441 |
Computational Analysis of Elastic Moduli of Covalently Functionalized Carbon Nanomaterials, Infinitesimal Elastostatic Deformations of Doubly Curved Laminated Shells, and Curing of LaminatesShah, Priyal 05 April 2017 (has links)
We numerically analyze three mechanics problems described below. For each problem, the developed computational model is verified by comparing computed results for example problems with those available in the literature.
Effective utilization of single wall carbon nanotubes (SWCNTs) and single layer graphene sheets (SLGSs) as reinforcements in nanocomposites requires their strong binding with the surrounding matrix. An effective technique to enhance this binding is to functionalize SWCNTs and SLGSs by covalent attachment of appropriate chemical groups. However, this damages their pristine structures that may degrade their mechanical properties. Here, we delineate using molecular mechanics simulations effects of covalent functionalization on elastic moduli of these nanomaterials. It is found that Young's modulus and the shear modulus of an SWCNT (SLGS), respectively, decrease by about 34% (73%) and 43% (42%) when 20% (10%) of carbon atoms are functionalized for each of the four functional groups of different polarities studied.
A shell theory that gives results close to the solution of the corresponding 3-dimensional problem depends upon the shell geometry, applied loads, and initial and boundary conditions. Here, by using a third order shear and normal deformable theory and the finite element method (FEM), we delineate for a doubly curved shell deformed statically with general tractions and subjected to different boundary conditions effects of geometric parameters on in-plane and transverse stretching and bending deformations. These results should help designers decide when to consider effects of these deformation modes for doubly curved shells.
Composite laminates are usually fabricated by curing resin pre-impregnated fiber layers in an autoclave under prescribed temperature and pressure cycles. A challenge is to reduce residual stresses developed during this process and simultaneously minimize the cure cycle time. Here, we use the FEM and a genetic algorithm to find the optimal cycle parameters. It is found that in comparison to the manufacturer's recommended cycle, for a laminate with the span/thickness of 12.5, one optimal cycle reduces residual stresses by 47% and the total cure time from 5 to 4 hours, and another reduces the total cure time to 2 hours and residual stresses by 8%. / Ph. D. / We analyze using computational techniques three mechanics problems described below.
In the last three decades, two carbon nanomaterials (i.e., allotropes of carbon having length-scale of 10<sup>-9</sup> m), namely, single wall carbon nanotubes (SWCNTs) and single layer graphene sheets (SLGSs) have evolved as revolutionary materials with exceptional properties per unit weight that are superior to conventional engineering materials. A composite (i.e., a material made by combining two or more materials to attain desired properties which cannot be achieved by any of its constituents alone) made by using either of these carbon nanomaterials as reinforcements in a polymer could be a potential candidate for applications requiring high strength and light weight. However, the effective utilization of these composites for an application requires the strong binding between their constituents. An effective technique to enhance this binding is to modify the surface properties of SWCNTs and SLGSs by covalently bonding to them suitable chemical group that is usually called covalent functionalization. However, this damages their pristine structures that may degrade their mechanical properties. Here, it is found that the functionalization reduces elastic moduli of carbon nanomaterials, the reduction increases with an increase in the amount of functionalization and is essentially independent of the functionalizing chemical group. This study should help engineers interested in utilizing these materials to design novel nanocomposites.
Composite laminates, made by stacking and binding together layers of fiber-reinforced composites, are widely used in aircraft, aerospace, marine, automobile, power generation, chemical and ballistic applications due to their high strength and stiffness per unit weight compared to that of conventional metallic materials. Shell theories are widely used to analyze deformations of composite laminates which reduces a 3-dimensional (3-D) problem to an equivalent 2-D problem by making certain assumptions related to the deformations of the laminate. This approach requires less computational effort to find a numerical solution (i.e., an approximate solution obtained using a computational technique) of the problem as compared to that needed for solving the full 3-D problem. However, the accuracy of the results predicted by a shell theory depends on the problem being studied, i.e., the shell geometry, applied loads, initial conditions (i.e., the motion of the laminate at the start of application of the load) and boundary conditions (i.e., constraints imposed on the deformations of the edges of the laminate). Here, we analyze effects of geometric parameters of the laminated shells on their deformations for different types of applied loads and various boundary conditions specified on the edges. The results should help designers find an optimal geometry of the composite laminates for a given mechanical application.
Fiber-reinforced composite laminates are usually fabricated by curing (which involves heating and cooling in a prescribed manner under application of the pressure) resin preimpregnated fiber layers under prescribed temperature and pressure cycles. However, during this cure process the laminate deforms and the final product is not stress-free. Here, we find optimal parameters of the cure cycle that minimize stresses developed during the cure process as well as the time required to cure the laminate. It is found that for a laminate studied these optimal parameters reduce the stresses by 47% and the cure time from 5 to 4 hours in comparison to the standard cure cycle recommended by the laminate manufacturer. This study will provide manufacturing engineers with an approach to fabricate composite laminates of desired quality.
