• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 35
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Role of Cell Cycle Machinery in Ischemic Neuronal Death

Iyirhiaro, Grace O. January 2013 (has links)
Ischemic stroke occurs as a result of a lack or severe reduction of blood supply to the brain. Presently therapeutic interventions are limited and there is a need to develop new and efficacious stroke treatments. To this end, a great deal of research effort has been devoted to studying the potential molecular mechanisms involved in ischemic neuronal death. Correlative evidence demonstrated a paradoxical activation of the cell cycle machinery in ischemic neurons. The levels and activity of key cell cycle regulators including cyclin D1, Cdk2 and Cdk4 are upregulated following ischemic insults. However, the functional relevance of these various signals following ischemic injury was unclear. Accordingly, the research described in this thesis address the functional relevance of the activation of the cell cycle machinery in ischemic neuronal death. The data indicate that the inhibition of Cdk4 protects neurons from ischemia-induced delayed death, whereas abrogation of Cdk5 activity prevents excitotoxicity-induced damage in vitro and in vivo. Examination of upstream activators of mitotic-Cdks showed that Cdc25A is a critical mediator of delayed ischemic neuronal death. Investigation of the potential molecular mechanism by which cell cycle regulators induced neuronal death revealed perturbations in the levels and activity of key downstream targets of Cdk4. The retinoblastoma protein family members, pRb and p130 are increasingly phosphorylated following ischemic stresses. Importantly, p130 and E2F4 proteins are drastically reduced following ischemic insults. Additionally, E2F1 association with promoters of pro-apoptotic genes are induced while that of E2F4 is reduced. These changes appear to be important determinants in ischemic neuronal death. Cumulatively, the data supports the activation of the cell cycle machinery as a pathogenic signal contributing to ischemic neuronal death. The development of neuroprotectant strategies for stroke has been hampered in part by its complex pathophysiology. Previous research indicated that flavopiridol, a general CDK-inhibitor, is unable to provide sustained neuroprotection beyond one week following cerebral ischemia. The potential benefit of combining flavopiridol with another neuroprotectant, minocycline, was explored. The data indicate that while this approach provided histological protection 10 weeks after insult, the protected neurons are not functional due to progressive dendritic degeneration. This evidence indicates that targeting cell cycle pathways in stroke while important must be combined with other therapeutic modalities to fully treat stroke-induced damage.
32

DESIGNING COMBINATION DRUG REGIMENS TO IMPROVE GLIOBLASTOMA CHEMOTHERAPY: A PHARMACOKINETIC PHARMACODYNAMIC MODELING APPROACH

Saugat Adhikari (11267001) 13 August 2021 (has links)
<p>Despite advancements in therapies, such as surgery, irradiation (IR) and chemotherapy, outcome for patients suffering from glioblastoma (GBM) remains fatal; the median survival time is only about 15 months. Even with novel therapeutic targets, networks and signaling pathways being discovered, monotherapy with such agents targeting such pathways has been disappointing in clinical trials. Poor prognosis for GBM can be attributed to several factors, including failure of drugs to cross the blood-brain-barrier (BBB), tumor heterogeneity, invasiveness, and angiogenesis. Development of tumor resistance, particularly to temozolomide (TMZ) and IR, creates a substantial clinical challenge.