was synthesized. The quadruple cyclization leading to the longest oxahelicene prepared to date was performed in a high-temperature-high-pressure flow reactor at 250 řC in the presence of CpCo(CO)2. The set of...
|
7 |
Towards reliable contacts of molecular electronic devices to gold electrodesCafe, Peter F January 2008 (has links)
PhD / SYNOPSIS OF THIS THESIS The aim of this thesis is to more fully understand and explain the binding mechanism of organic molecules to the Au(111) surface and to explore the conduction of such molecules. It consists of five discreet chapters connected to each other by the central theme of “The Single Molecule Device: Conductance and Binding”. There is a deliberate concentration on azine linkers, in particular those with a 1,10-phenanthroline-type bidentate configuration at each end. This linker unit is called a “molecular alligator clip” and is investigated as an alternative to the thiol linker unit more commonly used. Chapter 1 places the work in the broad context of Molecular Electronics and establishes the need for this research. In Chapter 2 the multiple break-junction technique (using a Scanning Tunnelling Microscope or similar device) was used to investigate the conductance of various molecules with azine linkers. A major finding of those experiments is that solvent interactions are a key factor in the conductance signal of particular molecules. Some solvents interfere with the molecule’s interaction with and attachment to the gold electrodes. One indicator of the degree of this interference is the extent of the enhancement or otherwise of the gold quantized conduction peak at 1.0 G0. Below 1.0 G0 a broad range for which the molecule enhances conduction indicates that solvent interactions contribute to a variety of structures which could bridge the electrodes, each with their own specific conductance value. The use of histograms with a Log10 scale for conductance proved useful for observing broad range features. vi Another factor which affects the conductance signal is the geometric alignment of the molecule (or the molecule-solvent structure) to the gold electrode, and the molecular alignment is explored in Chapters 3 for 1,10-phenanthroline (PHEN) and Chapter 4 for thiols. In Chapter 3 STM images, electrochemistry, and Density Functional Theory (DFT) are used to determine 1,10-phenanthroline (PHEN) structures on the Au(111) surface. It is established that PHEN binds in two modes, a physisorbed state and a chemisorbed state. The chemisorbed state is more stable and involves the extraction of gold from the bulk to form adatom-PHEN entities which are highly mobile on the gold surface. Surface pitting is viewed as evidential of the formation of the adatom-molecule entities. DFT calculations in this chapter were performed by Ante Bilic and Jeffery Reimers. The conclusions to Chapter 3 implicate the adatom as a binding mode of thiols to gold and this is explored in Chapter 4 by a timely review of nascent research in the field. The adatom motif is identified as the major binding structure for thiol terminated molecules to gold, using the explanation of surface pitting in Chapter 3 as major evidence and substantiated by emergent literature, both experimental and theoretical. Furthermore, the effect of this binding mode on conductance is explored and structures relevant to the break-junction experiment of Chapter 2 are identified and their conductance values compared. Finally, as a result of researching extensive reports of molecular conductance values, and having attempted the same, a simple method for predicting the conductance of single molecules is presented based upon the tunneling conductance formula.
|
8 |
Towards reliable contacts of molecular electronic devices to gold electrodesCafe, Peter F January 2008 (has links)
PhD / SYNOPSIS OF THIS THESIS The aim of this thesis is to more fully understand and explain the binding mechanism of organic molecules to the Au(111) surface and to explore the conduction of such molecules. It consists of five discreet chapters connected to each other by the central theme of “The Single Molecule Device: Conductance and Binding”. There is a deliberate concentration on azine linkers, in particular those with a 1,10-phenanthroline-type bidentate configuration at each end. This linker unit is called a “molecular alligator clip” and is investigated as an alternative to the thiol linker unit more commonly used. Chapter 1 places the work in the broad context of Molecular Electronics and establishes the need for this research. In Chapter 2 the multiple break-junction technique (using a Scanning Tunnelling Microscope or similar device) was used to investigate the conductance of various molecules with azine linkers. A major finding of those experiments is that solvent interactions are a key factor in the conductance signal of particular molecules. Some solvents interfere with the molecule’s interaction with and attachment to the gold electrodes. One indicator of the degree of this interference is the extent of the enhancement or otherwise of the gold quantized conduction peak at 1.0 G0. Below 1.0 G0 a broad range for which the molecule enhances conduction indicates that solvent interactions contribute to a variety of structures which could bridge the electrodes, each with their own specific conductance value. The use of histograms with a Log10 scale for conductance proved useful for observing broad range features. vi Another factor which affects the conductance signal is the geometric alignment of the molecule (or the molecule-solvent structure) to the gold electrode, and the molecular alignment is explored in Chapters 3 for 1,10-phenanthroline (PHEN) and Chapter 4 for thiols. In Chapter 3 STM images, electrochemistry, and Density Functional Theory (DFT) are used to determine 1,10-phenanthroline (PHEN) structures on the Au(111) surface. It is established that PHEN binds in two modes, a physisorbed state and a chemisorbed state. The chemisorbed state is more stable and involves the extraction of gold from the bulk to form adatom-PHEN entities which are highly mobile on the gold surface. Surface pitting is viewed as evidential of the formation of the adatom-molecule entities. DFT calculations in this chapter were performed by Ante Bilic and Jeffery Reimers. The conclusions to Chapter 3 implicate the adatom as a binding mode of thiols to gold and this is explored in Chapter 4 by a timely review of nascent research in the field. The adatom motif is identified as the major binding structure for thiol terminated molecules to gold, using the explanation of surface pitting in Chapter 3 as major evidence and substantiated by emergent literature, both experimental and theoretical. Furthermore, the effect of this binding mode on conductance is explored and structures relevant to the break-junction experiment of Chapter 2 are identified and their conductance values compared. Finally, as a result of researching extensive reports of molecular conductance values, and having attempted the same, a simple method for predicting the conductance of single molecules is presented based upon the tunneling conductance formula.