|
442 |
Sondes à nanotubes de carbone mono-paroi pour la microscopie à force atomique : synthèse et imagerie à l'air et en milieu liquide / Single-walled carbon nanotube probes for atomic force microscopy : synthesis and imaging in air and in liquidLuu, Ngoc Mai 24 May 2019 (has links)
La microscopie à force atomique (AFM) permet d’étudier à l’échelle nanométrique la surface d’échantillons. Elle offre de nombreux avantages par rapport aux microscopes optiques et aux microscopes électroniques, tout en évitant des étapes de préparation particulières : pas de nécessité de congeler, de métalliser ou de teinter l’échantillon ni de travailler sous vide. La résolution de l'imagerie AFM est principalement déterminée par la morphologie de la sonde utilisée et peut atteindre la résolution moléculaire. Toutefois, les sondes en silicium sont très fragiles. De plus, leur forme pyramidale ou conique génère des artefacts sur l’image résultante. Parmi les sondes actuellement en développement, les sondes à nanotubes de carbone mono-paroi offrent de bonnes caractéristiques en termes de qualité d'imagerie et de longévité. Ces sondes sont plus résistantes et de plus petite taille que les sondes traditionnelles.Cette thèse s’intéresse à la fabrication directe de sondes à nanotubes mono-paroi sur des extrémités de pointes AFM commerciales par la méthode de dépôt chimique en phase vapeur assistée par filament chaud dans un réacteur développé au CBMN. En jouant sur les paramètres de synthèse, tels que la quantité de catalyseur ou la température, nous optimisons le protocole de synthèse originel en collaboration avec son auteur Anne-Marie Bonnot afin de l’adapter à notre réacteur. Les nanotubes obtenus sont caractérisés par les microscopies Raman, électronique à balayage et transmission et à force atomique. La caractérisation montre que les nanotubes obtenus ont une structure mono-paroi. Le rendement d’obtention de sondes nanotubes utilisables est de 30%.Les courbes d’approche-retrait d'AFM nous donnent des informations sur la sonde à nanotube utilisée, telles que sa raideur, le nombre de nanotubes en contact avec la surface. Ces courbes nous permettent de sélectionner les paramètres d’imagerie. Deux échantillons sont testés avec les sondes produites : du graphite pyrolytique haute orientation et des origamis d’ADN rectangulaires. Nous réalisons des expériences d’imagerie avec des sondes à nanotube dans l’air en mode dynamique FM et en milieu liquide en mode Peak Force. Les résultats montrent des images à haute résolution de l’origami d’ADN où la période de 5,8 nm est observable. Les sondes à nanotube présentent également une plus longue durée de vie que les pointes AFM en silicium. / Atomic force microscopy (AFM) is used to study at nanometer scale samples on surfaces. It offers many advantages over conventional optical microscopes and electron microscopes: no freezing, metal coating, vacuum or dye is needed to prepare the sample. The AFM imaging resolution is mostly determined by the sharpness of the used probe and can reach molecular resolution. However, silicon probes are brittle. Additionally, their pyramidal or conical shape generates artifacts on the resulting image. Among the probes currently under development, single-walled carbon nanotube probes offer good characteristics in terms of imaging quality and longevity. These probes are more resistant and smaller in size than traditional probes.This thesis focuses on the direct fabrication of single-wall nanotube probes at the apex of commercial AFM tips by the hot-filament chemical vapor deposition method in a reactor developed at CBMN. By playing on the synthesis parameters, such as the amount of catalyst or the temperature of synthesis, we optimize the original synthesis protocol in collaboration with its author Anne-Marie Bonnot in order to adapt it to our reactor. The nanotubes obtained are characterized by Raman, scanning electron microscopy and transmission electron microscopy and AFM. The characterization shows that the nanotubes obtained have a single-wall structure. The yield of nanotube probes for AFM is 30%.AFM approach-retract curves give us information about the nanotube probe used, such as its stiffness or the number of nanotubes in contact with the surface. These curves allow us to select the imaging parameters. Two samples are tested with the produced probes: highly oriented pyrolytic graphite and rectangular DNA origamis. We image the samples with nanotube probes in both air with dynamical FM mode and in liquid medium with Peak Force mode. The results show high resolution images of DNA origami where the 5.8 nm period is observable. Nanotube probes also have longer life than silicon AFM tips.
|
443 |
Quantitative Automated Object Wave Restoration in High-Resolution Electron MicroscopyMeyer, Rüdiger Reinhard 09 December 2002 (has links) (PDF)
The main problem addressed by this dissertation is the accurate and automated determination of electron microscope imaging conditions. This enables the restoration of the object wave, which confers direct structural information about the specimen, from sets of differently aberrated images. An important member in the imaging chain is the image recording device, in many cases now a charge-coupled device (CCD) camera. Previous characterisations of these cameras often relied on the unjustified assumption that the Modulation Transfer Function (MTF) also correctly describes the spatial frequency dependent attenuation of the electron shot noise. A new theory is therefore presented that distinguishes between signal and noise transfer. This facilitates the evaluation of both properties using a detailed Monte-Carlo simulation model for the electron and photon scattering in the scintillator of the camera. Furthermore, methods for the accurate experimental determination of the signal and noise transfer functions are presented. In agreement with the Monte-Carlo simulations, experimental results for commercially available CCD cameras show that the signal transfer is significantly poorer than the noise transfer. The centrepiece of this dissertation is the development of new methods for determining the relative aberrations in a set of images and the absolute symmetric aberrations in the restored wave. Both are based on the analysis of the phase information in the Fourier domain and give each Fourier component a weight independent of its strength. This makes the method suitable even for largely crystalline samples with little amorphous contamination, where conventional methods, such as automated diffractogram fitting, usually fail. The method is then extended to also cover the antisymmetric aberrations, using combined beam tilt and focal series. The applicability of the new method is demonstrated with object wave restorations from tilt and focal series of complex inorganic block oxides and of carbon nanotubes filled with one-dimensional inorganic crystals. The latter specimens allowed for the first time a direct comparison between the phase shift in the restored object wave of a specimen with precisely known thickness and the value predicted by simulations.
