• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 44
  • 15
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 123
  • 39
  • 39
  • 39
  • 15
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Effects of irrigation rate on the growth, yield, nutritive value, and water use efficiency of Carrot (Daucus carota) and Broccoli (Brasiola oleracea)

Ludong, Daniel Peter M. January 2008 (has links)
The effects of differential irrigation treatments on the water use of broccoli (c.v. Indurance) and carrots (c.v. Stefano) were studied in the rainy, winter season from July to September 2006 and in the dry, summer period from November 2006 to March 2007, respectively. Broccoli and carrots are produced on the Swan Coastal Plain region on Grey Phase Karrakatta Sand. Such soils generally have water holding capacities as low as 10 to 13%. This soil is typical to the Swan Coastal Plain and requires irrigation to be applied at rates of up to 150% of class A pan evaporation (Epan) to optimise growth and quality. / High spatial uniformity (an average of 90%) of water distribution (DU) was achieved with the sprinkler irrigation system. The average irrigation water use efficiencies (Eu) in both the experiments were relatively high, at 78% and 95% in broccoli and carrot trials, respectively. The numerous rainy days during the winter season affected the results of water application efficiencies (Ea) of the broccoli experiment, which ranged from 35% to 43%. This contrasted with the carrot experiment where the water application efficiencies (Ea) of the 100% Epan and Crop Factor (CF) treatments were 81% and 78%, respectively. For the carrot experiment the water application efficiencies for the 100% Epan and crop factor treatments were 14% higher than the 150% Epan treatment. These results indicate that the sprinkler irrigation systems in both experiments showed good performance makes the system suitable for experimental purposes and also for vegetable production on soils of this nature. / Despite the differences in irrigation volume, soil water contents remained very high and did not differ among treatments in both the experiments. The differential soil water stress index (DSWSI) for the 100% Epan (T1) and variable water replacement (VR) (TVR) treatments ranged from 0.74 to 1.71 for both broccoli and carrot trials. There were only small soil water tension differences among all the irrigation treatments and ranged from -2.4 kPa to -7.6 kPa, which was within the range between saturation and field capacity for sandy soil (0 to -10 kPa). / In the broccoli experiment, even though the 150% Epan (T2) irrigation treatment received 46% and 61% more irrigation than the 100% Epan (T1) and variable water replacement (TVR) irrigation treatments respectively, the treatments appeared to be largely negated by the high incidence of rainfall during the growing season. For example, the total depth of water application at 150% Epan was 13.9% and 17.2% greater than 100% Epan and TVR treatments respectively. As such the yield, biomass components and nutritional value (ascorbic acid and carotenoid content) did not vary among the treatments. However, irrigation was still required based on the set scheduling parameters and when considered in isolation of rainfall the irrigation crop water use efficiency (WUEi) on T1 and TVR treatments increased by 1.6-fold compared to T2 treatment. / For the carrot experiment the total depth of water application (rainfall and irrigation) for the 150% Epan treatment was 33% and 23% greater than at 100% Epan and Crop factor (CF) treatments, respectively. The yield (carrot roots) on a fresh weight basis (FW) for plants irrigated with the 150% of Epan and Crop factor (CF) treatments were 16% and 20% higher than the yield for plants irrigated with the 100% Epan treatment. Total (root and shoot) fresh weight of carrot plants irrigated For the carrot experiment the total depth of water application (rainfall and irrigation) for the 150% Epan treatment was 33% and 23% greater than at 100% Epan and Crop factor (CF) treatments, respectively. The yield (carrot roots) on a fresh weight basis (FW) for plants irrigated with the 150% of Epan and Crop factor (CF) treatments were 16% and 20% higher than the yield for plants irrigated with the 100% Epan treatment. Total (root and shoot) fresh weight of carrot plants irrigated with the CF treatment was 17% higher than the total fresh weight of plants irrigated with the 100% Epan treatment. However, there were no significant differences between irrigation treatments for root and total (root and shoot) mass on a dry weight basis and the ratio of carrot root to shoot, on a fresh and dry weight basis. The root lengths for plants grown with the CF and 150% Epan irrigation treatments averaged 30 cm, and were 14% larger than the root lengths for the 100% Epan treatment. The plant height for plants grown with the CF irrigation treatment was 6% higher than at the 100% Epan irrigation treatment and leaf length at the CF irrigation treatment was 12% greater than at the 150% Epan irrigation treatment. The root diameter and leaf width of carrots were not significantly different for all treatments. There were no significant differences in ascorbic acid and total carotenoid content of carrot roots among the three irrigation treatments. The average values of antioxidant content from diphenylpicrylhydrazyl (DPPH) scavenging, ARP (anti radical power) and total trolox equivalent antioxidant capacity were 44.83%, 0.8789 and 1.056μmol TE/g, respectively. The reduction of the irrigation level treatment from the 150% Epan water replacement to the 100% Epan water replacement increased the percentage of the DPPH scavenging by 1.55%, and total antioxidant capacity (AOC) and ARP activities by 4.19%. / On a dry weight basis, the crop water use efficiencies (WUE) (irrigation plus rain water) of carrot plants irrigated with the 100% Epan and CF treatments, were the same (0.013 g/mm). However, these were 30% greater than the WUE values of carrots irrigated with the 150% Epan treatment. On a fresh weight basis, the WUE of carrot plants irrigated with the 100% Epan and CF (0.120 and 0.132 g/mm) treatments were 14% and 26% greater than the WUE of carrot plants irrigated with the 150% Epan treatment, respectively. / An example of the diurnal trends of the carrot’s physiological responses to the irrigation treatments showed that on average, the rate of photosynthesis, stomatal conductance and intercellular CO2 for carrot plants grown with the 150% Epan treatment was higher than the rate of photosynthesis, stomatal conductance and intercellular CO2 at both the 100% Epan and CF treatments. However, not all the physiology measurements showed a significant difference among all the treatments. The variation in the physiological measurements was predominantly influenced by the change of temperature during the diurnal hours. / This study has proven the hypothesis that, on a free draining sandy soil, the irrigation treatments did not affect the growth and yield. However, there was a potential to reduce irrigation volumes from standard industry levels to maximise the WUE without decreasing the yield and crop quality, especially for broccoli and carrot, in Western Australia.
92

