• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 9
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alternative energy supply study for a cottage in Vifors

Lumbier Fernandez, Mikel January 2018 (has links)
The present master thesis was done during the spring of 2018. A cottage located in Vifors is studied with regard to its heating requirements. At the time of the study, the house could not be inhabited the whole year because there was no tap hot water available and the space heating demand was covered by electricity. Thus, an alternative heating supply is required to be developed. As a strategic prerequisite, the solution should be achieved considering both solar thermal collectors and a heat pump.First, the characteristics of the building were collected/determined in order to obtain the total heating demand per month and hence annually. Parameters such as the U-values, roof orientation, room dimensions, ventilation rates and internal gains were required to configure the building model in the software IDA ICE 4.8. In addition, the amount of tap hot water required per year was determined as 17 m3 per year. Cold water at 5 °C had to be heated until 55 °C to obtain the tap hot water.Once the heating requirements were known, the most suitable solution was to use a combi system (solar thermal collectors and a heat pump). Solar energy could fulfil the demand in the summer and the heat pump provided energy in the winter. For a commercial model of the flat solar thermal collector (Vitosol 100-F) the solar system was sized according to the heating demand in the summer time. The maximum energy that could be obtained from the solar collectors in summer was calculated, the rest of the demand had to be fulfilled by a heat pump, model WPL-18 E.The achieved solution is compounded by the heat pump and 3 solar thermal collectors with a surface of 2.33 m2 each. The solar energy obtained is 1 843 kWh per year, which covers 9 % of the total annual heating demand (20 098 kWh). However, the 98 % of the heating demand during the summertime comes from the solar collectors. The investment cost is 113 900 SEK and the payback period is estimated in 8 years.
2

X Návrh a optimalizace tepelného čerpadla pro mateřskou školu / Heat pump design and optimization for nursery building

Mračková, Alžběta January 2008 (has links)
The point of this diploma thesis is heating design with use of heat pump (HP) for nursery building. The first part introduces problems of HP, familiarization with historical development, working principle, description of components, working cycles, partition of heat pumps due to the source of lowpotential heat and possibilities of working operations. In practical part then follows heat loss computation of own building, suitable heat pump choice, economic balance, investment recovery and evaluation of this solution.
3

Värmebehov i byggnader i en planerad stadsdel med lågtempererad fjärrvärme som värmekälla

Israelsson, Karin January 2023 (has links)
Due to desirable emission reductions and population growth, an increasing energy demand isidentified as a dire issue for energy systems. The introduction of low energy building districtsenables an increased energy system efficiency. This study’s aim is twofold. Firstly, an extensive urban building energy model is used to simulatethe yearly use and geographic distribution of the heat demand for residential and commercialbuildings that are to be supplied by a low-temperature district heating system. Two buildingenergy performance cases are studied; one where all buildings are assumed to be of PassiveHouse standard, and one where the building energy performance is in line with conventionalnew-building regulations in Sweden. The study showed that that Passive Houses will generatethe lowest yearly heat demand and that implementation of ventilation heat recovery has a bigimpact. Furthermore, the results showed that a variation of building energy performance mightbe advantageous when planning a new city district with district heating. Secondly, one specific building is in detail modeled as Passive House and according to BBR-standards and simulated in the building energy simulation software IDA ICE to investigate whatbuilding heating system is best suited for low-temperature heat supply. The temperaturedemands for floor heating and low tempered radiators is investigated and compared toconventional water-based radiators. Results showed that floor heating requires lowertemperature’s than low temperature radiators, but both are well suited for low temperaturedistrict heating. The study’s results will be used as an example for future city district planning aswell as presenting relevant heating systems for low-temperature district heating.
4

On Swedish bioenergy strategies to reduce CO2 emissions and oil use

Joelsson, Jonas January 2011 (has links)
No description available.
5

Etude du confort thermique dans l'habitat par des procédés géo-héliothermiques / Study of the thermal comfort in building by geo- solar thermal processes