</p><p> </p><p>The primary focus of the work described herein was to develop a modeling and simulation approach that could be applied to rationally develop novel combination therapies and dose regimens that mitigate resistance development. Specifically, TMZ was combined with small molecule inhibitors that are either currently in clinical trials or are approved drugs for other cancer types, and which target the disease at various resistance signaling pathways that are induced in response to TMZ monotherapy. To accomplish this objective, an integrated PKPD modeling approach was used. A PK model for each drug was first defined. PK models were subsequently linked to a PD model description of tumor growth dynamics in the presence of a single drug or combinations of drugs. A key outcome of these combined PKPD models was tumor static concentration (TSC) curves of TMZ in combination with small molecule inhibitors that identify combination drug exposures predicted to arrest tumor growth. This approach was applied to TMZ in combination with abemaciclib (a dual CDK4/6 small molecule inhibitor) based on data from a published study evaluating abemaciclib (ACB) efficacy in combination with TMZ in a U87 GBM xenograft model. TSC was also constructed for TMZ in combination with RG7388 (MDM2 inhibitor) based on the data from an in-vivo study that evaluated effects on tumor growth suppression of these small molecule inhibitors in combination with TMZ in GBM 10 patient derived xenografts.</p><p>In GBM 43 mouse xenografts, emergence of resistance to TMZ treatment was identified. Thus, a resistance integrated PKPD model was developed to predict tumor growth kinetics after treatment with TMZ in GBM 43 tumors. Population PK models in immune deficient NOD.Cg-<em>Prkdc<sup>scid</sup> Il2rg<sup>tm1Wjl</sup></em>/SzJ (NSG) mice for TMZ and small molecule inhibitors (GDC0068/RG7112) were developed based on a combination of data obtained from an in-vivo study and published sources. Subsequently, PK models were linked to tumor volume data obtained from GBM 43 subcutaneous xenografts. Model parameters quantifying tumor volume dynamics were precisely estimated (coefficient of variation < 40%) compared to a base tumor growth inhibition model in GBM 43 that did not incorporate resistance development. Graphical diagnostics of the resistance incorporated PKPD tumor growth inhibition model demonstrated a superior fit compared to the base model, and accurately captured the emergence of resistance to the TMZ monotherapy treatment observed in the GBM 43 patient derived xenograft model.</p>
33

Les différents rôles de STAUFEN1 dans les points de contrôle du cycle cellulaire tumoral vs non tumoral

Doran, Bellastrid 08 1900 (has links)
STAUFEN1 (STAU1) est une protéine de liaison à l’acide ribonucléique (ARN) double brin jouant un rôle important dans le contrôle post-transcriptionnel de nombreux ARN messager (ARNm). Sa déplétion diminue la prolifération des cellules non cancéreuses en altérant les transitions G1/S et G2/M. En revanche, Ceci n’a aucun impact sur la prolifération des cellules tumorales. La déplétion de STAU1 module le niveau d’expression des transcrits et/ou des protéines impliquées dans la régulation des points de contrôle des transitions de phase. Notamment, STAU1 module le niveau d’expression de la protéine CDK4 ainsi que l’abondance de l’ARNm E2F1, deux régulateurs indispensables de la transition G1/S. Le transcrit de ces deux gènes possède un site de liaison à STAU1 ou STAU1 binding site (SBS) dans la région codante ou coding sequence (CDS) et dans la région non codante en 3’ (3’UTR), respectivement. Cependant, l’importance de la liaison de STAU1 à ces transcrits n’a pas encore été étudiée. Étonnamment, la sensibilité des cellules non tumorales et tumorales à l’expression de STAU1 est inversée lors de la surexpression de STAU1. En effet, sa surexpression altère l’entrée en mitose des cellules cancéreuses et diminue leur prolifération, alors qu’elle n’a aucun effet sur la prolifération des cellules non tumorales. Lors de la mitose, STAU1 s’associe au fuseau mitotique (FM), ce qui lui permet de localiser des ARNm et de contrôler leur séquestration et/ou leur traduction locale. Cependant, le mécanisme qui permet à STAU1 de lier le FM est encore inconnu. Pour ce mémoire, nous avons donc poursuivi deux objectifs. Le premier but est de comprendre la régulation post-transcriptionnelle médiée par STAU1 des transcrits essentiels à la transition G1/S chez les cellules non tumorales. Notre hypothèse est que STAU1 par sa liaison directe à ses transcrits cibles via le SBS module leur expression. Pour ce faire, des cellules de type sauvage ou déplétées en STAU1 étaient transfectées par des plasmides exprimant les transcrits de CDK4 et d’E2F1 contenant un SBS endogène ou muté de telle sorte qu’il ne reconnait plus STAU1. L’expression des protéines CDK4 et E2F1 est dosée par un essai luciférase ou un immunobuvardage