Effect of temperature and photoperiod on broccoli development, yield and quality in south-east Queensland

Tan, Daniel Kean Yuen January 1999 (has links)
Broccoli is a vegetable crop of increasing importance in Australia, particularly in south-east Queensland and farmers need to maintain a regular supply of good quality broccoli to meet the expanding market. However, harvest maturity date, head yield and quality are all affected by climatic variations during the production cycle, particularly low temperature episodes. There are also interactions between genotype and climatic variability. A predictive model of ontogeny, incorporating climatic data including frost risk, would enable farmers to predict harvest maturity date and select appropriate cultivar - sowing date combinations. The first stage of this research was to define floral initiation, which is fundamental to predicting ontogeny. Scanning electron micrographs of the apical meristem were made for the transition from the vegetative to advanced reproductive stage. During the early vegetative stage (stage 1), the apical meristem was a small, pointed shoot tip surrounded by leaf primordia. The transitional stage (stage 2) was marked by a widening and flattening to form a dome-shaped apical meristem. In the floral initiation stage (stage 3), the first-order floral primordia were observed in the axils of the developing bracts. Under field conditions, the shoot apex has an average diameter of 500 micro m at floral initiation and floral primordia can be observed under a light microscope. Sub-zero temperatures can result in freezing injury and thereby reduce head yield and quality. In order to predict the effects of frosts, it is desirable to know the stages of development at which plants are most susceptible. Therefore, the effects of sub-zero temperatures on leaf and shoot mortality, head yield and quality were determined after exposure of plants to a range of temperatures for short periods, at different stages of development (vegetative, floral initiation and buttoning). Plants in pots and in the field were subjected to sub-zero temperature regimes from -1 C to -19 C. Extracellular ice formation was achieved by reducing temperatures slowly, at a rate of -2 C per hour. The floral initiation stage was most sensitive to freezing injury, as yields were significantly reduced at -1 C and -3 C, and shoot apices were killed at -5 C. There was no significant yield reduction when the inflorescence buttoning stage was subjected to -1 C and -3 C. Although shoot apices at buttoning survived the -5 C treatment, very poor quality heads of uneven bud size were produced as a result of arrested development. The lethal temperature for pot-grown broccoli was between -3 C and -5 C, whereas the lethal temperature for field-grown broccoli was between -7 C and -9 C. The difference was presumably due to variation in cold acclimation. Freezing injury can reduce broccoli head yield and quality, and retard plant growth. Crop development models based only on simple thermal time without restrictions will not predict yield or maturity if broccoli crops are frost-damaged. Field studies were conducted to develop procedures for predicting ontogeny, yield and quality. Three cultivars, (Fiesta, Greenbelt and Marathon) were sown on eight dates from 11 March to 22 May 1997, and grown under natural and extended (16 h) photoperiods in a sub-tropical environment at Gatton College, south-east Queensland, under non-limiting conditions of water and nutrient supply. Daily climatic data, and dates of emergence, floral initiation, harvest maturity, together with yield and quality were obtained. Yield and quality responses to temperature and photoperiod were quantified. As growing season mean minimum temperatures decreased, fresh weight of tops decreased while fresh weight harvest index increased linearly. There was no definite relationship between fresh weight of tops or fresh weight harvest index and growing season minimum temperatures greater than 10 C. Genotype, rather than the environment, mainly determined head quality attributes. Fiesta had the best head quality, with higher head shape and branching angle ratings than Greenbelt or Marathon. Bud colour and cluster separation of Marathon were only acceptable for export when growing season mean minimum temperatures were less than 8 C. Photoperiod did not influence yield or quality in any of the three cultivars. A better understanding of genotype and environmental interactions will help farmers optimise yield and quality, by matching cultivars with time of sowing. Crop developmental responses to temperature and photoperiod were quantified from emergence to harvest maturity (Model 1), from emergence to floral initiation (Model 2), from floral initiation to harvest maturity (Model 3), and in a combination of Models 2 and 3 (Model 4). These thermal time models were based on optimised base and optimum temperatures of 0 and 20 C, respectively. These optimised temperatures were determined using an iterative optimisation routine (simplex). Cardinal temperatures were consistent across cultivars but thermal time of phenological intervals were cultivar specific. Sensitivity to photoperiod and solar radiation was low in the three cultivars used. Thermal time models tested on independent data for five cultivars (Fiesta, Greenbelt, Marathon, CMS Liberty and Triathlon) grown as commercial crops on the Darling Downs over two years, adequately predicted floral initiation and harvest maturity. Model 4 provided the best prediction for the chronological duration from emergence to harvest maturity. Model 1 was useful when floral initiation data were not available, and it predicted harvest maturity almost as well as Model 4 since the same base and optimum temperatures of 0 C and 20 C, respectively, were used for both phenological intervals. Model 1 was also generated using data from 1979-80 sowings of three cultivars (Premium Crop, Selection 160 and Selection 165A). When Model 1 was tested with independent data from 1983-84, it predicted harvest maturity well. Where floral initiation data were available, predictions of harvest maturity were most precise using Model 3, since the variation, which occurred from emergence to floral initiation, was removed. Prediction of floral initiation using Model 2 can be useful for timing cultural practices, and for avoiding frost and high temperature periods. This research has produced models to assist broccoli farmers in crop scheduling and cultivar selection in south-east Queensland. Using the models as a guide, farmers can optimise yield and quality, by matching cultivars with sowing date. By accurately predicting floral initiation, the risk of frost damage during floral initiation can be reduced by adjusting sowing dates or crop management options. The simple and robust thermal time models will improve production and marketing arrangements, which have to be made in advance. The thermal time models in this study, incorporating frost risk using conditional statements, provide a foundation for a decision support system to manage the sequence of sowings on commercial broccoli farms.
93