|
444 |
Charge Transport In Conducting Polymers, Polymer-Carbon Nanotube Composites And DevicesSangeeth, Suchand C S January 2012 (has links) (PDF)
The Thesis reports charge transport studies on conducting polymers, polymer carbon nanotube composites and organic semiconductor devices. Conducting and semiconducting polymers consisting of π-conjugated chains have attracted
considerable attention as they combine the optoelectronic properties of
semiconductors with mechanical properties and processing advantages of plastics. The chemical/electrochemical/photodoping of these semiconducting polymers can tune the Fermi levels and conductivity in a controlled way, and hence the properties of devices can be easily tailored to suit in several applications. Carbon nanotube (CNT) is another another novel promising material for electronic/optoelectronic applications. Lately there has been a great interest in developing composites of polymer and CNTs to utilize the advantages of both CNTs and polymers. The inclusion of CNTs in polymers improves the mechanical, electrical and thermal properties since the aspect ratio (ratio of length to diameter) is very large, as well its density is rather low.
The Thesis consists of 6 chapters. First chapter is a brief introduction of general
and transport properties of conducting polymers and polymer-carbon nanotube
composites. In Chapter 2, the sample preparation and experimental techniques used in this work are discussed. The charge transport in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) is presented in Chapter 3. Chapter 4 focuses on the transport measurements in the polymer-CNT composite samples. Chapter 5 elaborates the ac and dc characterization of organic field-effect transistors (OFETs). And chapter 6 presents the conclusion and future directions of the work that has been presented in the Thesis.
Chapter 1: In the scientific and technological revolution of the last few years, the study of high performance materials has been steadily increasing including the study of carbon-based materials. Conducting polymers have special properties that are interesting for this new technology. The charge transport in conjugated polymers is important to optimize the performance of devices. The discovery of CNTs with exceptional thermal, mechanical, optical, electrical and structural properties has facilitated the synthesis of new type of nanocomposites with very interesting properties. Nanocomposites represent a guest-host matrix consisting of easily processible functionalized conjugated polymer as host, incorporating CNTs as fillers with versatile electronic and magnetic properties, which provide a wide range of technological applications. To optimize their electrical properties it is essential to understand the charge transport mechanism in detail.
Chapter 2: The multi-wall carbon nanotubes (MWNTs) grown by thermal chemical vapor deposition (CVD) are mixed with a 1:1 mixture of 98% H2SO4 and 70% HNO3 to produce sulfonic acid functionalized multi-wall carbon nanotubes (s-MWNTs). The s-MWNTs are dispersed in a solution of Nafion by ultrasonication and then cast on a glass substrate and slowly dried by moderate heating to obtain the composite films. Polyaniline (PANI)-MWNT composites were obtained by carrying out the chemical synthesis of nanofibrilar PANI in the presence of CNTs. This water dispersible PANIMWNT composite contains well segregated MWNTs partially coated by nanofibrilar PANI. The ac and dc charge transport measurements suggest hopping transport in these materials. OFETs are fabricated with pentacene, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene)(PBTTT) and poly(3-hexylthiophene) (P3HT) as active materials. A novel technique is used to characterize the acphotoresponse of these OFETs.
Chapter 3: Charge transport studies on PEDOT-PSS have been carried out and
found that it correlates with the morphology. The dc conductivity of PEDOT–PSS shows enhanced delocalization of the carriers upon the addition of dimethyl sulfoxide (DMSO) and this is attributed to the extended chain conformation. PEDOT-PSS is known to form a phase-segregated material comprising highly conducting PEDOT grains that are surrounded by a sea of weakly ionic-conducting PSS and a wide variation in the charge transport properties of PEDOT-PSS films is attributed to the degree of phasesegregation of the excess insulating polyanion. The magnetotransport and temperature dependent ac transport parameters across different conducting grades of PEDOT-PSS processed with DMSO were compared. Depending on the subtle alterations in morphology, the transport at low temperatures is shown to vary from the hopping regime (Baytron P) to critical regime of the metal-insulator transition (Baytron PH510) There is a significant positive magnetoresistance (MR) for P–films, but this is considerably less in case of PH510-film. From the low temperature ac conductance it is found that the onset frequency for PH510 is nearly temperature independent, whereas in P type it is strongly temperature dependent, again showing the superior transport in PH510. The presence of ‘shorter network connections’ together with a very weak temperature dependence down to ~ 5 K, suggest that the limitation on transport in PH510 arises from the connectivity within the PEDOT-rich grain rather than transport via the PSS barriers.
