• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 53
  • 42
  • 32
  • 14
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 513
  • 91
  • 71
  • 70
  • 68
  • 63
  • 53
  • 52
  • 49
  • 45
  • 44
  • 44
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Fibres obtenues à partir de nanotubes de carbone verticalement alignés : élaboration et propriétés / Fibers obtained from vertically aligned carbon nanotube : development and properties

Debski, Nicolas 09 December 2014 (has links)
Les fibres à base de nanotubes de carbone (NTC), de par leurs propriétés électriques et mécaniques, sont des candidates potentielles pour des applications telles que les textiles fonctionnels ou les câbles conducteurs. A ce jour, deux familles de fibres, préparées selon des voies différentes, coexistent : les fibres contenant seulement des NTC et les fibres composites polymère/NTC. Les caractéristiques des NTC et les voies de mise en forme sont des facteurs reconnus pour impacter les propriétés électriques et mécaniques des fibres. Toutefois, compte tenu de la variabilité des sources de NTC et des conditions d’élaboration, il est difficile de dégager des relations entre caractéristiques des fibres et propriétés. C’est dans ce contexte que se situent ces travaux, avec comme objectifs la préparation de fibres à partir de NTC verticalement alignés selon deux voies d’élaboration et l’étude de leurs propriétés en fonction des caractéristiques des NTC. Une première partie de l’étude s’est focalisée sur la faisabilité de filage (voie sèche) à partir de tapis de NTC synthétisés par CCVD d’aérosol afin d’obtenir des fibres composée seulement de NTC. Même si l’ensemble des essais n’a pas abouti à un filage continu, ils ont permis de mettre en évidence un lien entre la faible tortuosité des NTC au sein du tapis et la capacité de ce dernier à former un réseau cotonneux qui semble être nécessaire à l’obtention d’une fibre. La seconde partie concerne l’étude de l’effet des caractéristiques des NTC (longueur, diamètre et structure) sur les propriétés électriques et mécaniques de fibres composites NTC/alcool polyvinylique (PVA) obtenues par voie humide à partir de suspensions de NTC. Or, la préparation de ces dernières engendre une rupture des NTC dont la longueur en suspension est limitée au micromètre. Un nouveau procédé de dispersion basé sur l’utilisation de cycles de gel/dégel a été développé, permettant d’aboutir à des longueurs de NTC en suspension de l’ordre de 4 à 6 µm. Ainsi, des suspensions concentrées en NTC de longueur, structure et diamètre différents ont été obtenues et ont permis d’élaborer avec succès des fibres composites. Les propriétés mécaniques des fibres brutes sont essentiellement modifiées par la longueur des NTC qui conduit à une amélioration du module de Young et de la contrainte à la rupture. Les propriétés électriques dépendent de la concentration en NTC dans la fibre et de la structure des NTC. Après traitement des fibres à 200 °C, l’augmentation de la longueur des NTC entraine une amélioration de la conductivité électrique. Par conséquent, l’utilisation de NTC longs dans des fibres composites s’avère bénéfique en termes d’augmentation des performances. / Carbon nanotube (CNT) based fibers, due to their interesting electrical and mechanical properties, exhibit a broad range of potential applications, such as functional textile or electrical wiring. To date, there are two families of fibers prepared according to different routes: pure CNT fibers and CNT composite fibers. The CNT characteristics and the elaboration process are known to impact their electrical and mechanical properties. However, the large diversity of manufactured CNT and spinning conditions used to elaborate these fibers are not favorable to establish clear relationship between fiber characteristics and their properties. In this context, the aim of the present work is to prepare fibers from vertically aligned CNT carpet according to two different elaboration process and to study their properties according to the CNT characteristics. A first part of this study was focused on the dry-spinning feasibility directly from CNT carpet synthesized by aerosol-assisted CCVD process in order to prepare fibers containing only of CNT. Even though all tests did not lead to a continuous spinning, a relation between the weak CNT tortuosity and the capacity of carpet to form fluffy network was established, which seems important for fiber continuous spinning. The second part is devoted to the study of the CNT characteristic effect (length, diameter and structure) on the electrical and mechanical properties of composite fibers obtained by wet spinning from CNT suspension. However, the preparation of these suspensions generates a CNT breakage by reducing their length to the micrometer range. A new dispersion process based on freezing/thawing cycles was developed and enables to keep CNT length in suspension of about 4 to 6 µm. Thus, concentrated suspensions with different CNT length, structure and diameter were obtained and successfully spun into fibers. The mechanical properties of raw fibers are essentially modified by CNT length which involves an improvement of the Young modulus and the tensile strength. The electrical properties depend on the CNT concentration in fiber and on the CNT structure. After a heat treatment of fiber at 200 °C, the increase of CNT length leads to an improvement of electrical conductivity. Consequently, the use of long CNT in composite fibers is beneficial to improve their performances.
452