Effect of temperature and photoperiod on broccoli development, yield and quality in south-east Queensland

Tan, Daniel Kean Yuen Unknown Date (has links)
Broccoli is a vegetable crop of increasing importance in Australia, particularly in south-east Queensland and farmers need to maintain a regular supply of good quality broccoli to meet the expanding market. However, harvest maturity date, head yield and quality are all affected by climatic variations during the production cycle, particularly low temperature episodes. There are also interactions between genotype and climatic variability. A predictive model of ontogeny, incorporating climatic data including frost risk, would enable farmers to predict harvest maturity date and select appropriate cultivar – sowing date combinations. The first stage of this research was to define floral initiation, which is fundamental to predicting ontogeny. Scanning electron micrographs of the apical meristem were made for the transition from the vegetative to advanced reproductive stage. During the early vegetative stage (stage 1), the apical meristem was a small, pointed shoot tip surrounded by leaf primordia. The transitional stage (stage 2) was marked by a widening and flattening to form a dome-shaped apical meristem. In the floral initiation stage (stage 3), the first-order floral primordia were observed in the axils of the developing bracts. Under field conditions, the shoot apex has an average diameter of 500 &plusmn; 3 µm at floral initiation and floral primordia can be observed under a light microscope. Sub-zero temperatures can result in freezing injury and thereby reduce head yield and quality. In order to predict the effects of frosts, it is desirable to know the stages of development at which plants are most susceptible. Therefore, the effects of sub-zero temperatures on leaf and shoot mortality, head yield and quality were determined after exposure of plants to a range of temperatures for short periods, at different stages of development (vegetative, floral initiation and buttoning). Plants in pots and in the field were subjected to sub-zero temperature regimes from –1 °C to –19 °C. Extracellular ice formation was achieved by reducing temperatures slowly, at a rate of -2 °C per hour. The floral initiation stage was most sensitive to freezing injury, as yields were significantly reduced at –1 °C and –3 °C, and shoot apices were killed at –5 °C. There was no significant yield reduction when the inflorescence buttoning iv stage was subjected to –1 °C and –3 °C. Although shoot apices at buttoning survived the –5 °C treatment, very poor quality heads of uneven bud size were produced as a result of arrested development. The lethal temperature for pot-grown broccoli was between –3 °C and –5 °C, whereas the lethal temperature for field-grown broccoli was between –7 °C and –9 °C. The difference was presumably due to variation in cold acclimation. Freezing injury can reduce broccoli head yield and quality, and retard plant growth. Crop development models based only on simple thermal time without restrictions will not predict yield or maturity if broccoli crops are frostdamaged. Field studies were conducted to develop procedures for predicting ontogeny, yield and quality. Three cultivars, (‘Fiesta’, ‘Greenbelt’ and ‘Marathon’) were sown on eight dates from 11 March to 22 May 1997, and grown under natural and extended (16 h) photoperiods in a sub-tropical environment at Gatton College, south-east Queensland, under non-limiting conditions of water and nutrient supply. Daily climatic data, and dates of emergence, floral initiation, harvest maturity, together with yield and quality were obtained. Yield and quality responses to temperature and photoperiod were quantified. As growing season mean minimum temperatures decreased, fresh weight of tops decreased while fresh weight harvest index increased linearly. There was no definite relationship between fresh weight of tops or fresh weight harvest index and growing season minimum temperatures > 10 °C. Genotype, rather than the environment, mainly determined head quality attributes. ‘Fiesta’ had the best head quality, with higher head shape and branching angle ratings than ‘Greenbelt’ or ‘Marathon’. Bud colour and cluster separation of ‘Marathon’ were only acceptable for export when growing season mean minimum temperatures were < 8 °C. Photoperiod did not influence yield or quality in any of the three cultivars. A better understanding of genotype and environmental interactions will help farmers optimise yield and quality, by matching cultivars with time of sowing. Crop developmental responses to temperature and photoperiod were quantified from emergence to harvest maturity (Model 1), from emergence to floral initiation (Model 2), from floral initiation to harvest maturity (Model 3), and in a combination of Models 2 and 3 (Model 4). These thermal time models were based on optimised base v and optimum temperatures of 0 and 20 °C, respectively. These optimised temperatures were determined using an iterative optimisation routine (simplex). Cardinal temperatures were consistent across cultivars but thermal time of phenological intervals were cultivar specific. Sensitivity to photoperiod and solar radiation was low in the three cultivars used. Thermal time models tested on independent data for five cultivars (‘Fiesta’, ‘Greenbelt’, ‘Marathon’, ‘CMS Liberty’ and ‘Triathlon’) grown as commercial crops on the Darling Downs over two years, adequately predicted floral initiation and harvest maturity. Model 4 provided the best prediction for the chronological duration from emergence to harvest maturity. Model 1 was useful when floral initiation data were not available, and it predicted harvest maturity almost as well as Model 4 since the same base and optimum temperatures of 0 °C and 20 °C, respectively, were used for both phenological intervals. Model 1 was also generated using data from 1979-80 sowings of three cultivars (‘Premium Crop’, ‘Selection 160’ and ‘Selection 165A’). When Model 1 was tested with independent data from 1983-84, it predicted harvest maturity well. Where floral initiation data were available, predictions of harvest maturity were most precise using Model 3, since the variation, which occurred from emergence to floral initiation, was removed. Prediction of floral initiation using Model 2 can be useful for timing cultural practices, and for avoiding frost and high temperature periods. This research has produced models to assist broccoli farmers in crop scheduling and cultivar selection in south-east Queensland. Using the models as a guide, farmers can optimise yield and quality, by matching cultivars with sowing date. By accurately predicting floral initiation, the risk of frost damage during floral initiation can be reduced by adjusting sowing dates or crop management options. The simple and robust thermal time models will improve production and marketing arrangements, which have to be made in advance. The thermal time models in this study, incorporating frost risk using conditional statements, provide a foundation for a decision support system to manage the sequence of sowings on commercial broccoli farms.
94