Chapter 4: DC and AC charge transport properties of Nafion s-MWNT and PANI-MWNT composites are studied. Such a detailed investigation is required to optimize the correlation among morphology and transport properties in these composites towards applications in field-effect transistors, antistatic coating, electromagnetic shielding, etc. The conductivity in Nafion s-MWNT shows a percolative transport with percolation threshold pc = 0.42 whereas such a sharp percolation is absent in PANI-MWNT composite since the conduction via PANI matrix smears out the onset of rapid increase in conductivity. Three-dimensional variable range hopping (VRH) transport is observed in Nafion s-MWNT composites. The positive and negative MR data on 10 wt. % sample are analyzed by taking into account forward interference mechanism (negative MR)
and wave-function shrinkage (positive MR), and the carrier scattering is observed to be in the weak limit. The electric-field dependence, measured to high fields, follows the predictions of hopping transport in high electric-field regime. The ac conductivity in 1 wt. % sample follows a power law: ( ) A s , and s decreases with increasing temperature as expected in the correlated barrier hopping (CBH) model. In general, Mott’s VRH transport is observed in PANI-MWNT samples. It is found that the MWNTs are sparingly adhered with PANI coatings, and this facilitates inter-tube hopping at low temperatures. The negative MR of MWNT-PANI composites suggest that the electronic transport at low temperatures is dominated by MWNT network. AC impedance measurements at low temperatures with different MWNT loading show that ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percentage, and the ac conductivity can be scaled onto a master
curve given by ( ) 0[1 k( 0 )s ].
Chapter 5: Organic field-effect transistors (OFETs) based on small molecules and polymers have attracted considerable attention due to their unique advantages, such as low cost of fabrication, ease of processing and mechanical flexibility. Impedance characterization of these devices can identify the circuit elements present in addition to the source-drain (SD) channel, and the bottlenecks in charge transport can be identified. The charge carrier trapping at various interfaces and in the semiconductor can be estimated from the dc and ac impedance measurements under illumination. The equivalent circuit parameters for a pentacene OFET are determined from low frequency impedance measurements in the dark as well as under light illumination. The charge accumulation at organic semiconductor–metal interface and dielectric semiconductor interface is monitored from the response to light as an additional parameter to find out the contributions arising from photovoltaic and photoconductive effects. The shift in threshold voltage is due to the accumulation of photogenerated carriers under SD electrodes and at dielectric–semiconductor interface, and also this dominates the carrier transport. Similar charge trapping is observed in an OFET with PBTTT as the active material. This novel method can be used to differentiate the photophysical phenomena occurring in the bulk from that at the metal-semiconductor interface for the polymer.
Chapter 6: The conclusions from the various works presented in the thesis are
coherently summarized in this chapter. Thoughts for future directions are also
summed up.
|
445 |
Quantitative Automated Object Wave Restoration in High-Resolution Electron MicroscopyMeyer, Rüdiger Reinhard 25 November 2002 (has links)
The main problem addressed by this dissertation is the accurate and automated determination of electron microscope imaging conditions. This enables the restoration of the object wave, which confers direct structural information about the specimen, from sets of differently aberrated images. An important member in the imaging chain is the image recording device, in many cases now a charge-coupled device (CCD) camera. Previous characterisations of these cameras often relied on the unjustified assumption that the Modulation Transfer Function (MTF) also correctly describes the spatial frequency dependent attenuation of the electron shot noise. A new theory is therefore presented that distinguishes between signal and noise transfer. This facilitates the evaluation of both properties using a detailed Monte-Carlo simulation model for the electron and photon scattering in the scintillator of the camera. Furthermore, methods for the accurate experimental determination of the signal and noise transfer functions are presented. In agreement with the Monte-Carlo simulations, experimental results for commercially available CCD cameras show that the signal transfer is significantly poorer than the noise transfer. The centrepiece of this dissertation is the development of new methods for determining the relative aberrations in a set of images and the absolute symmetric aberrations in the restored wave. Both are based on the analysis of the phase information in the Fourier domain and give each Fourier component a weight independent of its strength. This makes the method suitable even for largely crystalline samples with little amorphous contamination, where conventional methods, such as automated diffractogram fitting, usually fail. The method is then extended to also cover the antisymmetric aberrations, using combined beam tilt and focal series. The applicability of the new method is demonstrated with object wave restorations from tilt and focal series of complex inorganic block oxides and of carbon nanotubes filled with one-dimensional inorganic crystals. The latter specimens allowed for the first time a direct comparison between the phase shift in the restored object wave of a specimen with precisely known thickness and the value predicted by simulations.