|
9 |
The Formation of Two Dimensional Supramolecular Structures and Their Use in Studying Charge Transport at the Single Molecule Level at the Liquid-Solid InterfaceAfsari Mamaghani, Sepideh January 2015 (has links)
Understanding charge transport through molecular junctions and factors affecting the conductivity at the single molecule level is the first step in designing functional electronic devices using individual molecules. A variety of methods have been developed to fabricate metal-molecule-metal junctions in order to evaluate Single Molecule Conductance (SMC). Single molecule junctions usually are formed by wiring a molecule between two metal electrodes via anchoring groups that provide efficient electronic coupling and bind the organic molecular backbone to the metal electrodes. We demonstrated a novel strategy to fabricate single molecule junctions by employing the stabilization provided by the long range ordered structure of the molecules on the surface. The templates formed by the ordered molecular adlayer immobilize the molecule on the electrode surface and facilitate conductance measurements of single molecule junctions with controlled molecular orientation. This strategy enables the construction of orientation-controlled single molecule junctions, with molecules lacking proper anchoring groups that cannot be formed via conventional SMC methods. Utilizing Scanning Tunneling Microscopy (STM) imaging and STM break junction (STM-BJ) techniques combined, we employed the molecular assembly of mesitylene to create highly conductive molecular junctions with controlled orientation of benzene ring perpendicular to the STM tip as the electrode. The long range ordered structure of mesitylene molecules imaged using STM, supports the hypothesis that mesitylene is initially adsorbed on the Au(111) with the benzene ring lying flat on the surface and perpendicular to the Au tip. Thus, long range ordered structure of mesitylene facilitates formation of Au-π-Au junctions. Mesitylene molecules do not have standard anchoring groups providing enough contact to the gold electrode and the only assumable geometry for the molecules in the junction is via direct contact between Au and the π system of the benzene ring in mesitylene. SMC measurements for Au/mesitylene/Au junctions results in a molecular conductance value around 0.125Go, two orders of magnitude higher than the measured conductance of a benzene ring connected via anchoring groups. We attributed this conductance peak to charge transport perpendicular to the benzene ring due to direct coupling between the π system and the gold electrode that happens in planar orientation. The conductance we measured for planar orientation of benzene ring is two order of magnitude larger than conductance of junctions formed with benzene derivatives with conventional linkers. Thus, altering the orientation of a single benzene-containing molecule between the two electrodes from planar orientation to the upright attached via the linkers, results in altering the conductivity in a large order. Based on these findings, by utilizing STM imaging and STM-BJ in an electrochemical environment including potential induced self-assembly formation of terephthalic acid, we designed an electrochemical single molecule switch. Terephthalic acid forms large domains of ordered structure on negatively charged Au(111) surface under negative electrochemical surface potentials with the benzene ring lying flat on the surface due to hydrogen bonding between carboxylic acid groups of neighboring molecules. Formation of long range ordered structure facilitates direct contact between the π system of the benzene ring and the gold electrodes resulting in the conductance peak. On positively charged Au(111), deprotonation of carboxylic acid groups leads to absence of long range ordered structure of molecules with planar orientation and absence of the conductance peak. In this case alternating the surface (electrode) potential from negative to positive charge densities induces a transition in the adlayer structure on the surface and switches conductance value. Hence, electrochemical surface potential can, in principle, be employed as an external stimulus to switch single molecule arrangement on the surface and the conductance in the junction. The observation of conductance switching due to molecule’s arrangement in the junction lead to the hypothesis that for any benzene derivative, an orientation-dependent conductance in the junction due to the contact geometry (i.e. electrode-anchoring groups versus direct electrode-π contact) should be expected. Conventional techniques in fabricating single molecule junctions enable accessing charge transport along only one direction, i.e., between two anchoring groups. However, molecules such as benzene derivatives are anisotropic objects and we are able to measure an orientation-dependent conductance. In order to systematically study anisotropic conductivity at single molecule level, we need to measure the conductance in different and well-controlled orientations of single molecules