Soil pH and nutrient uptake in cauliflower (Brassica oleracea L. var botrytis) and Broccoli (Brassica oleracea L. var. italica) in northern Sweden : multielement studies by means of plant and soil analyses /

Magnusson, Margareta. January 2000 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2000. / Includes bibliographical references (p. 517-565).
95

Avaliação da multiplicação de escherichia coli e staphyloccocus aureus em frutas e vegetais expostos a diferentes temperaturas e modelagem preditiva nos alimentos de maior risco

Kothe, Caroline Isabel January 2017 (has links)
Este estudo teve como objetivo inicial avaliar a multiplicação de Staphylococcus aureus e Escherichia coli em frutas e vegetais expostos a diferentes temperaturas. Para identificar as frutas e vegetais frequentemente servidos em buffet, foram visitados restaurantes comerciais (n=50), onde os principais alimentos encontrados foram: cenoura ralada, brócolis, pepino, repolho verde, tomate, melancia e mamão. Amostras desses vegetais foram adquiridas em supermercado local e processadas ou preparadas conforme modo de consumo, sendo então contaminadas artificialmente com um pool de S. aureus e E. coli, separadamente, e expostos a 10, 20 e 30 °C. Os resultados desses experimentos demonstraram que não houve multiplicação dessas bactérias nas frutas e vegetais expostos a 10 °C durante 6 h. A 20 e 30 °C, S. aureus demonstrou multiplicação mais rápida no brócolis, onde a fase estacionária iniciou em menos de 2 h, possivelmente por este ser o único alimento cozido nesse estudo. Observou-se também que a 30 °C, E. coli se multiplicou em menos de 2 h nos seguintes alimentos: mamão, pepino, melancia e brócolis. Já no tomate, S. aureus não se multiplicou em nenhuma temperatura avaliada. No entanto, a população final de E. coli no tomate atingiu 9,7 log, em 24 h, a 30 °C, apesar do baixo pH (4,21). Por esse motivo e porque o tomate foi o vegetal mais frequentemente servido nos restaurantes comerciais avaliados, foi utilizado o modelo primário de Baranyi para modelar os parâmetros cinéticos de multiplicação e o modelo secundário de Ratkowsky para modelar a taxa de multiplicação e o tempo de fase lag em função da temperatura de E. coli no tomate, exposto a temperaturas de 10 a 37 °C. Os resultados obtidos indicaram que a fase lag da E. coli no tomate foi de 2,13 h e 2,46 h quando exposto a 37 e 30 °C, enquanto que a 20 e 10 °C, as fases lag foram de 15,6 h e 42,5 h, respectivamente. O modelo secundário foi integrado em uma simulação com dados nacionais de temperaturas reais coletados em planilhas de serviços de alimentação de 225 restaurantes de três regiões do Brasil (Sul, Sudeste e Norte/Nordeste). Aplicando o modelo gerado, foi observado que E. coli é capaz de se multiplicar em tomate em 1,58 h a 29,3 °C, temperatura mais crítica encontrada na cadeia de distribuição do tomate. Em seguida, realizou-se outro estudo no intuito de avaliar o comportamento de S. aureus em brócolis tratados termicamente, visto que este micro-organismo obteve um grande potencial de multiplicação nesse alimento. Também foram desenvolvidos modelos primário e secundário para avaliar a multiplicação do S. aureus em brócolis expostos a temperaturas de 10 a 37 °C. Nesse alimento, a fase lag de S. aureus foi de 1,4 h quando o vegetal foi exposto a 30 e 37 °C; enquanto que a 20 e 10 °C as fases lag foram de 5,3 h e 160 h, respectivamente. O modelo secundário foi capaz de descrever a influência da temperatura (de 10 a 37 °C) sobre a taxa de multiplicação e a fase lag de S. aureus em brócolis. Os resultados demonstraram que as frutas e vegetais avaliados podem ser distribuídas sob temperaturas de refrigeração de 10 °C ou menos e não devem ser mantidas mais de 2 h em temperaturas próximas de 30 a 37 oC, a fim de evitar a multiplicação bacteriana. Tais parâmetros podem contribuir na gestão de segurança dos alimentos em serviços de alimentação, prevenindo Doenças Transmitidas por Alimentos. / This study aimed to evaluate the multiplication of Staphylococcus aureus and Escherichia coli on fruits and vegetables exposed to different temperatures. To identify the fruits and vegetables most frequently served in buffet, commercial restaurants (n=50) were visited, where the main foods found were: grated carrots, broccoli, cucumber, green cabbage, tomato, watermelon and papaya. Samples of these vegetables were purchased from the local supermarket and processed or prepared according to the mode of consumption and were then artificially contaminated with a pool of S. aureus and E. coli separately and exposed at 10, 20 and 30 ° C. The results of these experiments demonstrated that these microorganisms did not grow on fruits and vegetables exposed to 10 °C during 6 h. At 20 and 30 ° C, S. aureus showed faster multiplication on broccoli, where the stationary phase started in less than 2 h, possibly because this was the only food cooked in that study. It was also observed at 30 ° C, where E. coli multiplied in less than 2 h in the following foods: papaya, cucumber, watermelon and broccoli. On tomato, S. aureus did not multiply at any evaluated temperature. However, the final E. coli population in this same food reached 9.7 log CFU/g in 24 h at 30 ° C, despite the low fruit pH (4.21). For this reason, and because tomato was the most frequently served food in the evaluated commercial restaurants, the Baranyi primary model was used to model the kinetic parameters of multiplication and the Ratkowsky secondary model to model the multiplication rate and lag phase time as a function of the temperature of E. coli on tomato, which was exposed to temperatures of 10 to 37 °C.The results indicated that the lag phase of E. coli on tomato was 2.13 h and 2.46 h when exposed at 37 and 30 °C, respectively; while at 20 °C and 10 ° C the lag phases were 15.6 h and 42.5 h, in that order. The secondary model was integrated in a simulation with national real temperature data collected in food service of 225 restaurants in three regions of Brazil (Southern, Southeast and North / Northeast). Applying the generated model, it was observed that E. coli was able to grow on tomato at 1.58 h at 29.3 ° C, the most critical temperature found on tomato distribution chain. Another study developed was the behavior of S. aureus in heat treated broccoli, because this microorganism obtained a high growth potential for this food. Primary and secondary models were also developed to evaluate the behavior of S. aureus stored at 10-37 °C. The lag phase of broccoli was 1.4 h when the bacteria was exposed at 30 and 37 °C; while at 20 °C and 10 °C the lag phases were 5.3 h and 160 h, respectively. Secondary models were able to describe the influence of temperature (10-37 °C) on the growth rate and lag phase of S. aureus on broccoli. The results demonstrated that the evaluated fruits and vegetables can be distributed under refrigeration temperatures of 10 °C or less and should not be maintained for longer than 2 h at temperatures close to 30 to 37 °C in order to avoid bacterial multiplication. Such parameters can contribute to the management of food safety in food services, preventing Foodborne Diseases.
96