|
446 |
Electrically detected magnetic resonance in semiconductor and carbon nanodevicesLang, Volker January 2012 (has links)
Electrically detected magnetic resonance (EDMR) is a sensitive spectroscopic technique, which can be used to readout few to single electron spins in semiconductor and carbon nanodevices for applications in solid state quantum information processing (QIP). Since only electrically active defects contribute to the EDMR signal, this technique can be used further to investigate defects and impurities in photovoltaic devices, in which they limit the sunlight-to-energy conversion efficiency significantly. Here, I employ X-band EDMR for semiconductor defect analysis and identify the most important recombination centres in Czochralski silicon with oxide precipitates, which can be intentionally grown to confine detrimental metallic impurities to inactive regions of the wafer in order to serve as a defect-free substrate for modern silicon photovoltaic devices. Those experiments show that oxide precipitation is accompanied by the formation of silicon dangling bonds. Furthermore, I describe a very promising route towards the fabrication and readout of few to single electron spins in carbon nanotube devices, which can be characterised structurally via transmission electron microscopy in order to relate their electrical and spin properties with their structure. Finally, I employ EDMR to read out electron spin states in donor-doped silicon field-effect transistors as a prerequisite for their application in QIP. I report on a novel cryogenic probe head for EDMR experiments in resonant microwave cavities operating at 0.35 T (9.7 GHz, X-band) and 3.34 T (94 GHz, W-band). This approach overcomes the inherent limitations of conventional X-band EDMR and permits the investigation of paramagnetic states with a higher spectroscopic resolution and signal intensity. Both advantages are demonstrated and discussed. I further report on a novel mechanism giving rise to the EDMR effect in donor-doped silicon field-effect transistors, which is capable of explaining why the EDMR signal intensities of the conduction electrons are enhanced by a factor of ∼100, while the donor resonance signals increase by a factor of ∼20 from X- to W-band only. The spin-relaxation and dephasing times are extracted from a series of pulsed-EDMR measurements and confirm this model. The author gratefully acknowledges funding from Trinity College Oxford, Department of Materials, EPSRC DTA, and Konrad-Adenauer-Stiftung e.V. (Begabtenförderung).
|
447 |
Fonctionnalisation covalente des nanotubes de carbone : propriétés, réversibilité et applications dans le domaine de l'électroniqueCabana, Janie 04 1900 (has links)
Le sujet général de cette thèse est l’étude de la fonctionnalisation covalente des nanotubes de carbone (CNT) et son application en électronique. Premièrement, une introduction au sujet est présentée. Elle discute des propriétés des CNT, des différentes sortes de fonctionnalisation covalente ainsi que des principales techniques de caractérisation utilisées au cours de la thèse. Deuxièmement, les répercussions de la fonctionnalisation covalente sur les propriétés des nanotubes de carbone monoparoi (SWNT) sont étudiées. Deux types de fonctionnalisation sont regardés, soit le greffage de groupements phényles et le greffage de groupements dichlorométhylènes. Une diminution de l’absorption optique des SWNT dans le domaine du visible-proche infrarouge est observée ainsi qu’une modification de leur spectre Raman. De plus, pour les dérivés phényles, une importante diminution de la conductance des nanotubes est enregistrée. Troisièmement, la réversibilité de ces deux fonctionnalisations est examinée. Il est montré qu’un recuit permet de résorber les modifications structurales et retrouver, en majorité, les propriétés originales des SWNT. La température de défonctionnalisation varie selon le type de greffons, mais ne semble pas affectée par le diamètre des nanotubes (diamètre examinés : dérivés phényles, Ømoyen= 0,81 nm, 0,93 nm et 1,3 nm; dérivés dichlorométhylènes, Ømoyen = 0,81 nm et 0,93 nm). Quatrièmement, la polyvalence et la réversibilité de la fonctionnalisation covalente par des unités phényles sont exploitées afin de développer une méthode d’assemblage de réseaux de SWNT. Celle-ci, basée sur l’établissement de forces électrostatiques entre les greffons des SWNT et le substrat, est à la fois efficace et sélective quant à l’emplacement des SWNT sur le substrat. Son application à la fabrication de dispositifs électroniques est réalisée. Finalement, la fonctionnalisation covalente par des groupements phényles est appliquée aux nanotubes de carbone à double paroi (DWNT). Une étude spectroscopique montre que cette dernière s’effectue exclusivement sur la paroi externe. De plus, il est démontré
que la signature électrique des DWNT avant et après la fonctionnalisation par des groupements phényles est caractéristique de l’agencement nanotube interne@ nanotube externe. / The general subject of this thesis is the covalent functionalization of carbon nanotubes and its applications in electronics. First, the properties of the carbon nanotubes, their functionalization, and the principal techniques used to characterize them are presented. Second, the repercussions of the grafting of phenyl addends and dichloromethylene addends on the properties of single-wall carbon nanotubes (SWNT) are investigated. A decrease of light absorption and a modification of the Raman spectra of the nanotubes are observed as well as, for the phenyl derivatives, an important loss of their electrical conductivity. Third, the reversibility of the functionalization is examined. The study shows that the addends are detached from the sidewall upon annealing, leading to the reconstruction of the graphene structure. Most of the original properties of the SWNT are then recovered. In addition, it is observed that the temperature of defunctionalization depends on the nature of the addends, but it is not influenced by the diameter of the SWNT (Range studied: phenyl derivatives, Ømoyen= 0,81 nm, 0,93 nm et 1,3 nm; dichlorométhylènes derivatives, Ømoyen = 0,81 nm et 0,93 nm). Fourth, a new method to reliably self-assemble networks of dense SWNT onto patterned substrates is presented. The method is based on covalent functionalization and electrostatic interactions. Its suitability for making electronic devices is demonstrated. Last, this thesis investigated the covalent functionalization of double-wall carbon nanotubes (DWNT). A spectroscopic study revealed that the grafting of the phenyl addends occurs exclusively on the outer wall. Furthermore, the identification of the metallic or semiconductor character of each wall of the DWNT is realized using electrical measurements taken before and after the functionalization.