Benzaama, Mohammed Hichem 14 May 2017 (has links)
Ce travail s'inscrit dans le cadre de la recherche des solutions d’économie d'énergie du bâtiment tout en utilisant des sources naturelles et renouvelables (Energie solaire pour le chauffage et la géothermie pour le rafraîchissement). Il est nul besoin de rappeler que l'Algérie dispose d'un potentiel énergétique hélio géothermique important. Dans ce travail de thèse on s'intéresse particulièrement à l'étude du confort thermique (hiver et été) dans l'habitat alimenté par un plancher hydraulique réversible. Pour mener à bien cette étude, nous disposons d'un gisement solaire important d'une part et d'autre part d'un dispositif expérimental à échelle réelle. Une pièce munie d'un plancher hydraulique réversible (chauffant ou rafraichissant) est instrumentée. Une citerne de stockage enfuie à quelques mètres de la surface du sol afin de bénéficier du rafraichissement géothermique. Un service d'asservissement permettant la régulation du système en fonctionnement mode chauffage ou mode rafraichissement. Plusieurs sondes de mesures reliées à une station d'acquisition qui est reliée à un ordinateur permettent le suivi des évolutions de températures. La modélisation de la structure de l'enveloppe de la cellule et l'évolution de la température de l'air intérieur et celle des parois sont réalisées sous le logiciel TRNSYS. A l'aide des résultats obtenus par TRNSYS, logiciel FLUENT nous a permis de modéliser la tache solaire et son influence sur le plancher chauffant sous les conditions climatiques de la ville d'Oran.Après validation, la simulation numérique est utilisée pour étudier le comportement thermique de la cellule, les performances énergétiques du plancher réversible et le calcul des économies d'énergie que l'on pourrait réaliser avec de tels systèmes. / This work is part of the search for energy saving solutions in the building industry while using natural and renewable sources, such as solar energy for heating and geothermal energy for refreshment. There is no need to recall that Algeria has a very large geothermal gravitational energy potential in view of its geographical position.In this thesis work, we are particularly interested in the study of thermal comfort in the case of a housing powered with a reversible hydraulic floor (heating and cooling).To carry out this study, as we can see Algeria have an important solar field and on the other hand we use an experimental system representing a real scale local. To do this, a room with a reversible hydraulic floor (heated or refreshing) is instrumented. A storage tank buried in the ground at few meters from the ground surface is used for thegeothermal refreshment during the warm periods. A service system allows us to regulate the system in heating or cooling mode. Several measuring probes used are connected to an acquisition station which is connected to a computer for monitoring of temperature évolutions.The modeling of the structure of the cell envelope is carried out under the TRNSYS software. With this, we have access to evolutions of the temperatures of the indoor air and to that of the walls. These results obtained by TRNSYS are used in a second step as input data for the FLUENT software. This allows us to model the solar spot and its influence on the heating floor under the climatic conditions of the city of Oran.After validation, numerical simulation is used to study the thermal behavior of the cell, the energy performance of the reversible floor and the calculation of the energy savings that could be achieved with such systems.
6

An Examination of Metal Hydrides and Phase-Change Materials for Year-Round Variable-Temperature Energy Storage in Building Heating and Cooling Systems

