• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 61
  • 35
  • 25
  • 13
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 1
  • 1
  • Tagged with
  • 388
  • 239
  • 64
  • 54
  • 52
  • 45
  • 42
  • 37
  • 34
  • 30
  • 28
  • 27
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Études de type structure fonction du couplage électromécanique et de la coopérativité sous-unitaire chez les canaux potassiques dépendants du voltage

Haddad, Georges A. 05 1900 (has links)
Les canaux potassiques voltage-dépendants forment des tétramères dont chaque sous-unité comporte six segments transmembranaires (S1 à S6). Le pore, formé des segments S5-S6 de chaque sous-unité, est entouré de quatre domaines responsables de la sensibilité au potentiel membranaire, les senseurs de voltage (VS; S1-S4). Lors d’une dépolarisation membranaire, le mouvement des résidus chargés situés dans le VS entraine un mouvement de charges détectable en électrophysiologie, le courant de « gating ». L’activation du VS conduit à l'ouverture du pore, qui se traduit par un changement de conformation en C-terminal du segment S6. Pour élucider les principes qui sous-tendent le couplage électromécanique entre ces deux domaines, nous avons étudié deux régions présumées responsables du couplage chez les canaux de type Shaker K+, soit la région carboxy-terminale du segment S6 et le lien peptidique reliant les segments transmembranaire S4-S5 (S4-5L). Avec la technique du « cut-open voltage clamp fluorometry » (COVCF), nous avons pu déterminer que l’interaction inter-sous-unitaire RELY, formée par des acides aminés situés sur le lien S4-5L et S6 de deux sous-unités voisines, est impliquée dans le développement de la composante lente observée lors du retour des charges de « gating » vers leur état de repos, le « OFF-gating ». Nous avons observé que l’introduction de mutations dans la région RELY module la force de ces interactions moléculaires et élimine l’asymétrie observée dans les courants de « gating » de type sauvage. D’ailleurs, nous démontrons que ce couplage inter-sous-unitaire est responsable de la stabilisation du pore dans l’état ouvert. Nous avons également identifié une interaction intra-sous-unitaire entre les résidus I384 situé sur le lien S4-5L et F484 sur le segment S6 d’une même sous-unité. La déstabilisation de cette interaction hydrophobique découple complètement le mouvement des senseurs de voltage et l'ouverture du pore. Sans cette interaction, l’énergie nécessaire pour activer les VS est moindre en raison de l’absence du poids mécanique appliqué par le pore. De plus, l’abolition du couplage électromécanique élimine également le « mode shift », soit le déplacement de la dépendance au voltage des charges de transfert (QV) vers des potentiels hyperpolarisants. Ceci indique que le poids mécanique du pore imposé au VS entraine le « mode shift », en modulant la conformation intrinsèque du VS par un processus allostérique. / Voltage-gated potassium channels are tetramers and each subunit is formed of six transmembrane segments (S1 to S6). The pore, formed by the S5-S6 segments of each subunit, is surrounded by four modules responsible for sensitivity to the membrane potential, the voltage sensors (VS, S1-S4). During membrane depolarization, the movement of charged residues located in the VS causes a detectable charge movement called the gating current. The activation of the VS led to the opening of the pore, resulting in a conformational change in the C-terminal segment of S6. To elucidate the principles underlying the electromechanical coupling between these two domains, we examined two regions presumed responsible for the coupling among channels of the Shaker K + family: the carboxy-terminal region of S6 and the peptide bond linking the transmembrane segments S4-S5 (S4-5L). Using the cut-open voltage clamp fluorometry (COVCF), we have determined that the RELY inter-subunit interaction, formed by amino acids located on the S4-5L linker and S6 of two neighboring subunits, is involved in the development of the slow component observed during the return of the gating charges (OFF-gating) to their resting state. The introduction of mutations in the RELY region modulates the strength of these molecular interactions and eliminates the asymmetry observed in the wild type gating currents. Moreover, we demonstrate that this inter-subunit coupling is responsible for stabilizing the pore in the open state. We have also identified an intra-subunit interaction between residues I384 located on the S4-5L linker and F484 on the S6 segment of the same subunit. The destabilization of this hydrophobic interaction uncouples completely the movement of voltage sensors from pore opening. Without this interaction, the energy required to activate the VS is diminished due to the absence of mechanical weight applied by the pore. Furthermore, this uncoupling also eliminates the "mode shift", defined as an amplified shift of the voltage dependence of gating charge (QV) to hyperpolarizing potentials during prolonged depolarization, thus indicating that the mechanical load of the pore influences the entry of the VS into this shifted mode by modulating the conformation of the VS threw an intrinsic allosteric process.
362