Adhesion and dissipation at nanoscale / Adhésion et dissipation à l'échelle nanométrique

Li, Tianjun 10 October 2013 (has links)
Ce travail de thèse est dédié à l'étude de quelques phénomènes de surface impliquant des processus d'interactions à l'échelle nanométrique. Les expériences sont réalisées à l'aide un microscope à force atomique (AFM) à grande sensibilité, utilisant un interféromètre différentiel permettant d'atteindre une résolution de E-28m2/Hz dans la mesure de la déflexion de la sonde de force. Combiné à une approche originale d'analyse du bruit thermique, cet outil permet une caractérisation quantitative de la réponse mécanique de systèmes de taille micrométrique et nanométrique, tel que des micro-leviers ou des nanotubes de carbone, sur une large plage de fréquence.La première partie de mon travail porte sur la viscoélasticité du revêtement de leviers AFM. Mis en évidence par un bruit thermique en 1/f à basse fréquence, ce phénomène est présent lorsque le micro-levier est recouvert d'une couche nanométrique de métal (or, aluminium, platine, etc.) À l'aide du théorème fluctuation-dissipation et des relations de Kramers-Kronig, nous mesurons la dépendance en fréquence de cet amortissement viscoélastique dans une large gamme de fréquence (1Hz à 20 kHz. Nous observons une dépendance en fréquence générique sous la forme d'une loi de puissance pour ce processus de dissipation, avec un petit coefficient négatif qui dépend du matériau considéré. L'amplitude de cet effet est linéaire avec l'épaisseur du revêtement, démontrant ainsi que le mécanisme de dissipation est une propriété du volume de la couche métallique plutôt que de ses interfaces.La deuxième partie de mon travail se concentre sur de nouvelles expériences sur l'interaction de nanotubes de carbone avec des surfaces planes. En utilisant notre AFM, nous réalisons une mesure directe de la réponse mécanique (raideur, dissipation) du contact entre le nanotube et la surface, dans une géométrie de pelage (le nanotube est partiellement adsorbé sur la surface). Les résultats de ce protocole sont en accord avec la mesure de la raideur dynamique déduite de l'analyse du bruit thermique, démontrant une dépendance inattendue en loi de puissance de la raideur du contact en fonction de la fréquence. Nous proposons quelques origines physiques possibles pour expliquer ce comportement, tel qu'une couche de carbone amorphe autour du nanotube. / In this thesis, we test some interactions involving surfaces processes at the nanometer scale. The experiments are conducted with a highly sensitive interferometric Atomic Force Microscope (AFM), achieving a resolution down to E-28m2/Hz for the measurement of deflection. Combined with original thermal noise analysis, this tool allows quantitative characterization of the mechanical response of micrometer and nanometer sized systems, such as microcantilevers or carbon nanotubes, on a large frequency range.The first part of my work deals with the viscoelasticity of the coating of AFM cantilevers. Evidenced by a 1/f thermal noise at low frequency, this phenomenon is present when a cantilever is coated with a metallic layer (gold, aluminium, platinium, etc...). Using the fluctuation dissipation theorem and Kramers Kronig relations, we extract the frequency dependance of this viscoelastic damping on a wide range of frequency (1Hz to 20kHz). We find a generic power law dependence in frequency for this dissipation process, with a small negative coefficient that depends on materials. The amplitude of this phenomenon is shown to be linear in the coating thickness, demonstrating that the damping mechanism takes its roots in the bulk of the metallic layer.The second part of my work tackles new experiments on the interaction of carbon nanotubes with flat surfaces. Using our AFM, we perform a true mechanical response measurement of the rigidity and dissipation of the contact between the nanotube and the surface, in a peeling configuration (the nanotube is partially absorbed to the substrate). The results of this protocol are in line with the dynamic stiffness deduced from the thermal noise analysis, showing an unexpected power law dependence in frequency for the contact stiffness. We suggest some possible physical origins to explain this behavior, such as an amorphous carbon layer around the nanotube.
453