Patrick E Krane (12378958) 20 April 2022 (has links)
<p>  </p> <p>Thermal energy storage (TES) is used to reduce the operating costs of heating, ventilation, and air conditioning (HVAC) systems by shifting loads away from on-peak periods, to reduce the maximum heating or cooling capacity needed from the HVAC system, and to store excess energy generated by on-site solar power. The most commonly-used form of TES is ice storage with air conditioning (A/C) systems in commercial buildings. There has been extensive research into many other forms of TES for use with HVAC systems, both in commercial and residential buildings. However, this research is often limited to use with either heating or cooling systems.</p> <p>Year-round, high-density storage for both heating and cooling would yield significantly larger cost savings than existing TES systems, particularly for residential buildings, where heating loads are often larger than cooling loads. This dissertation examines the feasibility of using metal hydrides for year-round storage, as well as analyzing the potential of variable-temperature energy storage for optimizing system performance beyond allowing for year-round use.</p> <p>Metal hydrides are metals that exothermically absorb and endothermically desorb hydrogen. Since the temperature this reaction occurs at depends on the hydrogen pressure, hydrides can be used for energy storage at varying temperatures. System architecture for using metal hydrides with an HVAC system is developed. A thermodynamic model which combines a dynamic model of the hydride reactors with a static model of the HVAC system is used to calculate operating costs, compared to a conventional HVAC system, for different utility rates and locations. The payback period of the system is unacceptably high, due to the high initial cost of metal hydrides and the operating costs of compressing hydrogen to move it between hydride reactors.</p> <p>In addition to the metal hydride system model, a generalized model of a variable-temperature TES system is used to determine the potential cost savings from dynamically altering the storage temperature to achieve optimal cost savings. Dynamic tuning does result in cost savings but is most effective for storage tank sizes significantly smaller than the optimal tank size. An alternate system design where the storage tank is charged with the outlet flow from the house achieves larger cost savings even for the optimally-sized tanks. Payback periods calculated for optimal sizing show that year-round storage has a lower payback period than separate cold and heat storage if the year-round storage system is not more expensive than two separate storage tanks. </p>
7

Commande prédictive distribuée. Approches appliquées à la régulation thermique des bâtiments. / Distributed model predictive control. Approaches applied to building temperature

Morosan, Petru-daniel 30 September 2011 (has links)
Les exigences croissantes sur l'efficacité énergétique des bâtiments, l'évolution du {marché} énergétique, le développement technique récent ainsi que les particularités du poste de chauffage ont fait du MPC le meilleur candidat pour la régulation thermique des bâtiments à occupation intermittente. Cette thèse présente une méthodologie basée sur la commande prédictive distribuée visant un compromis entre l'optimalité, la simplicité et la flexibilité de l'implantation de la solution proposée. Le développement de l'approche est progressif : à partir du cas d'une seule zone, la démarche est ensuite étendue au cas multizone et / ou multisource, avec la prise en compte des couplages thermiques entre les zones adjacentes. Après une formulation quadratique du critère MPC pour mieux satisfaire les objectifs économiques du contrôle, la formulation linéaire est retenue. Pour répartir la charge de calcul, des méthodes de décomposition linéaire (comme Dantzig-Wolfe et Benders) sont employées. L'efficacité des algorithmes distribués proposés est illustrée par diverses simulations. / The increasing requirements on energy efficiency of buildings, the evolution of the energy market, the technical developments and the characteristics of the heating systems made of MPC the best candidate for thermal control of intermittently occupied buildings. This thesis presents a methodology based on distributed model predictive control, aiming a compromise between optimality, on the one hand, and simplicity and flexibility of the implementation of the proposed solution, on the other hand. The development of the approach is gradually. The mono-zone case is initially considered, then the basic ideas of the solution are extended to the multi-zone and / or multi-source case, including the thermal coupling between adjacent zones. Firstly we consider the quadratic formulation of the MPC cost function, then we pass towards a linear criterion, in order to better satisfy the economic control objectives. Thus, linear decomposition methods (such as Dantzig-Wolfe and Benders) represent the mathematical tools used to distribute the computational charge among the local controllers. The efficiency of the distributed algorithms is illustrated by simulations.
8

Development, characterization and evaluation of switchable façade elements / Développement, caractérisation et évaluation d’éléments de façades commutables