Efeito do processamento na concentração de substâncias bioativas em brócolis e couve-flor

Reis, Luzia Caroline Ramos dos January 2014 (has links)
O brócolis e a couve-flor são vegetais que pertencem a família Brassicaceae e contém um complexo de substancias bioativas, como os compostos fenólicos, os carotenoides, os flavonoides, as clorofilas, vitaminas e minerais. O consumo destes vegetais está associado com a redução do risco de câncer, doenças cardiovasculares, catarata e outros distúrbios funcionais relacionados com a idade, por apresentar compostos bioativos. O descongelamento e o processamento são métodos que modificam as condições físicas e químicas e podem afetar a quantidade de compostos bioativos nos alimentos. Deste modo, este estudo teve como objetivo avaliar o efeito de diferentes condições de descongelamento (temperatura ambiente, temperatura refrigerada e micro-ondas) sobre o conteúdo de substâncias bioativas em brócolis (Brassica oleracea var. avenger); também avaliar o efeito do processamento (ebulição, vapor, micro-ondas e sous vide) na estabilidade de compostos fenólicos, flavonoides, carotenoides, clorofila, vitamina A e atividade antioxidante em inflorescências de brócolis e couve-flor cultivados em sistema orgânico. Os resultados mostraram que o descongelamento em micro-ondas reteve maiores conteúdos de vários compostos bioativos analisados, entre eles a clorofila, os compostos fenólicos e a quercetina. Observou-se que para ambas as hortaliças (brócolis e couve-flor) o processamento contribuiu, de alguma maneira, para o aumento do conteúdo de compostos antioxidantes, devido ao rompimento do tecido vegetal pelo aquecimento, mostrando uma maior capacidade antioxidante no processamento em sous vide para o brócolis e a couve-flor orgânica. / Broccoli and cauliflower are vegetables that belong to the Brassicaceae family and contains a complex of bioactive substances, such as phenolic compounds, carotenoids, flavonoids, chlorophylls, vitamins and minerals. The consumption of these vegetables is associated with reduce of the risk of cancer, cardiovascular disease, cataracts, and other functional disorders related to age, for presenting bioactive compounds. Thawing and processing are methods that modify the physical and chemical conditions and can affect the amount of bioactive compounds in foods. Thus, this study aimed to evaluate the effect of different thawing conditions (room temperature, refrigerated temperature and microwave) on the content of bioactive compounds in broccoli (Brassica oleracea var. avenger); also evaluate the effect of processing (boiling, steaming, microwave and sous vide) on the stability of phenolic compounds, flavonoids, carotenoids, chlorophyll, vitamin A and antioxidant activity in inflorescences of broccoli and cauliflower grown in organic system. The results showed that thawing in microwave retained higher contents of various bioactive compounds analyzed, including chlorophylls, phenolic compounds and quercetin. It was observed that both vegetables (broccoli and cauliflower) processing contributed in some way to increase the content of antioxidant compounds, due to disruption of the plant tissue by heating, showing a higher antioxidant capacity in sous vide process for organic broccoli and cauliflower.
97

Avaliação da multiplicação de escherichia coli e staphyloccocus aureus em frutas e vegetais expostos a diferentes temperaturas e modelagem preditiva nos alimentos de maior risco