Exploring nano-mechanics through thermal fluctuations

Bellon, Ludovic 23 November 2010 (has links) (PDF)
This mémoire presents my current research interests in micro and nano-mechanics in a comprehensive manuscript. Our experimental device is first presented: this atomic force microscope, designed and realized in the Laboratoire de Physique de l'ENS Lyon, is based on a quadrature phase differential interferometer. It features a very high resolution (down to 10 fm/rtHz) in the measurement of deflexion, down to low frequencies and on a huge input range. The dual output of the interferometer implies a specific handling to interface common scanning probe microscope controllers. We developed analog circuitries to tackle static (contact mode) and dynamic (tapping mode) operations, and we demonstrate their performance by imaging a simple calibration sample. As a first application, we used the high sensitivity of our interferometer to study the mechanical behavior of micro-cantilevers from their fluctuations. The keystone of the analysis is the Fluctuation-Dissipation Theorem (FDT), relating the thermal noise spectrum to the dissipative part of the response. We apply this strategy to confront Sader's model for viscous dissipation with measurements on raw silicon cantilevers in air, demonstrating an excellent agreement. When a gold coating is added, the thermal noise is strongly modified, presenting a 1/f like trend at low frequencies: we show that this behavior is due to a viscoelastic damping, and we provide a quantitative phenomenological model. We also characterize the mechanical properties of cantilevers (stiffness and Elastic Moduli) from a mapping of the thermal noise on their surface. This analysis validates the description of the system in term of its normal modes of oscillations in an Euler-Bernoulli framework for flexion and in Saint-Venant approach for torsion, but points toward a refined model for the dispersion relation of torsional modes. Finally, we present peeling experiments on a single wall carbon nanotube attached to the cantilever tip. It is pushed against a flat substrate, and we measure the quasi-static force as well as the dynamic stiffness using an analysis of the thermal noise during this process. The most striking feature of these two observables is a plateau curve for a large range of compression, the values of which are substrate dependent. We use the Elastica to describe the shape of the nanotube, and a simple energy of adhesion per unit length Ea to describe the interaction with the substrate. We analytically derive a complete description of the expected behavior in the limit of long nanotubes. The analysis of the experimental data within this simple framework naturally leads to every quantity of interest in the problem: the force plateau is a direct measurement of the energy of adhesion Ea for each substrate, and we easily determine the mechanical properties of the nanotube itself.
454

Ab initio Berechnung des Elektronentransports in metallbeschichteten Kohlenstoffnanoröhrchen

Sommer, Jan 05 June 2012 (has links) (PDF)
Kohlenstoffnanoröhrchen (engl. carbon nanotube, CNT) sind vielversprechende Kandidaten für den Ersatz von Kupferleitbahnen die bei weiterer Strukturverkleinerung von integrierten Schaltkreisen notwendig wird. In dieser Arbeit wird mit Hilfe von ab-initio Simulationen auf Basis der Dichtefunktionaltheorie die elektronische Struktur von halbleitenden CNTs beispielhaft anhand des (8,4)-CNTs untersucht. Nach Besetzung des CNT mit Metallatomen, hier Kobalt, zeigen sich massive Änderungen der Bandstruktur. Es reichen bereits überraschend kleine Mengen des Metalls aus, um einen starken Effekt zu erreichen. Die Änderungen der elektronischen Struktur sind stark abhängig von der genauen Position der Metallatome relativ zum Kohlenstoffgerüst der CNTs, der Einfluss der mechanischen Verformung des CNTs als Reaktion auf die Anlagerung ist hingegen sehr gering. Die relevanten Bänder der Kobaltatome liegen leicht unterhalt der Fermi-Energie und sorgen bei der Integration in die Bandstruktur des CNTs für die Schließung der Bandlücke und somit für die Transformation eines vorher halbleitenden CNTs in ein leitendes. Diese Transformation konnte auch mit Simulationsrechnungen zum Elektronentransport bestätigt werden. Ferner wurden bei weiteren Rechnungen eine ausgeprägte Spinabhängigkeit der Bandstruktur ermittelt, welche noch weiterer Untersuchung bedarf.
455

Atomic Layer Deposition and Microanalysis of Ultrathin Layers

Melzer, Marcel 17 October 2012 (has links) (PDF)
Carbon nanotubes (CNTs) are a highly promising material for future interconnects. It is expected that the decoration of CNTs with Cu particles or also the filling of the interspaces between the CNTs with Cu instead of the currently used SiO2 can enhance the performance of CNT-based interconnects. Due to the high aspect ratio of CNTs an appropriate deposition technique has to be applied which is able to coat such structures uniformly. The current work is therefore considered with thermal atomic layer deposition (ALD) of CuxO from the liquid Cu (I) β-diketonate precursor [(nBu3P)2Cu(acac)] and wet oxygen at 135°C on variously pretreated multi-walled CNTs. The different in-situ pre-treatments of the CNTs with oxygen, water vapor and wet oxygen in a temperature range from 100 to 300°C at a pressure of 1.33 mbar have been carried out prior to the ALD to enable uniform nucleation on the otherwise chemical inert CNT surface. The reduction of the CuxO as well as the filling of the space between the CNTs is not part of this work. Variations of the oxidation temperature as well as the oxidation agents resulted in different growth modes of the CuxO. An oxidation with wet oxygen at 300°C yielded in a partially layer like growth of the CuxO. It is expected that this growth mode is connected to a partial destruction of the outer CNT shell due to the oxidation. However, the damage introduced to the CNTs was not high enough to be detected by Raman spectroscopy. For all other investigated pretreatments, the formation of nanoparticles (NPs) was observed by electron microscopy. This formation of CuxO NPs can be explained by the metal-tube-interaction. Furthermore, the NPs probably decorate defect sites of the CNTs due to their higher reactivity. Additionally, analysis of energy-dispersive X-ray spectroscopy and spectroscopic ellipsometry measurements suggests that the used precursor [(nBu3P)2Cu(acac)] requires reactive oxygen surface groups for initiating the ALD growth. The observation of layer-like growth of CuxO on CNTs pretreated with wet oxygen at 300°C appears promising for deposition processes of Cu seed layers on CNTs. However, more aggressive pretreatments at higher temperatures or with more aggressive oxidation agents could be required to enable layer like growth on the entire CNTs.
456