in the junction. We employed the same EC-STM-BJ set up for SMC measurements and utilize electrochemical potential of the substrate (electrode) as the tuning source to variate the orientation of the single molecule in the junction. We investigated single molecule conductance of the benzene rings with carboxylic acid functional groups in two orientations: one with the benzene ring bridging between two electrodes using carboxylic acids as anchoring groups (upright); and one with the molecule lying flat on the substrate perpendicular to the STM tip (planar). Physisorption of these species on the Au (111) single crystal electrode surface at negative electrochemical potentials results in an ordered structure with the benzene ring in a planar orientation. Positive electrochemical potentials cause formation of the ordered structure with molecules standing upright due to coordination of a deprotonated carboxyl groups to the electrode surface. Thus, formation of the single molecule junction and consequently conductivity measurements is facilitated in two directions for the same molecule and anisotropic conductivity can be studied. In engineering well-ordered two-dimensional (2-D) molecular structures with controlled assembly of molecular species, pH can be employed as another tuning source for the molecular structures and adsorption in experiments conducted in aqueous solutions. Based on simple chemical principles, amine (NH2) groups are hydrogen bond acceptors and donors. Amines are soluble in water and protonation results in protonated (NH3+) and unprotonated (NH2) amine groups in acidic and moderately acidic/neutral solutions, respectively. Thus, amines are suitable molecular building blocks for fabricating 2-D supramolecular structures where pH is employed as a knob to manipulate intermolecular hydrogen bonding leading to phase transitions. We investigated pH induced structural changes in the 1,3,5–triaminobenzene (TAB) monolayer and the formation/disruption of hydrogen bonds between neighboring molecules. Our STM images indicate that in the concentrated acidic solution, the protonated amine groups of TAB are not able to form H-bonds and long range ordered structure of TAB does not form on the Au(111) surface. However, in moderately acidic solution (pH ~ 5.5) at room temperature, protonation on the ring carbon atom generates species capable of forming H-bonds leading to the formation of the long range ordered structures of TAB molecules. Utilizing EC-STM set up, we investigated the controllable fabrication of a TAB 2-D supramolecular structure based on amine-amine hydrogen bonding and effect of pH in formation of ordered/disordered TAB network. / Chemistry
|
10 |
Atomistic simulations of competing influences on electron transport across metal nanocontactsDednam, Wynand 14 June 2019 (has links)
In our pursuit of ever smaller transistors, with greater computational throughput, many
questions arise about how material properties change with size, and how these properties
may be modelled more accurately. Metallic nanocontacts, especially those for which
magnetic properties are important, are of great interest due to their potential spintronic
applications. Yet, serious challenges remain from the standpoint of theoretical and
computational modelling, particularly with respect to the coupling of the spin and lattice
degrees of freedom in ferromagnetic nanocontacts in emerging spintronic technologies. In
this thesis, an extended method is developed, and applied for the first time, to model the
interplay between magnetism and atomic structure in transition metal nanocontacts. The
dynamic evolution of the model contacts emulates the experimental approaches used in
scanning tunnelling microscopy and mechanically controllable break junctions, and is
realised in this work by classical molecular dynamics and, for the first time, spin-lattice
dynamics. The electronic structure of the model contacts is calculated via plane-wave and
local-atomic orbital density functional theory, at the scalar- and vector-relativistic level of
sophistication. The effects of scalar-relativistic and/or spin-orbit coupling on a number of
emergent properties exhibited by transition metal nanocontacts, in experimental
measurements of conductance, are elucidated by non-equilibrium Green’s Function
quantum transport calculations. The impact of relativistic effects during contact formation
in non-magnetic gold is quantified, and it is found that scalar-relativistic effects enhance the force of attraction between gold atoms much more than between between atoms which
do not have significant relativistic effects, such as silver atoms. The role of non-collinear
magnetism in the electronic transport of iron and nickel nanocontacts is clarified, and it is
found that the most-likely conductance values reported for these metals, at first- and lastcontact,
are determined by geometrical factors, such as the degree of covalent bonding in
iron, and the preference of a certain crystallographic orientation in nickel. / Physics / Ph. D. (Physics)
|
Page generated in 0.1032 seconds