de type western ou western blot (WB). Nous avons observé que STAU1 régule négativement et positivement l’expression endogène de CDK4 et d’E2F1, respectivement, ce qui contribue au passage de la transition G1/S, donc à la prolifération cellulaire non tumorale. Les essais luciférases ont confirmé le rôle de STAU1 dans la régulation positive d’E2F1 lorsque liée au SBS dans le 3’UTR du transcrit E2F1. Malheureusement, les plasmides utilisés pour l’expression de CDK4 se sont avérés non fonctionnels, ce qui nous a forcés à mettre de côté cette expérience. Le deuxième but est d’étudier les déterminants qui régulent la localisation de STAU1 au FM chez les cellules tumorales. Pour ce faire, la localisation de STAU1 ou des mutants au FM est détectée par WB à partir de préparations des FM purifiés. Nos données montrent que le déterminant est composé de plusieurs acides aminés (aa) situés entre le 26ème et 37ème aa du côté N-terminal de la protéine STAU1. En somme, nos résultats montrent les différents rôles de STAU1 dans les cellules tumorales vs cellules non tumorales. De ce fait, STAU1 pourrait être une cible thérapeutique spécifique potentielle dans le traitement du cancer. / STAUFEN1 (STAU1) is a double stranded RNA binding protein that plays an important role in the post-transcriptional control of many mRNAs. Its depletion decreases the proliferation of non-cancer cells by altering G1/S and G2/M transitions. In contrast, this has no impact on the proliferation of tumor cells. The decrease of STAU1 expression modulates the level of transcripts/proteins of several genes involved in phase transition checkpoints, including CDK4 and E2F1, two essential regulators in G1/S transition. In addition, CDK4 and E2F1 transcripts have a STAU1 binding site (SBS) in the coding sequence (CDS) and the non-coding region in 3’ (3’UTR), respectively. However, the molecular consequence of STAU1 association with the SBS is not yet studied. Surprisingly, the sensibility of non-cancer and cancer cells to STAU1 expression is reversed following STAU1 overexpression. Indeed, its overexpression alters the entry into mitosis of cancer cells and decreases their proliferation, while it has no effect on non-cancer cells. During mitosis, STAU1 associates with the mitotic spindle, which allows it to localize mRNAs and other non-coding RNAs. STAU1 likely controls their sequestration and/or local translation during mitosis. However, the molecular determinant involved in STAU1-spindle association is still not known. Therefore, for this master thesis, we had two objectives. The first goal is to understand the post-transcriptional regulation mediated by STAU1 on transcripts that are essential for G1/S transition in non-tumor cells. Our hypothesis is that STAU1, by its direct binding to the SBS of its target transcripts, modulates their expression. To do this, plasmids coding for CDK4 and E2F1 containing a wild-type or mutated SBS that does not recognized STAU1 were transfected in wild-type and STAU1-depleted cells. Expression of CDK4 and E2F1 was detected by dual luciferase assay and western blot (WB). Our results first indicate that STAU1 negatively and positively regulates the endogenous expression of CDK4 and E2F1, respectively, which contributes to the passage of G1/S transition, and therefore to the proliferation non-tumor cells. Then, the luciferase assays confirm the role of STAU1 in E2F1 expression, depending on STAU1 binding to E2F1 SBS in its 3’UTR. Unfortunately, the plasmids used for CDK4 expression turned out to be non-functional. The second goal is to identify the molecular determinants responsible for the localization of STAU1 to the mitotic spindle in tumor cells. To this end, the localization of STAU1 or of several mutants was measured by WB using purified spindle preparations. Our data show that the determinant is composed of several amino acids (aa) located between the 26th and 37th aa at the N-terminal end of STAU1. In summary, our results show the different roles of STAU1 in tumor and non-tumor cells. Therefore, STAU1 could be a potential specific therapeutic target in cancer treatments.
34

Combination of Th1 cytokines plus small molecule kinase inhibitors Palbociclib or Sunitinib potentiate apoptosis in breast cancer cell lines

Ghimirey, Nirmala 26 July 2018 (has links)
No description available.