Pflug, Thibault 06 July 2016 (has links)
Un niveau important d’isolation des parois de bâtiments peut diminuer le refroidissement du bâtiment en été, quand les conditions extérieures sont favorables. Dans cette thèse, le concept d’isolations commutable, est développé : pendant les périodes de refroidissement, l’isolation commutable peut être désactivée pour refroidir la masse du bâtiment pendant la nuit. Pendant les périodes de chauffage, ce concept peut être utilisé pour utiliser les gains solaires. Dans cette thèse, le potentiel des isolations commutables est étudié pour des bureaux dans un climat continental européen. En outre, deux nouveaux concepts d'isolations commutables sont introduits et développés et caractérisés expérimentalement. Un modèle nodal détaillé a été mis en place, validé et utilisé pour conduire une étude paramétrique. Le potentiel des isolations commutables a été étudié à l’aide de simulations énergétiques dynamiques du bâtiment qui ont montré que des réductions importantes des besoins de chauffage et de refroidissement ainsi que des heures d'inconfort en été peuvent être atteintes. Plusieurs stratégies de contrôle ont été mises au point, introduites et comparées. L'influence de la masse thermique a également été étudiée, ainsi que l'influence de l'orientation ou du cadre des éléments. / Important thermal insulation levels can prevent the building to cool down during the cooling period, when the external conditions are favorable. In this thesis, the concept of switchable insulation is developed: during the cooling period, the insulation can be deactivated during the night to let the heat flow out. During the heating period, the switchable insulation can be deactivated whenever solar gains can be used. In this thesis the potential of switchable insulation for an European continental climate and for office buildings is investigated. Also, two new concepts of switchable insulation are introduced, developed and characterized experimentally. A detailed thermal model has been introduced, validated and used for a parametric analysis. The potential of switchable insulation is investigated on a building level, showing that important reductions of the heating and cooling load as well as summer discomfort hours can be achieved. Several control strategies have been developed, introduced and compared. The influence of thermal mass was also investigated, as well as the influence of the orientation or the elements’ frame.
9

Energeticky soběstačný horský penzion / Energy self-sufficient mountain guesthouse

Hánl, Jiří Unknown Date (has links)
The aim of this master project is to design an off-grid nearly-zero energy mountain guesthouse. First, the building structure is designed. It is a two-storeys building with roof made of lattice trusses. On first floor is dining room, kitchen, playroom and office. On second floor are guest rooms and an owner´s flat. The vertical load-bearing structures are designed from ceramic blocks. Horizontal load-bearing structures are designed from reinforced concrete monolithic slab. The building envelope is insulated with ETICS. Second, HVAC, lighting, photovoltaics and use of rainwater is designed. TZB system controlled remotely with a PC or cellphone are designed. Third, energy study is made. The project is developed using CAD (drawings), DEKsoft (thermal calculations) and Atrea Duplex (air conditioning design).
10

Investigation on the heat extraction performance of deep closed-loop borehole heat exchanger system for building heating

Chen, Chaofan 03 June 2022 (has links)
In recent years, deep geothermal energy has been widely exploited through closed-loop borehole heat exchanger system for building heating. In order to precisely evaluate the sustainable heat extraction capacity and the impact of different designs and operating parameters, two heat transfer models are implemented in the open-source scientific software OpenGeoSys (OGS), with respect to the Deep Borehole Heat Exchanger (DBHE) and Enhanced U-tube Borehole Heat Exchanger (EUBHE) system. Besides, three types of boundary conditions are implemented, including the constant inflow temperature, the constant heat extraction rate, and constant building thermal power that integrates the ground source heat pump (GSHP) module. By applying the two BHE models, the influence of different designs and operating parameters on the GSHP system is evaluated. The sustainable heat extraction capacity and efficiency of a deep EUBHE system are predicted. Moreover, its performance and efficiency are further compared against the 2-DBHE array system that has the same total borehole length. It is found that the soil thermal conductivity is the most important parameter in the design of DBHE and EUBHE systems. The sustainable specific heat extraction rate of the EUBHE system is 86.5 W/m higher than an array with 2 DBHEs. Under the building thermal load of 1.225 MW, the total electricity consumed by the EUBHE system is approximately 27 % less than the 2-DBHE array over 10 years. The average Coefficient of System Performance (CSP) value of the EUBHE system is 1.66 higher over 10 heating seasons. The two numerical models implemented in the OpenGeoSys software can be used to predict and optimize the thermal characteristics of the closed-loop DBHE and EUBHE systems in real projects.

Page generated in 0.1083 seconds