Kothe, Caroline Isabel January 2017 (has links)
Este estudo teve como objetivo inicial avaliar a multiplicação de Staphylococcus aureus e Escherichia coli em frutas e vegetais expostos a diferentes temperaturas. Para identificar as frutas e vegetais frequentemente servidos em buffet, foram visitados restaurantes comerciais (n=50), onde os principais alimentos encontrados foram: cenoura ralada, brócolis, pepino, repolho verde, tomate, melancia e mamão. Amostras desses vegetais foram adquiridas em supermercado local e processadas ou preparadas conforme modo de consumo, sendo então contaminadas artificialmente com um pool de S. aureus e E. coli, separadamente, e expostos a 10, 20 e 30 °C. Os resultados desses experimentos demonstraram que não houve multiplicação dessas bactérias nas frutas e vegetais expostos a 10 °C durante 6 h. A 20 e 30 °C, S. aureus demonstrou multiplicação mais rápida no brócolis, onde a fase estacionária iniciou em menos de 2 h, possivelmente por este ser o único alimento cozido nesse estudo. Observou-se também que a 30 °C, E. coli se multiplicou em menos de 2 h nos seguintes alimentos: mamão, pepino, melancia e brócolis. Já no tomate, S. aureus não se multiplicou em nenhuma temperatura avaliada. No entanto, a população final de E. coli no tomate atingiu 9,7 log, em 24 h, a 30 °C, apesar do baixo pH (4,21). Por esse motivo e porque o tomate foi o vegetal mais frequentemente servido nos restaurantes comerciais avaliados, foi utilizado o modelo primário de Baranyi para modelar os parâmetros cinéticos de multiplicação e o modelo secundário de Ratkowsky para modelar a taxa de multiplicação e o tempo de fase lag em função da temperatura de E. coli no tomate, exposto a temperaturas de 10 a 37 °C. Os resultados obtidos indicaram que a fase lag da E. coli no tomate foi de 2,13 h e 2,46 h quando exposto a 37 e 30 °C, enquanto que a 20 e 10 °C, as fases lag foram de 15,6 h e 42,5 h, respectivamente. O modelo secundário foi integrado em uma simulação com dados nacionais de temperaturas reais coletados em planilhas de serviços de alimentação de 225 restaurantes de três regiões do Brasil (Sul, Sudeste e Norte/Nordeste). Aplicando o modelo gerado, foi observado que E. coli é capaz de se multiplicar em tomate em 1,58 h a 29,3 °C, temperatura mais crítica encontrada na cadeia de distribuição do tomate. Em seguida, realizou-se outro estudo no intuito de avaliar o comportamento de S. aureus em brócolis tratados termicamente, visto que este micro-organismo obteve um grande potencial de multiplicação nesse alimento. Também foram desenvolvidos modelos primário e secundário para avaliar a multiplicação do S. aureus em brócolis expostos a temperaturas de 10 a 37 °C. Nesse alimento, a fase lag de S. aureus foi de 1,4 h quando o vegetal foi exposto a 30 e 37 °C; enquanto que a 20 e 10 °C as fases lag foram de 5,3 h e 160 h, respectivamente. O modelo secundário foi capaz de descrever a influência da temperatura (de 10 a 37 °C) sobre a taxa de multiplicação e a fase lag de S. aureus em brócolis. Os resultados demonstraram que as frutas e vegetais avaliados podem ser distribuídas sob temperaturas de refrigeração de 10 °C ou menos e não devem ser mantidas mais de 2 h em temperaturas próximas de 30 a 37 oC, a fim de evitar a multiplicação bacteriana. Tais parâmetros podem contribuir na gestão de segurança dos alimentos em serviços de alimentação, prevenindo Doenças Transmitidas por Alimentos. / This study aimed to evaluate the multiplication of Staphylococcus aureus and Escherichia coli on fruits and vegetables exposed to different temperatures. To identify the fruits and vegetables most frequently served in buffet, commercial restaurants (n=50) were visited, where the main foods found were: grated carrots, broccoli, cucumber, green cabbage, tomato, watermelon and papaya. Samples of these vegetables were purchased from the local supermarket and processed or prepared according to the mode of consumption and were then artificially contaminated with a pool of S. aureus and E. coli separately and exposed at 10, 20 and 30 ° C. The results of these experiments demonstrated that these microorganisms did not grow on fruits and vegetables exposed to 10 °C during 6 h. At 20 and 30 ° C, S. aureus showed faster multiplication on broccoli, where the stationary phase started in less than 2 h, possibly because this was the only food cooked in that study. It was also observed at 30 ° C, where E. coli multiplied in less than 2 h in the following foods: papaya, cucumber, watermelon and broccoli. On tomato, S. aureus did not multiply at any evaluated temperature. However, the final E. coli population in this same food reached 9.7 log CFU/g in 24 h at 30 ° C, despite the low fruit pH (4.21). For this reason, and because tomato was the most frequently served food in the evaluated commercial restaurants, the Baranyi primary model was used to model the kinetic parameters of multiplication and the Ratkowsky secondary model to model the multiplication rate and lag phase time as a function of the temperature of E. coli on tomato, which was exposed to temperatures of 10 to 37 °C.The results indicated that the lag phase of E. coli on tomato was 2.13 h and 2.46 h when exposed at 37 and 30 °C, respectively; while at 20 °C and 10 ° C the lag phases were 15.6 h and 42.5 h, in that order. The secondary model was integrated in a simulation with national real temperature data collected in food service of 225 restaurants in three regions of Brazil (Southern, Southeast and North / Northeast). Applying the generated model, it was observed that E. coli was able to grow on tomato at 1.58 h at 29.3 ° C, the most critical temperature found on tomato distribution chain. Another study developed was the behavior of S. aureus in heat treated broccoli, because this microorganism obtained a high growth potential for this food. Primary and secondary models were also developed to evaluate the behavior of S. aureus stored at 10-37 °C. The lag phase of broccoli was 1.4 h when the bacteria was exposed at 30 and 37 °C; while at 20 °C and 10 °C the lag phases were 5.3 h and 160 h, respectively. Secondary models were able to describe the influence of temperature (10-37 °C) on the growth rate and lag phase of S. aureus on broccoli. The results demonstrated that the evaluated fruits and vegetables can be distributed under refrigeration temperatures of 10 °C or less and should not be maintained for longer than 2 h at temperatures close to 30 to 37 °C in order to avoid bacterial multiplication. Such parameters can contribute to the management of food safety in food services, preventing Foodborne Diseases.
98