|
448 |
Étude de films de nanotubes de carbone dans le domaine de fréquences térahertz : propriété antiréfléchissanteDekermenjian, Maria 09 1900 (has links)
Les expériences de spectroscopie ont été réalisées en collaboration avec Jean-François Allard du groupe de Denis Morris de l'Université de Sherbrooke. / Le présent projet de maîtrise a pour but d’étudier les interactions optiques des films de nanotubes de carbone (FNTCs) avec les ondes THz. Des expériences d’absorption térahertz faites par spectroscopie THz dans le domaine temporel ont été entreprises sur les films dont l’épaisseur varie. Les films d’épaisseurs allant de 14 à 145 nm, sont des couches minces de nanotubes de carbone (NTCs) empilés les uns sur les autres et sont déposés sur substrats (GaAs et silicium). Une caractérisation comparative des épaisseurs des films est entreprise dans un premier temps par AFM et par ellipsométrie spectroscopique. À cause de la rugosité de la surface et de porosité des films qui compliquent les interactions de la lumière avec les films, les épaisseurs déterminées par AFM sont gardées au détriment de celles d’ellipsométrie. La relation entre les épaisseurs mesurées par AFM en fonction des épaisseurs nominales s’est révélée linéaire. Les couleurs des FNTC sont aussi caractérisées en fonction de leurs épaisseurs. L’expérience d’absorption THz sur les films consiste à enregistrer la transmission d’une impulsion THz à large bande à travers les échantillons. Sur les spectres, on détecte aussi l’impulsion de réflexion, l’écho de réflexion de l’impulsion principale THz à l’intérieur du substrat séparé par un délai temporel. La diminution du pic de l’impulsion principale THz en fonction de l’épaisseur est non linéaire et atteint une saturation pour les films les plus épais. Ce résultat est en lien direct avec les mesures quatre pointes de conductivité dc des films où l’inverse de la résistivité de feuille sature à partir des mêmes épaisseurs de film. L’écho de réflexion de l’impulsion principale à l’intérieur du substrat perd de l’amplitude plus rapidement en fonction de l’épaisseur à cause de près de deux passages supplémentaires de l’impulsion dans le film au moment de la réflexion. Finalement, une disparition de l’impulsion de réflexion à une épaisseur particulière de film (100 nm pour le GaAs et 60 nm pour le Si) démontre les propriétés antiréfléchissantes des FNTCs. / In the present masters project, the goal is to study the optical interactions of carbon nanotube films (CNTFs) with terahertz (THz) waves. The THz absorption experiments made by time domain THz spectroscopy have been undertaken on thickness-variable films. CNTFs, which have their thicknesses range from 14 to 145 nm, are thin CNT layers that are piled one on another are deposited on a substrate (GaAs or silicon). First, a comparative characterization of film thicknesses is undertaken with AFM and with spectroscopic ellipsometry. Because of surface rugosity and film porosity which has the effect of complexifying the interaction of light with the films, AFM thicknesses are held for the rest of the analysis instead of those determined with ellipsometry. AFM measured thicknesses scale linearly with respect to nominal thicknesses that are proportional to the CNT density. CNTFs’ colors reveal to be correlated with their thicknesses. THz absorption experiments consist of taking the transmission spectrum of a broad band THz pulse through the samples. On the spectra, we also detect the reflection pulse, which is the echo of the main THz pulse inside the substrate separated by a time delay. The decrease of the main THz pulse with respect to the film thickness is non linear and reaches a saturation plateau for the thickest films. This finding is in direct relationship with four-point probe sheet conductivity measurements made on the films where a saturation is also observed from the same thicknesses. The reflection pulse loses amplitude more rapidly as the film thickness increases because of two additional wave passages in the film during reflection. Lastly, a quenching of the reflection pulse which is observed at a particular film thickness (100 nm for GaAs and 60 nm for silicon) demonstrates antireflection properties for the CNTFs.
