• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental investigation of the countercurrent flow limitation

Solmos, Matthew Aaron 10 October 2008 (has links)
A new correlation for the prediction of the Countercurrent Flow Limitation (CCFL) in a large diameter tube with a falling water lm is proposed. Dierent from previous correlations, it predicts the onset of ooding by considering the relative velocities of the working uids and the lm thickness of the liquid layer. This provides a more complete accounting of the physical forces contributing to CCFL. This work has been undertaken in order to provide a better estimate of CCFL for reactor safety codes such as MELCOR, MAAP, and SCDAP/RELAP. Experiments were conducted to determine the CCFL for a 3-inch inner diameter smooth tube with an annular liquid lm and air injection from the bottom. The size of the test section and the range of working uid ow rates were based on a scaling analysis of the surge line of a PressurizedWater Reactor pressurizer. An experimental facility was designed and constructed based on this analysis in order to collect data on the CCFL phenomenon. In order to capture some of the physical phenomena at the onset of ooding visual pictures were taken at high speed. These pictures provided a new understanding of the process of transition to ooding. The facility also produced a new set of ooding data. This can also lead to a more comprehensive mechanistic model.
2

The Studying about Major Factors of Manufacture in LED Backlight Module

Chen, Chun-Ho 17 June 2010 (has links)
In the LCD display products source section LED light display product is OK to replace the traditional CCFL light display products, especially in the NB computer and computer monitor are almost over two to three years CCFL products will be completely out of the market. The LCD itself does not glow and need another light source to support it. Backlight module can provide light source to LCD display product. In the early the light source of backlight module is CCFL. But LED light source is going to replace CCFL from 2007. Most of all new developments in the field of the NB computer backlight module changes light source from CCFL to LED. Even the computer monitor light source is starting to use LED too. The development technologies and production quality of the LED backlight module are significant challenges in LED backlight module factory. The purpose of this study was to identify development technologies and production technologies factors of bottlenecks, and finding a solution. And can provide some help to LED backlight module industry terms. This study selects ' 8D process ' to be analysis model. And collect 5 backlight module factories development experience and production status data. Hope these data through 8D analysis process can find the major related factors of development technologies and production technologies. In-depth research, look forward to finding out the production technologies relevant factors oppression ' technical specification ' production. This study is expected to be able to find some effect LED backlight module process yield factor, then apply the stratification out product issues and process issues, this study is intended for process issue do take an in-depth look at the problem and solution, but about product issue will be' design solutions ' way to describe. I believe this research can help LED backlight module industry to reduce production cost and improve the development speed.
3

A Mechanistic Model for Flooding in Vertical Tubes

Hogan, Kevin J. 2009 August 1900 (has links)
In a counter-current two-phase flow system, flooding can be defined as the onset of flow reversal of the liquid component which results in an upward co-current flow. Flooding in the surge line of pressurized water reactors poses a significant technical challenge in the analysis of several postulated nuclear reactor accident scenarios. Despite the importance of flooding in these analyses, previous work does not identify a universally accepted rigorous physics-based model of flooding, even for the simple case of flooding in adiabatic, vertical tubes. This can be attributed to a lack of conclusive understanding of the physics of two-phase counter-current flow, specifically the mechanism of flooding, and the large amount of uncertainty among data from various flooding experiments. This deficiency in phenomenological and experimental knowledge has led to the use of many empirical and semi-empirical correlations for specific system conditions and geometries. The goal of this work is the development of a model for flooding in vertical, adiabatic tubes from first principles. To address a source of uncertainty in the analysis of flooding, a model for the prediction of average film thickness in annular co- and counter-current flows has been developed by considering the conservation of momentum of the liquid and gas flows. This model is shown to be a quantitative improvement over the most commonly used models, those of Nusselt and Belkin, Macleod, Monrad, and Rothfus. The new model better considers the effects of interfacial shear and tube curvature by using closure relations known to represent forces appropriately in co- and counter-current flow. Previous work based on semi-empirical flooding models has been analyzed to develop a new theory on the hydrodynamic mechanism which causes flooding. It is postulated that the growth of an interfacial wave due to interfacial instability results in a flow reversal to ensure that momentum is conserved in the counter-current flow system by causing a partial or complete co-current flow. A model for the stability of interfacial waves in a counter-current flow system is proposed and has been developed herein. This model accurately represents the geometric and flow conditions in vertical adiabatic tubes and has been shown to have limits that are consistent with the physical basis of the system. The theory of waves of finite amplitude was employed to provide closure to an unknown parameter in the new model, the wave number of the wave that generates the interfacial instabil- ity. While this model underpredicts the flooding superficial gas velocity, the result is a conservative estimate of what conditions will generate flooding for a system. In the context of the analysis of a nuclear reactor, specifically a pressurized water reactor, conservatism means that the gas flow rate predicted to cause flooding for a fixed liquid flow rate will be less than the flow rate found experimentally, mean- ing that liquid delivery to the core would be safely underestimated. Future work includes the improvement of the closure relation for the limiting wave number that will cause unstable interfacial waves, as well as an assessment of the applicability of the stability-based model to flooding in the presence of phase change and flooding in complex geometries.
4