35

Modulation of human antigen-specific T cell response - therapeutic implications for multiple sclerosis

Waiczies, Sonia 22 September 2003 (has links)
Multiple Sklerose (MS) ist eine heterogene Krankheit des Zentralnervensystems, deren pathologische Mechanismen noch nicht vollständig aufgeklärt sind. Die gegenwärtige Hypothese ist, daß pro-inflammatorische T-Zellen entscheidend an der Pathogenese der MS beteiligt sind. Man geht davon aus, daß eine Fehlregulation der T-Zell-Kontrolle, möglicherweise bedingt durch ein Ungleichgewicht an Apoptose-regulierenden Molekülen, dabei eine Rolle spielt. Tatsächlich zielen therapeutische Strategien darauf ab, T-Zell-Aktivierung, Proliferation und Produktion von Zytokinen zu verringern, oder T-Zell-Eliminierung zu fördern. Diese Arbeit sollte zum einen die Bedeutung regulatorischer Faktoren klären, die für das überleben der T-Zellen von MS-Patienten verantwortlich sind. Zum anderen sollten die antiproliferative oder Apoptose-fördende Wirkung potentiell therapeutisch wirksamer Moleküle untersucht werden. Eine eingeschränkte Regulation der autoreaktiven T-Zellen durch Apoptose in der Peripherie und im ZNS trägt möglicherweise zur Pathophysiologie der MS bei. Als Schlüsselfaktoren der Regulation von Apoptose wurden Mitglieder der Bcl-2-Familie in MS-Patienten und Probanden untersucht. Diese Faktoren wurden in Relation zu der Suszeptibilität der T-Zellen gegenüber aktivierungsinduziertem Zelltod (sog. Activation-induced cell death oder AICD) überprüft. Um die in-vivo-Elimination der Antigen-reaktiven T-Zellen nachzuahmen, wurde ein in-vitro-Modell des AICD mit repetitiver T-Zell-Stimulation verwendet. Tatsächlich zeigten polyklonale T-Zellen von MS-Patienten eine verringerte Suszeptibilität für AICD, nachgewiesen sowohl durch verminderte Caspaseaktivtät (p=0.013) als auch durch DNA-Fragmentierung (p=0.0071). Weiter wurden höhere Spiegel des Proteins Bcl-XL in den Immunzellen von MS-Patienten mit Immunoblotting gemessen (p=0.014). Eine inverse Korrelation zwischen der Expression an Bcl-XL und der Empfindlichkeit der T-Zellen gegenüber AICD steht in Übereinstimmung mit vorhergehenden Daten bezüglich der Bedeutung dieses Proteins für die Apoptose-Resistenz von T-Zellen. Es wurde bereits gezeigt, daß dieses Molekül die Ausprägung der experimentell-autoimmun Enzephalomyelitis, des Tiermodells der MS, verstärkt. Zusammen mit den erhöhten Bcl-XL-Werten bei MS-Patienten, ergeben sich nun Perspektiven für einen therapeutischen Ansatz. Abgesehen von dem Konzept die apoptotische Eliminierung von T-Zellen zu unterstützen, streben gegenwärtige therapeutische Strategien an, die Aktivierung und weitere Proliferation der schädlichen T-Zellen zu hemmen. Basierend auf klinischer Erfahrung mit eher unselektiven Therapien, ist es ein therapeutisches Ziel, neue immunomodulatorische Substanzen mit besserer Selektivität zu finden, um das Nutzen/Risiko-Verhältnis zu maximieren. Aus diesem Grund wurden zwei unterschiedliche Substanzen untersucht die beide den Zellzyklus beeinflussen. Als erster Kandidat wurde der kürzlich entdeckte Todesligand TRAIL (engl.: TNF-related apoptosis inducing ligand) aus der TNF/NGF-Familie untersucht, da diesem bereits T-Zell-regulatorische Funktionen zugeschrieben worden waren, humane Antigen-spezifische T-Zellen jedoch resistent gegenüber TRAIL-induzierter Apoptose sind. Der zweite Kandidat mit potenziell therapeutischer Wirkung bei MS ist Atorvastatin, ein HMG-CoA-Reduktase-Hemmer, der bereits als Lipidsenker bei Patienten eingesetzt wird. Um die Hypothese zu überprüfen, daß diese Substanzen T-Zell-Rezeptor-Signale beeinflussen können, wurden humane Antigen-spezifische T-Zell-Linien von MS-Patienten und gesunden Probanden eingesetzt. Diese wurden hinsichtlich T-Helfer-Phänotyp und Peptid-Spezifität charakterisiert. Eine Behandlung mit TRAIL führte zur Hemmung der Proliferation in unterschiedlichem Ausmaß (6.2% - 63.8%). Atorvastatin hemmte in Abhängigkeit von der Dosis ebenso die Proliferation Antigen-spezifischer T-Zellen. Beide Substanzen wirkten antiproliferativ unabhängig von der Antigenpräsentation, aufgrund