|
449 |
Study and Development of Nonwovens made of Electrospun Composite Nanofibers / Etude et développement de non-tissés fait en nanofibres composites obtenues par électrofilageAlmuhamed, Sliman 14 December 2015 (has links)
L’électrofilage est actuellement la méthode la plus utilisée pour la production de nanofibres grâce à sa simplicité, sa reproductibilité et la possibilité d’être industrialisée. Grâce à leurs propriétés particulières telles qu’un grand rapport surface-volume, une porosité inter-fibre élevée et une grande capacité d’adsorption, les nanofibres électrofilées sont de bons candidats pour de nombreuses applications telles que la filtration, les masques respiratoires, les matériaux composites, etc. Cependant, certaines applications particulières, telles que les capteurs, les systèmes d'administration contrôlée de médicaments ou les super condensateurs, exigent que les nanofibres doivent présenter des propriétés complémentaires telles que la conductivité électrique, la porosité de surface de nanofibres, l’hydrophobicité, ou d’autres propriétés particulières. Certains nanomatériaux comme les nanotubes de carbone, la silice mésoporeuse ordonnée, les argiles, ont des propriétés particulières comme la conductivité électriques élevée des nanotubes de carbone, la porosité des matériaux de silice mésoporeuse ordonnée ou de l’argile. Ces propriétés des nanomatériaux peuvent être les fonctions complémentaires cherchées. Dans notre étude, des non-tissés composés de nanofibres de polyacrylonitrile chargées par nanotubes de carbone à multi-parois (MWNT), de la montmorillonite sodique (MMT-Na) ou de la silice mésoporeuse ordonnée (de type SBA-15), sont produits par électrofilage. Les résultats montrent que l’insertion de MWNT rend le non-tissé conducteur en augmentant la conductivité électrique volumique par six ordres de grandeur (de ~ 2×10-12 à ~ 3×10-6 S/m) avec un très faible seuil de percolation de 0.5 % massique. Lorsque le non-tissé est soumis à une compression, la conductivité électrique volumique augmente en augmentant la pression (jusqu’à ~ 2 kPa). Ces non-tissés conducteurs sont très intéressants pour le développement des capteurs à faible amplitude. Les résultats montrent aussi que l’accessibilité des pores des particules inorganiques (c’est-à-dire, les mésopores de SBA-15 et l’espace interfoliaire de MMT-Na) insérées dans la structure nano fibreuse est encore possible. Il a été trouvé que plus de 50% des mésopores de SBA-15 insérées sont encore accessibles quelles que soit les conditions de l’électrofilage et la fraction massique de SBA-15. En outre, l’insertion de ces particules inorganiques apporte plus de stabilité thermique aux nanofibres composites. / Electrospinning is the most common method for the production of nanofibres due to its simplicity, repeatability, and the ability to be scaled up. Owing to their advanced properties like the high surface-to-volume ratio, high interfibrous porosity, high adsorption capacity, etc. electrospun nanofibers are good candidates for many applications such as filtration, respiratory masks, composite materials and others. However, some specific applications including sensors, controlled drug delivery systems, supercapacitors, etc. still require complimentary functions that do not exist in pristine nanofibers in their basic structure like the electrical conductivity, surface porosity of the nanofibers, hydrophobicity, and others.Nanomaterials like carbon nanotubes, ordered mesoporous silica, layered silicate, etc. are characterized by particular properties like the high electrical conductivity of carbon nanotubes, the porosity of ordered mesoporous silica or layered silicate. These particular properties of nanomaterials can fulfill of the targeted functions.In our study, nonwovens made from nanofibers of polyacrylonitrile incorporated with multiwalled carbon nanotubes (MWNT), layered silicate type Na-montmorillonite (Na-MMT) or ordered mesoporous silica type SBA-15 are successfully produced by electrospinning.Results reveal that the incorporation of MWNT altered the electrical state of the nonwoven from insolent to conductor where the volume electrical conductivity increased by six order of magnitude (from ~ 2×10-12 to ~ 3×10-6 S/m) with a very low percolation threshold of about 0.5 wt%. The application of mechanical pressure to the conductive nonwoven causes an increase in the volume electrical conductivity with the increase of the applied pressure (up to ~ 2 kPa). Such conductive nonwoven is very interesting for the development of sensor with low amplitude.Results also show that accessibility of the pores of the inorganic particles (i.e. mesopores of SBA-15 and interlayer space of Na-MMT) incorporated into the nanofibers is still possible. It is found that at least 50% of SBA-15 mesopores are still accessible whatever is the electrospinning conditions and SBA-15 mass fraction. In addition, the incorporation of the studied inorganic particles yields higher thermal stability for the composite nanofibers.
|
450 |
Desenvolvimento do nanocompósito Y-TZP/MWCNT-COOH para uso odontológico. / Y-TZP/MWCNT-COOH nanocomposite development for dentistry applicationSilva, Lucas Hian da 07 April 2015 (has links)