Two-phase flow experiments in a model of the hot leg of a pressurised water reactor

Seidel, T., Beyer, M. 14 March 2012 (has links) (PDF)
In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264°C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which takes the effect of viscosity into account.
5

A Balance Circuit Employing Transformers with Serial Primary Windings for Multiple Cold Cathode Fluorescent Lamps

Huang, Chao-ming 11 September 2007 (has links)
For a back-light module with multiple cold cathode fluorescent lamps (CCFLs) in mid-size or large size liquid crystal displays, a balance scheme must be included to have approximately equal currents among the lamps and hence to output equal brightness. In this thesis, a half-bridge inverter is adopted to drive multiple step-up transformers with the same turn ratio, in which the primary windings of the transformers are connected in series whereas the second windings drive CCFLs in parallel. Due to the series connection of the transformer sets, the current going through the primary windings is identical, so that the lamp currents from second windings tend to be equal. A driver circuit with the proposed scheme is designed for 8 U-type cold cathode fluorescent lamps in a 32-inch backlight module. The simulation and experimental results demonstrate the effectiveness of the balance scheme, even for the lamps operating at low current.
6

Two-phase flow experiments in a model of the hot leg of a pressurised water reactor

Seidel, Tobias, Vallée, Christoph, Lucas, Dirk, Beyer, Matthias, Deen, Darlianto 26 August 2010 (has links) (PDF)
In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264°C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which takes the effect of viscosity into account.
7

Dimmable Electronic Ballast for Multiple Cold Cathode Fluorescent Lamps

Chen, Sheng-Hui 25 July 2011 (has links)
A high-frequency half-bridge series resonant inverter with multiple output transformers is developed for driving multiple cold-cathode fluorescent lamps (CCFLs) with dimming feature. The primary sides of the transformers are connected in series with the resonant inverter to have an identical current, while the secondary sides are loaded by CCFLs with galvanic isolation to each other. To ensure a high circuit efficiency, the active power switches of the inverter are designed to be switched on at zero voltage. The resonant current of the inverter can be regulated by controlling the switching frequency of the inverter, so that all CCFLs can be dimmed simultaneously. On the other hand, the primary sides of the output transformers are associated with parallel switches to dim the CCFLs individually. These dimming switches are operated at a low frequency by integral cycle control with zero current switching (ZCS) to reduce the switching losses. The resonant circuit is tactfully designed to alleviate the variation of the resonant current caused by the switching of dimming switches. A laboratory circuit is built for driving 5 CCFLs. The intended circuit performances are confirmed by test results. The variation of the resonant current is less than 10% when the dimming switches are switching, and the measured efficiency for the circuit is 96.15% under the rated powers.
8

Two-phase flow experiments in a model of the hot leg of a pressurised water reactor

Seidel, Tobias, Vallée, Christoph, Lucas, Dirk, Beyer, Matthias, Deen, Darlianto January 2010 (has links)
In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264°C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which takes the effect of viscosity into account.
9

Two-phase flow experiments in a model of the hot leg of a pressurised water reactor

Seidel, T., Beyer, M. January 2011 (has links)
In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264°C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which takes the effect of viscosity into account.
10

Dynamics of the free surface of stratified two-phase flows in channels with rectangular cross-sections

Vallée, Christophe 24 April 2012 (has links) (PDF)
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with high-resolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at boundary conditions of up to 50 bar and 264°C. Four types of experiments were performed, including generic test cases as well as transient validation cases of typical nuclear reactor safety issues. As an example, the co-current flow experiments simulate the two-phase natural circulation in the primary circuit of a PWR. The probability distribution of the water level measured in the reactor pressure vessel simulator was used to characterise the flow in the hot leg. Moreover, the flooding behaviour in this conduit was investigated with dedicated counter-current flow limitation experiments. A comparison of the flooding characteristics with similar experimental data and correlations available in the literature shows that the channel height is the characteristic length to be used in the Wallis parameter for channels with rectangular cross-sections. Furthermore, for the analysis of steam/water experiments, condensation effects had to be taken into account. Finally, the experimental results confirm that the Wallis similarity is appropriate to scale flooding in the hot leg of a PWR over a large range of pressure and temperature conditions. Not least, different examples of comparison between experiment and simulation demonstrate the possibilities offered by the data to support the development and validation of CFD codes. Besides the comparison of qualitative aspects, it is shown exemplarily how to treat the CFD results in order to enable quantitative comparisons with the experiments.

Page generated in 0.0247 seconds