Carbon based nanomaterials as transparent conductive electrodes

Reiter, Fernando 19 May 2011 (has links)
Optically transparent carbon based nanomaterials including graphene and carbon nanotubes(CNTs) are promising candidates as transparent conductive electrodes due to their high electrical conductivity coupled with high optical transparency, can be flexed several times with minimal deterioration in their electronic properties, and do not require costly high vacuum processing conditions. CNTs are easily solution processed through the use of surfactants sodium dodecyl sulfate(SDS) and sodium cholate(SC). Allowing CNTs to be deposited onto transparent substrates through vacuum filtration, ultrasonic spray coating, dip coating, spin coating, and inkjet printing. However, surfactants are electrically insulating, limit chemical doping, and increase optical absorption thereby decreasing overall performance of electrodes. Surfactants can be removed through nitric acid treatment and annealing in an inert environment (e.g. argon). In this thesis, the impact of surfactant removal on electrode performance was investigated. Nitric acid treatment has been shown to p-dope CNTs and remove the surfactant SDS. However, nitric acid p-doping is naturally dedoped with exposure to air, does not completely remove the surfactant SC, and has been shown to damage CNTs by creating defect sites. Annealing at temperatures up to 1000°C is advantageous in that it removes insulating surfactants. However, annealing may also remove surface functional groups that dope CNTs. Therefore, there are competing effects when annealing CNT electrodes. The impacts on electrode performance were investigated through the use of conductive-tip atomic force microscopy, sheet resistance, and transmittance measurements. In this thesis, the potential of graphene CNT composite electrodes as high performing transparent electrodes was investigated. As-made and annealed graphene oxide CNT composites electrodes were studied. Finally, a chemical vapor deposition grown graphene CNT composite electrode was also studied.
457

Design And Synthesis Of Novel Soft Composites From Physical Gels And Nanomaterials