Efeito do processamento na concentração de substâncias bioativas em brócolis e couve-flor

Reis, Luzia Caroline Ramos dos January 2014 (has links)
O brócolis e a couve-flor são vegetais que pertencem a família Brassicaceae e contém um complexo de substancias bioativas, como os compostos fenólicos, os carotenoides, os flavonoides, as clorofilas, vitaminas e minerais. O consumo destes vegetais está associado com a redução do risco de câncer, doenças cardiovasculares, catarata e outros distúrbios funcionais relacionados com a idade, por apresentar compostos bioativos. O descongelamento e o processamento são métodos que modificam as condições físicas e químicas e podem afetar a quantidade de compostos bioativos nos alimentos. Deste modo, este estudo teve como objetivo avaliar o efeito de diferentes condições de descongelamento (temperatura ambiente, temperatura refrigerada e micro-ondas) sobre o conteúdo de substâncias bioativas em brócolis (Brassica oleracea var. avenger); também avaliar o efeito do processamento (ebulição, vapor, micro-ondas e sous vide) na estabilidade de compostos fenólicos, flavonoides, carotenoides, clorofila, vitamina A e atividade antioxidante em inflorescências de brócolis e couve-flor cultivados em sistema orgânico. Os resultados mostraram que o descongelamento em micro-ondas reteve maiores conteúdos de vários compostos bioativos analisados, entre eles a clorofila, os compostos fenólicos e a quercetina. Observou-se que para ambas as hortaliças (brócolis e couve-flor) o processamento contribuiu, de alguma maneira, para o aumento do conteúdo de compostos antioxidantes, devido ao rompimento do tecido vegetal pelo aquecimento, mostrando uma maior capacidade antioxidante no processamento em sous vide para o brócolis e a couve-flor orgânica. / Broccoli and cauliflower are vegetables that belong to the Brassicaceae family and contains a complex of bioactive substances, such as phenolic compounds, carotenoids, flavonoids, chlorophylls, vitamins and minerals. The consumption of these vegetables is associated with reduce of the risk of cancer, cardiovascular disease, cataracts, and other functional disorders related to age, for presenting bioactive compounds. Thawing and processing are methods that modify the physical and chemical conditions and can affect the amount of bioactive compounds in foods. Thus, this study aimed to evaluate the effect of different thawing conditions (room temperature, refrigerated temperature and microwave) on the content of bioactive compounds in broccoli (Brassica oleracea var. avenger); also evaluate the effect of processing (boiling, steaming, microwave and sous vide) on the stability of phenolic compounds, flavonoids, carotenoids, chlorophyll, vitamin A and antioxidant activity in inflorescences of broccoli and cauliflower grown in organic system. The results showed that thawing in microwave retained higher contents of various bioactive compounds analyzed, including chlorophylls, phenolic compounds and quercetin. It was observed that both vegetables (broccoli and cauliflower) processing contributed in some way to increase the content of antioxidant compounds, due to disruption of the plant tissue by heating, showing a higher antioxidant capacity in sous vide process for organic broccoli and cauliflower.
99

Efeito do processamento na concentração de substâncias bioativas em brócolis e couve-flor

Reis, Luzia Caroline Ramos dos January 2014 (has links)
O brócolis e a couve-flor são vegetais que pertencem a família Brassicaceae e contém um complexo de substancias bioativas, como os compostos fenólicos, os carotenoides, os flavonoides, as clorofilas, vitaminas e minerais. O consumo destes vegetais está associado com a redução do risco de câncer, doenças cardiovasculares, catarata e outros distúrbios funcionais relacionados com a idade, por apresentar compostos bioativos. O descongelamento e o processamento são métodos que modificam as condições físicas e químicas e podem afetar a quantidade de compostos bioativos nos alimentos. Deste modo, este estudo teve como objetivo avaliar o efeito de diferentes condições de descongelamento (temperatura ambiente, temperatura refrigerada e micro-ondas) sobre o conteúdo de substâncias bioativas em brócolis (Brassica oleracea var. avenger); também avaliar o efeito do processamento (ebulição, vapor, micro-ondas e sous vide) na estabilidade de compostos fenólicos, flavonoides, carotenoides, clorofila, vitamina A e atividade antioxidante em inflorescências de brócolis e couve-flor cultivados em sistema orgânico. Os resultados mostraram que o descongelamento em micro-ondas reteve maiores conteúdos de vários compostos bioativos analisados, entre eles a clorofila, os compostos fenólicos e a quercetina. Observou-se que para ambas as hortaliças (brócolis e couve-flor) o processamento contribuiu, de alguma maneira, para o aumento do conteúdo de compostos antioxidantes, devido ao rompimento do tecido vegetal pelo aquecimento, mostrando uma maior capacidade antioxidante no processamento em sous vide para o brócolis e a couve-flor orgânica. / Broccoli and cauliflower are vegetables that belong to the Brassicaceae family and contains a complex of bioactive substances, such as phenolic compounds, carotenoids, flavonoids, chlorophylls, vitamins and minerals. The consumption of these vegetables is associated with reduce of the risk of cancer, cardiovascular disease, cataracts, and other functional disorders related to age, for presenting bioactive compounds. Thawing and processing are methods that modify the physical and chemical conditions and can affect the amount of bioactive compounds in foods. Thus, this study aimed to evaluate the effect of different thawing conditions (room temperature, refrigerated temperature and microwave) on the content of bioactive compounds in broccoli (Brassica oleracea var. avenger); also evaluate the effect of processing (boiling, steaming, microwave and sous vide) on the stability of phenolic compounds, flavonoids, carotenoids, chlorophyll, vitamin A and antioxidant activity in inflorescences of broccoli and cauliflower grown in organic system. The results showed that thawing in microwave retained higher contents of various bioactive compounds analyzed, including chlorophylls, phenolic compounds and quercetin. It was observed that both vegetables (broccoli and cauliflower) processing contributed in some way to increase the content of antioxidant compounds, due to disruption of the plant tissue by heating, showing a higher antioxidant capacity in sous vide process for organic broccoli and cauliflower.
100