ihrer Fähigkeit, die Proliferation in Abwesenheit von professionellen Antigen-präsentierenden Zellen zu vermindern. Diese Eigenschaft weißt auf einen direkten Einfluß auf die T-Zell-Funktion hin. Die TRAIL-induzierte Hypoproliferation war assoziiert mit einer Herunterregulation der Zyklin-abhängigen Kinase CDK4 (engl.: cyclin dependent kinase 4), einem Schlüsselenzym für die nach T-Zell-Rezeptor-Stimulation einsetzende Transition von der G1- zur S-Phase des Zellzyklus. Inkubation mit Atorvastatin induzierte ebenso eine Verminderung von CDK4, begleitet von einer Erhöhung von p27Kip1. Die Atorvastatin-vermittelte Proliferations- und Zellzyklus-Blockade konnte durch Mevalonat rückgängig gemacht werden. Mevalonat ist ein Zwischenprodukt des HMG-CoA-Reduktaseweges. Atorvastatin scheint demnach einen direkten Einfluß auf diese Enzymkaskade zu haben, der wichtig für die Isoprenylierung von GTPase-Proteinen der Rho-Familie ist. T-Zell-Rezeptor-Stimulation führt zur Freisetzung von Kalzium aus intrazellulären Speichern und nachfolgend zur Öffnung transmembranöser Kalzium-Kanäle (sog. calcium release-activated calcium oder CRAC-Kanäle), die eine für die T-Zellaktivierung notwendige und anhaltende Erhöhung der intrazellulären Kalzium-Konzentration hervorruft. Nach Behandlung mit TRAIL wurde eine konzentrationsabhängige Inhibition des Einstroms extrazellulärer Kalzium-Ionen durch die CRAC-Kanäle beobachtet. Dies wurde mit löslichem TRAIL-Rezeptor-Fusionsprotein, einem TRAIL-Antagonisten, rückgängig gemacht. Die Blockade von Kalzium-abhängigen Aktivierungssignalen stellt damit möglicherweise einen primären immunregulatorischen Mechanismus für diese Todesliganden dar. Jedoch wurde keine Auswirkung von Atorvastatin auf die T-Zellaktivierung beobachtet, da der Einstrom von extrazellulärem Kalzium nicht beeinflußt wurde. Während Studien zum TRAIL-vermittelten Einfluß auf die T-Zell-Aktivierung und dem Zellzyklus erst in der präklinischen Phase sind, werden Statine, die ebenfalls den Zellzyklus beeinflussen, bereits in der Therapie anderer Erkrankungen angewand. Darüber hinaus werden derzeit bereits klinische Studien mit Statinen zur MS-Therapie durchgeführt. Weitere Untersuchungen zu den detaillierten Mechanismen antiproliferativer Substanzen mit potenziellem therapeutischen Effekt in der MS ermöglichen die Entwicklung von selektiveren immunomodulatorischen Therapien mit höherem therapeutischen Nutzen für MS-Patienten. / Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system whose pathological mechanisms are far from completely understood. The current hypothesis is that pro-inflammatory T cells are orchestrating the pathogenesis of this condition. It is considered that a dysregulation in T cell control to be involved, with an imbalance in apoptosis-regulating molecules possibly playing a role. In fact, therapeutic strategies aim to reduce T cell activation, proliferation and cytokine production or to promote T cell elimination. The focus of this thesis was to identify the role of regulatory molecules for T cell survival in the immune pathogenesis of MS, and to investigate antiproliferative or apoptosis-promoting effects on T cells by potential therapeutic molecules. A limitation in the apoptotic regulation of autoreactive T cells in the periphery and in the CNS may contribute to the pathophysiology of MS. As key regulators of apoptosis, members of the Bcl-2 family were investigated in both MS patients and controls. These factors were examined in relation to the susceptibility of T cells, from both groups, towards activation-induced cell death (AICD). To mimic the in vivo elimination of antigen-reactive T cells, an in vitro model of AICD involving repetitive T cell receptor mediated stimulation was utilized. In fact, polyclonal T cells from MS patients showed a decreased susceptibility to undergo AICD as shown by both caspase activity (p=0.013) and DNA fragmentation (p=0.0071) assays. Furthermore, Bcl-XL protein levels, as measured by immunoblotting, were increased in the peripheral immune cells of MS patients (p=0.014). An inverse correlation observed between