Pal, Asish 01 July 2008 (has links)
The present thesis entitled “Design and Synthesis of Novel Soft Composites from Physical Gels and Nanomaterials” deals with soft materials derived from low molecular weight gels and nanomaterials. Chapter 1 gives a general introduction and overview of the low molecular weight gel (LMOG) which forms the basis of the work. It delves with the history of research in physical gel field, design of different types of gelator molecules, their interesting self-assembly patterns, potential applications of these gelator molecules as well as challenges to design new gelator molecules. It also encompasses the relatively recent area of two component gel system to conveniently bypass the cumbersome synthetic protocol. The aspect of liquid crystallinity in the gel phase is also discussed to throw light on the pattern of assembly and potential uses of these materials. Towards the end there is a comprehensive discussion on the smart nanocomposites derived from LMOGs and nanomaterials. The design, synthesis and numerous applications of inorganic-organic hybrid composites are discussed. Chapter 2A describes the synthesis and characterization of a variety of fatty acid amides of different naturally occurring L-amino acids whose molecular structures are shown in Chart 2A.1. Some of them were found to form gels with various hydrocarbons. The gelation properties of these compounds were studied by a number of physical methods including FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry, rheology and it was found that gelation was critically dependent on the fatty acid chain length and nature of the amino acid. Among them, L-alanine based gelators were found to be the most efficient and versatile as they self-assemble into a layered structure to form the gel network. Mechanisms for the assembly and formation of gels from these molecules are discussed. (Structural formula) Chart 2A.1. Molecular structures of various fatty acid amides of different amino acids. Chapter 2B describes efficient gelation of both aliphatic and aromatic hydrocarbon solvents by a fatty acid amide, n-lauroyl-L-alanine (Chapter 2B.1). In addition, this compound was found to gelate the binary solvent mixtures comprised of aromatic hydrocarbon e.g. toluene and aliphatic hydrocarbon e.g. n-heptane. SEM and AFM showed that the fiber thickness of the gel assembly increases progressively in the binary mixture of n-heptane and toluene with increasing percentage of toluene. The self- Chart 2B.1. Molecular structure of the gelator. assembly patterns of the gels in individual solvents, n-heptane and toluene are however, different. The toluene gel consists of predominantly one type of morphological species while n-heptane gel has more than one species leading to polymorphic nature of the gel. The n-heptane gel is thermally more stable than the toluene gel as evident from the measurement using differential scanning calorimetry. The thermal stability of the gels prepared in the binary mixture of n-heptane and toluene is dependent on the composition of solvent mixture. Rheology of the gels shows that they are shear-thinning material and show characteristic behavior of soft viscoelastic solids. For the gels prepared from binary solvent mixture of toluene and n-heptane, with incorporation of more toluene in the binary mixture, the gel becomes a more viscoelastic solid. The time sweep rheology experiment demonstrates that the gel made in n-heptane has faster gel formation kinetics than that prepared in toluene. Chapter 2C describes lyotropic mesophase formation by organogels of different fatty acid amides of L-alanine in aromatic solvents. The helical assembly, characteristic of the cholesteric mesophase was found to exhibit reflection bands in circular dichroism spectra. The reflection bands corresponded to the pitch of the helical arrangement of the gelator molecules in the aromatic solvent. Transmission Electron Microscopy (TEM) showed presence of twist in the gel fibres. Polarising optical microscopy of the organogel exhibited weak birefringence confirming lyotropic nature of the assembly. Chapter 3 deals with synthesis and characterization of a new class of molecules with molecular structures shown in Chart 3.1. Among a variety of amino acid based molecules only alanine and serine based molecules were found to form translucent gels in aliphatic hydrocarbons such as n-heptane. TEM showed presence of fiber like structures for alanine whereas serine based gelator produces unique network like structures. SEM of the dried gels exhibited presence of three dimensional fibrous networks to spongy globular cauliflower like structures depending on the molecular structure of the gelators. Rheological studies of the organogels showed that they behave like typical LMOG gels. The oscillatory rheological studies demonstrated that the L-serine based gelator, 5 formed more viscoelastic solid like gel than that of L-alanine based gelator, 1 in n-heptane. Chart 3.1. Molecular structures of different amino acid derivatives from 3,4,5-tri-dodecyloxybenzoic acid scaffold. Chapter 4A presents design and properties of new nanocomposites from LMOG and metal nanoparticles (Chart 4A.1). The profound influence of nanoparticle (NP) incorporation into physical gels was evident from various microscopic and bulk properties. The interaction of nanoparticles with the gelator assembly was found to depend critically on the capping agent coating the nanoparticles. TEM showed long range Chart 4A.1. Molecular structures of the gelator and various AuNPs synthesized. directional assembly of the certain AuNPs along the gel fibers. SEM of the dried gels and nanocomposites indicated that the morphological transformation in the composite microstructures depended profoundly on the capping agent of the nanoparticle. Differential Scanning Calorimetry showed that gel formation from sol postponed to lower temperature with incorporation of AuNPs having capping agents which were able to interact with the gel fibers. Rheological studies indicated that the gel-nanoparticle composites exhibit greater rigidity as compared to the naked gel only when the capping agents were able to interdigitate into the gelator assembly. Also, very low percentage of the AuNPs incorporation