Enfezamento do brócolis: identificação molecular de fitoplasmas, potenciais insetos vetores e hospedeiros alternativos, e análise epidemiológica da doença / Broccolo stunt: identification of phytoplasmas, potential insect vectors and alternative hosts and epidemiology of the disease

Barbara Eckstein 23 August 2010 (has links)
O brócolis (Brassica oleraceae var. italica) é uma das hortaliças mais importantes do país, cujo volume de comercialização na CEAGESP é de aproximadamente 13 mil toneladas por ano. Recentemente, uma nova doença tem causado perdas relevantes para as culturas instaladas na maior região produtora do Estado de São Paulo. Os sintomas característicos da doença são expressos pelo enfezamento da planta e necrose dos vasos de floema. Devido ao fato destes sintomas indicarem a presença de fitoplasmas nas culturas de repolho e couve-flor, localizadas na mesma região geográfica onde foi observada esta nova doença, levantou-se a suspeita de que estes mesmos agentes patogênicos pudessem estar associados com as plantas doentes de brócolis. Assim, o DNA total de plantas de brócolis sintomáticas foi analisado por PCR com primers específicos para a região 16S rDNA de fitoplasmas. Os resultados revelaram que estes patógenos estavam associados com as plantas doentes. Através das técnicas de RFLP do sequenciamento de nucleotídeos desta mesma região genômica, os fitoplasmas foram identificados como pertencentes aos grupos 16SrI, 16SrIII e 16SrXIII. Através de análise de RFLP, fitoplasmas também foram identificados em diversas espécies de plantas daninhas e em cigarrinhas da família Cicadellidae coletadas em áreas adjacentes a campos de produção de brócolis. Fitoplasmas do grupo 16SrIII foram identificados em plantas daninhas das espécies Agetarum conyzoides (mentrasto), Crotalaria lanceolata (crotalária), Lepidium virginicum (mentruz), Nicandra physalodes (juá-de-capote), Paulicourea marcgravii (erva-de-rato), Ricinus communis (mamona), Sida rhombifolia (guanxuma), Sonchus oleraceae (serralha amarela), Bidens pilosa (picão preto), Erigeron bonariensis (buva), Emilia sonchifolia (falsa serralha), Leonorus sibiricus (rubim), enquanto que fitoplasmas do grupo 16SrVII foram encontrados as últimas quatro espécies citadas. Com relação aos insetos, fitoplasmas foram detectados em indivíduos das subfamílias Deltocephalinae, Agalliinae e Typhlocybinae. Dentro da subfamília Deltocephalinae, a cigarrinha Balclutha hebe portava fitoplasma do grupo 16SrI, enquanto que cigarrinhas das espécies Atanus nitidus, Planicephalus flavicosta e Schapytopius fuliginosus abrigavam fitoplasmas do grupo 16SrIII. Nos tecidos de duas cigarrinhas da subfamília Agalliinae e uma da Typhlocybinae, as quais não foram identificadas quanto a espécie, foram encontrados fitoplasmas do grupo 16SrIII. As análises epidemiológicas revelaram um padrão espacial agregado de plantas doentes e a ocorrência de um maior progresso da doença nos bordos dos campos de cultivo de brócolis, que estão localizados nas proximidades de áreas com a presença de plantas daninhas. / Broccoli (Brassica oleraceae var. italica) is one of the most important vegetables in Brazil, whose trading volume in CEAGESP is approximately 13 000 tons per year. Recently, a new disease has caused significant losses in this crop cultivated in the largest producing region of the São Paulo State. The characteristic symptoms of the disease are expressed by plant stunting and necrosis of phloem vessels. Because these symptoms indicate the presence of phytoplasmas in cabbage and cauliflower crops, grown in the same geographical region, it was suspected that the same pathogens could be associated with the affected broccoli plants. Therefore, the total DNA from symptomatic plants of broccoli was analyzed by PCR with specific primers for the 16S rDNA of phytoplasmas. Through the techniques of RFLP and nucleotide sequencing of the same genomic region, the phytoplasmas were identified as belonging to the groups 16SrI, 16SrIII and 16SrXIII. Through RFLP analysis, phytoplasmas were also identified in several species of weeds and leafhoppers in the family Cicadellidae collected in adjacent areas of broccoli fields. Phytoplasmas belonging of the 16SrIII group were identified in the weeds belonging to the species Agetarum conyzoides, Crotalaria lanceolata, Lepidium virginicum, Nicandra physalodes, Paulicourea marcgravii, Ricinus communis, Sida rhombifolia, Sonchus oleraceae, Bidens pilosa, Erigeron bonariensis, Emilia sonchifolia, Leonorus sibiricus, while phytoplasmas of the 16SrVII group were found in the last four mentioned species. In respect to insects, phytoplasmas were detected in individuals from subfamilies Deltocephalinae, Agalliinae and Typhlocybinae. Within the subfamily Deltocephalinae, the leafhopper Balclutha hebe carried phytoplasmas of the 16SrI group, while that of the species Atanus nitidus, Planicephalus flavicosta e Schapytopius fuliginosus harbored phytoplasmas of the 16SrIII group. In the tissues of two leafhoppers of the subfamily Agalliinae and one of the Typhlocybinae, which were not identified as specie, were found phytoplasmas of the 16SrIII group. The epidemiological analysis revelead an aggregated pattern of the diseased plants and a higher progress of the diseased in the border of the broccoli fields, whitch were located nearby areas where the presence of weeds was abundant.

Page generated in 0.1724 seconds