Bcl-XL levels and susceptibility of T cells to undergo AICD is in line with previous data on the significance of this anti-apoptotic protein in T cell resistance. Since this molecule has already been shown to aggravate the outcome of experimental autoimmune encephalitis, the animal model for MS, the observation of elevated Bcl-XL levels in patients offers perspectives towards therapeutic manipulation in MS. Apart from promoting apoptotic elimination, current therapeutic strategies aim at inhibiting activation and further proliferation of potentially harmful T cells. Based on clinical experience with rather non-selective therapies that promote T cell elimination, a therapeutic goal is to identify newer immunomodulatory substances with better selectivity in order to maximize the therapy's benefit to risk ratio. Thus, two different substances, both interfering with cell cycle regulation, were investigated. The first candidate was the recently discovered member of the TNF/NGF family of death ligands, TNF-related apoptosis inducing ligand (TRAIL) since it has been reported to have immunoregulatory functions and since human antigen-specific T cells were shown to be resistant towards apoptosis induction by this ligand. The second candidate drug with potential in MS therapy is atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme (HMG-CoA) reductase inhibitor and lipid-lowering drug, already indicated for anomalies in lipid metabolism. In order to prove the hypothesis that these substances interfere with T cell receptor signaling, human antigen-specific T cell lines from both MS patients and controls, characterized with regards to T helper differentiation and peptide specificity, were employed. Exogenous treatment of TRAIL resulted in an inhibition in proliferation, albeit to varying degrees (6.2% - 63.8% inhibition). Atorvastatin also inhibited proliferation of antigen-specific T cell lines in a dose-dependent manner. Both compounds induced hypoproliferation independently of antigen presentation, as shown by their ability to block T cell proliferation in response to direct T cell receptor engagement, thus indicating a direct influence on T cell function. The growth inhibition by TRAIL was associated with a downregulation of the cell cycle regulator CDK4, indicative of an inhibition of cell cycle progression at the G1/S transition. Incubating T cells with atorvastatin also induced a downregulation of CDK4 expression, which was accompanied by an upregulation of p27Kip1 expression. The atorvastatin-mediated inhibition in proliferation and cell cycle progression could be reversed by mevalonate, an intermediate product of the HMG-CoA reductase pathway, suggesting a direct involvement of atorvastatin in this pathway, necessary for the isoprenylation of small GTPase proteins of the Rho family. Utilizing a thapsigargin model of calcium influx to activate the same calcium-release activated calcium (CRAC) channels as T cell receptor-stimulation by antigen, an inhibition in calcium influx could be observed on pre-incubating T cells with TRAIL. Co-incubating with human recombinant TRAIL receptor 2 fusion protein, a competitive antagonist for TRAIL, reversed this inhibition. A direct influence on calcium influx is indicative of an influence of TRAIL on the activation status of human T cells. Therefore, TRAIL directly inhibits activation of these cells via blockade of calcium influx. However, no impact of atorvastatin on early T cell activation was observed, since calcium influx was unaffected. While TRAIL-mediated interference with T cell activation and further cell cycle progression is still in the pre-clinical phase, statins, which have also been shown here to interfere with the T cell cycle, are already employed in the clinic for other ailments. In fact, clinical trials are currently being undertaken with this group of drugs for MS. Further studies on detailed mechanisms of antiproliferative substances effective in MS will allow the development of highly selective immunomodulatory agents with increased beneficial profile as MS therapy.

Page generated in 0.0286 seconds