could switch the cholesteric mesophase of gel assembly, as evident from circular dichroism. We have been able to define a relationship between materials and molecular properties via manipulation of the molecular structures of NP capping agents. Chapter 4B discusses the design and preparation of novel organogel-carbon nanotube composites by incorporation of single-walled carbon nanotubes (SWNT) into physical gels formed by an L-alanine based Low Molecular Mass Organogelator (Chart 4B.1). The gelation process and the properties of the resulting nanocomposites were found to depend on the kind of SWNTs incorporated in the gels. With pristine SWNTs, only a limited amount could be dispersed in the organogels. Attempted incorporation of higher amounts of pristine SWNTs led to precipitation from the gel. To improve their solubility in the gel matrix, a variety of SWNTs functionalized with different aliphatic and aromatic chains were synthesized (Chart 4B.1). Scanning electron microscope images of the nanocomposites showed that the texture and organization of the gel aggregates were altered upon incorporation of SWNTs. The microstructures of nanocomposites were found to depend on the kind of SWNTs used. Incorporation of functionalized SWNTs into the organogels depressed the sol to gel transition temperature, with the n-hexadecyl chain functionalized SWNTs being more effective than the n-dodecyl chain functionalized counterpart. Rheological investigations of pristine SWNT containing gels indicated that the flow of nanocomposites became resistant to applied stress at a very low wt-% of SWNT incorporation. Again, more effective control of flow behavior was achieved with functionalized SWNTs possessing longer hydrocarbon chains. This happens presumably via effective interdigitation of the pendant chains with the fatty acid amides of L-alanine in the gel assembly. Also, the helical cholesteric mesophase formed by the toluene gel could be switched to a layer stacked assembly by doping functional SWNT. Remarkably, by using a near IR laser irradiation at 1064 nm for a short duration (1 min) at room temperature, it was possible to selectively induce a gel-to-sol phase transition of the nanocomposites, while prolonged irradiation (30 min) of the organogel under identical conditions did not cause gel melting. Chart 4B.1. Molecular structures of the gelator and different functionalized SWNT synthesized. Chapter 5A presents design of two component hydrogels and their potential utilization as a template for metal nanoparticle synthesis. Among a variety of acids and amines (Chart 5A.1) only stearic acid or eicosanoic acid when mixed with di- or oligomeric amines in specific molar ratios form stable gels in water. The formation of such hydrogels depends on the hydrophobicity of the fatty acid, and also on the type of amine used. The gelation properties of these two component systems were investigated using electron microscopy, FTIR, 1H NMR spectroscopy, differential scanning calorimetry (DSC) and both single crystal and cast film X-ray diffraction. FTIR spectral analysis suggests salt formation during gelation. 1H NMR of the gels indicates that the fatty acid chains are immobilized in the gel state and when the gel is melted, these chains regain their mobility. Analysis of DSC data indicates that increase in spacer length in the di-/oligomeric amine lowers the gel melting temperature. Two of these gelator salts developed into crystals and structural details of such systems could be secured by single-crystal X-ray diffraction analysis. The structural information of the salts thus obtained was compared with the XRD data of the self-supporting films of those gels. Such analyses provided pertinent structural insight on the supramolecular interactions that prevail within these gelator assemblies. From the crystal structure it is confirmed that the multilayered lamellar aggregates exist in the gel and it also showed that only one plane of symmetry is present in the gel state. Finally, the hydrogel was used as a medium for the synthesis of silver nanoparticles. The nanoparticles were found to position themselves on the fibers and produce a long ordered assembly of gel-nanoparticle composite (Figure 5A.1). Chart 5A.1. Structures and abbreviations of different acids and amines checked for gelation. Figure 5A.1. TEM images of gel-Ag-NP composite. (a) Ag-NP synthesized in hydrogel of SA-IBPA (1:3.5), (b) Magnified images of Ag-NP preferentially residing on gel fibers. Chapter 5B demonstrates the aptitude of supramolecular hydrogel formation using simple bile acids e.g. lithocholic acid (LCA) in aqueous solution containing di- or oligomeric amines (Chart 5B.1). By variation of the choice of the amines in such mixture the hydrogelation properties could be modulated. However, replacement of LCA by cholic acid or deoxycholic acid resulted in no hydrogelation. FT-IR studies show that the carboxylate and ammonium residues of the two components are primarily involved in salt formation. This promotes further assembly of the components reinforced by continuous Chart 5B.1. Structures and abbreviations of different bile acids and amines checked for gelation. hydrogen bonded network leading to gelation. Electron microscopy shows that the morphology of the gels of two component systems which also depends strongly on the amine part. Variation of amine component from the simple ethanediamine (EDA) to oligomeric amine with lithocholic acid changes the morphology of the assembly from long one dimensional nanotubes to three dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines participate with the carboxylate and hydroxyl moiety through H-bonding and electrostatic forces. The rheological properties of this class of two component system provide clear evidence that this system is a shear-sensitive hydrogel and the flow behavior can be modulated varying the acid-amine ratio. From small angle neutron scattering study, it becomes clear that loose gel from LCA-EDA shows scattering oscillation due to the presence of non interacting nanotubules while for gels of LCA with oligomeric amine the individual fibers come together to form complex three dimensional structures of higher length scale.(For structural formula pl refer the pdf file)
458