Este estudo teve como objetivo principal desenvolver uma técnica para síntese de um nanocompósito de Y-TZP/MWCNT-COOH (Zircônia estabilizada por 3 mol% de ítria reforçada por nanotubos de carbono funcionalizado em -COOH) com propriedades mecânicas e ópticas que permitam a sua futura utilização como infraestrutura de próteses fixas dentárias e pilares protéticos para implantes. Assim, foram avaliados a microestrutura, resistência à flexão, tenacidade à fratura, limite de fadiga e propriedades ópticas do nanocompósito e comparada àquelas medidas para Y-TZP convencional (controle). O material Y-TZP/MWCNT-COOH foi desenvolvido pelo processo de co-precipitação de hidróxidos mistos associado ao tratamento hidrotérmico/solvotérmico e prensagem uniaxial em formato de blocos para sistemas CAD/CAM. O pó de MWCNT-COOH foi caracterizado por meio de MEV-FEG, TEM, TGA, DRX e FRX previamente a sua utilização para desenvolvimento do nanocompósito. Espécimes foram obtidos a partir do material Y-TZP/MWCNT-COOH para caracterização por meio de DRX, MEV-FEG e TEM, e comparação de suas propriedades estruturais (densidade e contração), ópticas, resistência à flexão, tenacidade à fratura e limite de fadiga com a Y-TZP convencional. O MWCNT-COOH apresentou-se em feixes de nanotubos de carbono recobertos por sílica tendo comprimento médio de 5,10 ± 1,34 ?m, com 90% dos comprimentos medidos (D90) estando abaixo de 6,9 ?m. Foi verificado a não possibilidade da utilização de líquidos orgânicos em nenhum passo da fabricação dos compósito Y-TZP/MWCNT-COOH por levar ao escurecimento do compósito, inviabilizando sua futura aplicação clínica. O tratamento hidrotérmico sem uso de líquidos orgânicos mostrou-se eficaz em proporcionar o revestimento do nanotubo de carbono por partículas de óxido de zircônio e ítrio. Entretanto, ocasionou a formação de aglomerados e partículas de Y-TZP com tamanho maiores que 5 ?m. Uma densidade relativa de 97,4% foi alcançada para o compósito experimental de Y-TZP contendo MWCNT-COOH, tendo uma razão de contraste de 0.9929 ± 0.0012 e um valor de diferença de cor da Y-TZP convencional de 6,1 ± 3,1 ( ?E). As propriedades mecânicas da Y-TZP/MWCNT-COOH, dureza Vickers (10,14 ± 1,27 GPa; p=0,25) e tenacidade à fratura (4,98 ± 0,30 MPa.m1/2; p=0,39), não apresentaram diferença significativa da Y-TZP convencional (dureza: 8,87 ± 0,89; tenacidade à fratura: 4,98 ± 0,30 MPa.m1/2). Entretanto, para a resistência à flexão (p=0,003) e limite de fadiga cíclica (LFC) foram obtidos valores inferiores para o material experimental Y-TZP/MWCNT-COOH (resistência à flexão: 299,4 ± 30,5 MPa; LFC: 179,4 ± 22,5 MPa) quando comparado à Y-TZP controle (resistência à flexão: 623,7 ± 108,8 MPa; LFC: 439,0 ± 56,4 MPa). Com base nos resultados apresentados, é possível concluir que a síntese de um nanocompósito de Y-TZP/MWCNT-COOH com propriedades ópticas adequadas para aplicação na odontologia restauradora foi possível por meio dos métodos descritos, entretanto algumas adequações nos métodos de síntese e processamento para criação do nanocompósito devem ser realizadas para se evitar a acentuada diminuição de importantes propriedades mecânicas do material. / This study aim was to develop a technique for synthetize nanocomposite of Y-TZP/MWCNT-COOH (3 mol% Yttria-Stabilized Tetragonal Zirconia reinforced with COOH functionalized carbon nanotubes) with mechanical and optical properties that allow their future use as fixed dental prosthesis infrastructure and implant abutments. Thus, the following properties of the nanocomposite were investigated and compared to those measured for conventional Y-TZP (control): microstructure, flexural strength, fracture toughness, fatigue limit and optical properties. Y-TZP/MWCNT-COOH material was developed by the co-precipitation of mixed hydroxides associated with the hydrothermal/solvothermal treatment and uniaxial pressing to form blocks for CAD/CAM systems. The MWCNT-COOH powder was characterized by SEM-FEG, TEM, TGA, XRD and XRF prior to its use for the development of nanocomposite. Specimens were obtained from the Y-TZP/MWCNT-COOH material and characterized by XRD, SEM-FEG and TEM. After characterization, the material had their structural properties (density and contraction), optical, flexural strength, fracture toughness and fatigue limit compared to a conventional Y-TZP. The MWCNT-COOH material was observed to be a bundle formation of carbon nanotube covered with silica with an average length of 5.10 ± 1.34 ?m, with 90% of the measured lengths (D90) being below 6.9 ?m. It has been found to be not possible to use organic liquids on any step of the Y-TZP/MWCNT-COOH manufacturing process due to darkening of the composite, making it unfeasible to future clinical application. The hydrothermal treatment without the use of organic liquids was effective in providing the carbon nanotube coating by zirconium and yttrium oxide particles. However, this treatment led to the formation of agglomerates and particles of Y-TZP with larger than 5 ?m. A relative density of 97.4% was achieved for the Y-TZP/MWCNT-COOH composite, having a contrast ratio of 0.9929 ± 0.0012, and a color difference value from the conventional Y-TZP of 6.1 ± 3.1 (?E). The mechanical properties of Y-TZP/MWCNT-COOH, Vickers hardness (10.14 ± 1.27 GPa; p = 0.25) and fracture toughness (4.98 ± 0.30 MPa.m1/2; p = 0.39), showed no significant difference from the conventional Y-TZP (hardness: 8.87 ± 0.89; fracture toughness: 4.98 ± 0.30 MPa.m1/2). However, flexural strength (p = 0.003) and cyclic fatigue limit (CFL) showed lower values for the experimental material Y-TZP/MWCNT-COOH (flexural strength: 299.4 ± 30.5 MPa; CFL: 179.4 ± 22.5 MPa) compared to Y-TZP control (flexural strength: 623.7 ± 108.8 MPa; CFL: 439.0 ± 56.4 MPa). Based on the results presented, it could be conclude that the synthesis of a nanocomposite of Y-TZP/MWCNT-COOH with optical properties suitable for application in restorative dentistry was made possible by the described methods, however some adjustments in synthesis and processing methods for the nanocomposite creation should be taken; to avoid the sharp decrease of important mechanical properties of the material.
|
Page generated in 0.0362 seconds