Fonctionnalisation covalente des nanotubes de carbone : propriétés, réversibilité et applications dans le domaine de l'électronique

Cabana, Janie 04 1900 (has links)
Le sujet général de cette thèse est l’étude de la fonctionnalisation covalente des nanotubes de carbone (CNT) et son application en électronique. Premièrement, une introduction au sujet est présentée. Elle discute des propriétés des CNT, des différentes sortes de fonctionnalisation covalente ainsi que des principales techniques de caractérisation utilisées au cours de la thèse. Deuxièmement, les répercussions de la fonctionnalisation covalente sur les propriétés des nanotubes de carbone monoparoi (SWNT) sont étudiées. Deux types de fonctionnalisation sont regardés, soit le greffage de groupements phényles et le greffage de groupements dichlorométhylènes. Une diminution de l’absorption optique des SWNT dans le domaine du visible-proche infrarouge est observée ainsi qu’une modification de leur spectre Raman. De plus, pour les dérivés phényles, une importante diminution de la conductance des nanotubes est enregistrée. Troisièmement, la réversibilité de ces deux fonctionnalisations est examinée. Il est montré qu’un recuit permet de résorber les modifications structurales et retrouver, en majorité, les propriétés originales des SWNT. La température de défonctionnalisation varie selon le type de greffons, mais ne semble pas affectée par le diamètre des nanotubes (diamètre examinés : dérivés phényles, Ømoyen= 0,81 nm, 0,93 nm et 1,3 nm; dérivés dichlorométhylènes, Ømoyen = 0,81 nm et 0,93 nm). Quatrièmement, la polyvalence et la réversibilité de la fonctionnalisation covalente par des unités phényles sont exploitées afin de développer une méthode d’assemblage de réseaux de SWNT. Celle-ci, basée sur l’établissement de forces électrostatiques entre les greffons des SWNT et le substrat, est à la fois efficace et sélective quant à l’emplacement des SWNT sur le substrat. Son application à la fabrication de dispositifs électroniques est réalisée. Finalement, la fonctionnalisation covalente par des groupements phényles est appliquée aux nanotubes de carbone à double paroi (DWNT). Une étude spectroscopique montre que cette dernière s’effectue exclusivement sur la paroi externe. De plus, il est démontré que la signature électrique des DWNT avant et après la fonctionnalisation par des groupements phényles est caractéristique de l’agencement nanotube interne@ nanotube externe. / The general subject of this thesis is the covalent functionalization of carbon nanotubes and its applications in electronics. First, the properties of the carbon nanotubes, their functionalization, and the principal techniques used to characterize them are presented. Second, the repercussions of the grafting of phenyl addends and dichloromethylene addends on the properties of single-wall carbon nanotubes (SWNT) are investigated. A decrease of light absorption and a modification of the Raman spectra of the nanotubes are observed as well as, for the phenyl derivatives, an important loss of their electrical conductivity. Third, the reversibility of the functionalization is examined. The study shows that the addends are detached from the sidewall upon annealing, leading to the reconstruction of the graphene structure. Most of the original properties of the SWNT are then recovered. In addition, it is observed that the temperature of defunctionalization depends on the nature of the addends, but it is not influenced by the diameter of the SWNT (Range studied: phenyl derivatives, Ømoyen= 0,81 nm, 0,93 nm et 1,3 nm; dichlorométhylènes derivatives, Ømoyen = 0,81 nm et 0,93 nm). Fourth, a new method to reliably self-assemble networks of dense SWNT onto patterned substrates is presented. The method is based on covalent functionalization and electrostatic interactions. Its suitability for making electronic devices is demonstrated. Last, this thesis investigated the covalent functionalization of double-wall carbon nanotubes (DWNT). A spectroscopic study revealed that the grafting of the phenyl addends occurs exclusively on the outer wall. Furthermore, the identification of the metallic or semiconductor character of each wall of the DWNT is realized using electrical measurements taken before and after the functionalization.
459

Étude de films de nanotubes de carbone dans le domaine de fréquences térahertz : propriété antiréfléchissante

Dekermenjian, Maria 09 1900 (has links)
Le présent projet de maîtrise a pour but d’étudier les interactions optiques des films de nanotubes de carbone (FNTCs) avec les ondes THz. Des expériences d’absorption térahertz faites par spectroscopie THz dans le domaine temporel ont été entreprises sur les films dont l’épaisseur varie. Les films d’épaisseurs allant de 14 à 145 nm, sont des couches minces de nanotubes de carbone (NTCs) empilés les uns sur les autres et sont déposés sur substrats (GaAs et silicium). Une caractérisation comparative des épaisseurs des films est entreprise dans un premier temps par AFM et par ellipsométrie spectroscopique. À cause de la rugosité de la surface et de porosité des films qui compliquent les interactions de la lumière avec les films, les épaisseurs déterminées par AFM sont gardées au détriment de celles d’ellipsométrie. La relation entre les épaisseurs mesurées par AFM en fonction des épaisseurs nominales s’est révélée linéaire. Les couleurs des FNTC sont aussi caractérisées en fonction de leurs épaisseurs. L’expérience d’absorption THz sur les films consiste à enregistrer la transmission d’une impulsion THz à large bande à travers les échantillons. Sur les spectres, on détecte aussi l’impulsion de réflexion, l’écho de réflexion de l’impulsion principale THz à l’intérieur du substrat séparé par un délai temporel. La diminution du pic de l’impulsion principale THz en fonction de l’épaisseur est non linéaire et atteint une saturation pour les films les plus épais. Ce résultat est en lien direct avec les mesures quatre pointes de conductivité dc des films où l’inverse de la résistivité de feuille sature à partir des mêmes épaisseurs de film. L’écho de réflexion de l’impulsion principale à l’intérieur du substrat perd de l’amplitude plus rapidement en fonction de l’épaisseur à cause de près de deux passages supplémentaires de l’impulsion dans le film au moment de la réflexion. Finalement, une disparition de l’impulsion de réflexion à une épaisseur particulière de film (100 nm pour le GaAs et 60 nm pour le Si) démontre les propriétés antiréfléchissantes des FNTCs. / In the present masters project, the goal is to study the optical interactions of carbon nanotube films (CNTFs) with terahertz (THz) waves. The THz absorption experiments made by time domain THz spectroscopy have been undertaken on thickness-variable films. CNTFs, which have their thicknesses range from 14 to 145 nm, are thin CNT layers that are piled one on another are deposited on a substrate (GaAs or silicon). First, a comparative characterization of film thicknesses is undertaken with AFM and with spectroscopic ellipsometry. Because of surface rugosity and film porosity which has the effect of complexifying the interaction of light with the films, AFM thicknesses are held for the rest of the analysis instead of those determined with ellipsometry. AFM measured thicknesses scale linearly with respect to nominal thicknesses that are proportional to the CNT density. CNTFs’ colors reveal to be correlated with their thicknesses. THz absorption experiments consist of taking the transmission spectrum of a broad band THz pulse through the samples. On the spectra, we also detect the reflection pulse, which is the echo of the main THz pulse inside the substrate separated by a time delay. The decrease of the main THz pulse with respect to the film thickness is non linear and reaches a saturation plateau for the thickest films. This finding is in direct relationship with four-point probe sheet conductivity measurements made on the films where a saturation is also observed from the same thicknesses. The reflection pulse loses amplitude more rapidly as the film thickness increases because of two additional wave passages in the film during reflection. Lastly, a quenching of the reflection pulse which is observed at a particular film thickness (100 nm for GaAs and 60 nm for silicon) demonstrates antireflection properties for the CNTFs. / Les expériences de spectroscopie ont été réalisées en collaboration avec Jean-François Allard du groupe de Denis Morris de l'Université de Sherbrooke.
460

Magnetic properties of individual iron filled carbon nanotubes and their application as probes for magnetic force microscopy / Magnetische Eigenschaften von einzelnen eisengefüllten Kohlenstoffnanoröhren und deren Anwendung als Sonden für die Magnetkraftmikroskopie

Wolny, Franziska 20 October 2011 (has links) (PDF)
Iron filled carbon nanotubes (FeCNT) can be described as carbon nanotubes which contain an iron nanowire of several micrometers length and a diameter of approximately 10-100 nm. The carbon shells protect the iron core from oxidation and mechanical damage thus enabling a wide range of applications that require a long-term stability. The magnetic properties of the enclosed nanowire are in part determined by its small size and elongated shape. Magnetic force microscopy (MFM) measurements show that the iron wire exhibits a single domain behavior. Due to the large shape anisotropy it is magnetized along the long wire axis in the remanent state. Two magnetic monopoles of opposing polarity are located at the wire extremities. Depending on the structure and geometry of the individual nanowire, switching fields in the range of 100-400 mT can be found when the external field is applied along the FeCNT’s easy axis. Cantilever magnetometry shows that the switching can be attributed to a thermally assisted magnetization reversal mechanism with the nucleation and propagation of a domain wall. The defined magnetic properties of individual FeCNT combined with their mechanical strength make them ideal candidates for an application as high resolution high stability MFM probes. The fabrication of such probes can be achieved with the help of a micromanipulation setup in a scanning electron microscope. FeCNT MFM probes achieve a sub 25 nm lateral magnetic resolution. MFM measurements with FeCNT MFM probes in external fields show that the magnetization of these probes is exceptionally stable compared to conventional coated MFM probes. This greatly simplifies the data evaluation of such applied field MFM measurements. The emphasis of this work was put on the calibration of FeCNT probes to enable straightforward quantitative MFM measurements. The defined shape of the magnetically active iron nanowire allows an application of a point monopole description. Microscale parallel current carrying lines that produce a defined magnetic field are used as calibration structures to determine the effective magnetic moment of different MFM probes. The line geometry is varied in order to produce multiple magnetic field decay lengths and investigate the influence on the effective probe moment. The results show that while the effective magnetic monopole moment of a conventional MFM probe increases with an increasing sample stray field decay length, the effective moment of a FeCNT MFM probe remains constant. This enables a MFM probe calibration that stays valid for a large variety of magnetic samples. Furthermore, the fitted monopole moment of a FeCNT probe (in the order of 10E-9 Am) is consistent with the moment calculated from the nanowire geometry and the saturation magnetization of iron.

Page generated in 0.0389 seconds