Mechanisms of amelioration of lipid-induced insulin resistance: role of AMP-activated protein kinase

Iglesias, Miguel Angel, University of New South Wales / Garvan Institute of Medical Research. Physiology & Pharmacology, UNSW January 2004 (has links)
Insulin resistance is an early marker of Type II diabetes. Excessive lipid accumulation in muscle and liver leads to insulin resistance, and lowering tissue lipids causes an enhancement of insulin action. The enzyme AMP-activated protein kinase (AMPK) is activated when cellular energy levels are compromised, such as during exercise; this enhances fuel oxidation and inhibits energy consuming processes. The hypothesis in this thesis was that activating AMPK in a lipid-induced insulin resistant state leads to tissue lipid reduction and improved insulin sensitivity. Insulin resistant high-fat fed (HF-) rats were administered 5-aminoimidazole-4-carboxamide-1-??-D-ribofuranoside (AICAR), a specific AMPK activator. During an euglycaemic hyperinsulinaemic clamp performed 24h later, HF-rats showed increased whole body, muscle and liver insulin action, independent of changes in PKB-phosphorylation. The liver had reduced triglycerides, malonyl-CoA and increased IkB-a content. A lowering of muscle malonyl-CoA was consistent with conditions favouring increased lipid utilisation. Normal, chow-fed rats also showed improved insulin action post-AICAR. Further studies showed that basal glucose uptake was not increased 24h after AICAR, suggesting that AMPK activation had caused an increase in insulin sensitivity. Diacylglycerols and triglycerides, but not ceramides, were reduced in the liver of AICAR treated HF-rats, suggesting lipid reduction as a likely mediator of enhanced liver insulin action. These lipid species were not reduced in muscle. AICAR administration to HF-rats lowered plasma glucose and fatty acids (FA) acutely, probably due to increased muscle glucose uptake and FA oxidation. Glycogen was reduced in liver and increased in muscle, suggesting glucose mobilisation from liver to muscle. Adrenergic blockade excluded the sympathetic nervous system in the acute AICAR effects. AMPK was activated in white muscle and liver of HF-rats immediately after AICAR, the same tissues that exhibited later improved insulin sensitivity. Tracer technologies used to investigate glucose and lipid fluxes showed that AMPK activation in white muscle simultaneously increased both glucose and FA uptake and their metabolism, with glucose also being stored as glycogen. The liver showed lower lipid synthesis, consistent with reduced liver lipid accumulation observed 24h post-AICAR. In conclusion, these results suggest that activation of AMPK leads to selective tissue lipid reduction and improved insulin action, and is a potential target for the treatment of insulin resistance and type II diabetes.
363

Heterogeneous Multiscale Change-Point Inference and its Application to Ion Channel Recordings

Pein, Florian 20 October 2017 (has links)
No description available.
364

HERG-BRET / Évaluation par la technologie BRET de l'interaction moléculaire avec le canal potassique Kv11.1 responsable d'arythmies ventriculaires médicamenteuses

Durette, Etienne 04 1900 (has links)
Le canal Kv11.1, dont l’inhibition occasionne une prolongation de l’intervalle QT, est directement impliqué dans des cas d’effets secondaires cardiotoxiques. Depuis 2006, Santé Canada exige que les nouvelles molécules et leurs métabolites soient évalués en phase préclinique pour le risque d’allongement de l’intervalle QT. La méthode de référence évalue l’électrophysiologie des cardiomyocytes en culture lors d’une courte exposition au médicament (<30min). Bien que cette méthode soit la plus fiable actuellement, elle permet seulement d’identifier les molécules qui bloquent directement le passage des ions dans le pore du canal (effet aigu). La méthode HERG-BRET vise à identifier les molécules susceptibles d’interagir avec le canal Kv11.1 par le moyen d’une altération du trafic vésiculaire (effet chronique). Ce type d’interaction est considéré comme un biomarqueur de la capacité à bloquer l’activité de ce canal. L’étude présentée tente de déterminer si un test de localisation cellulaire de hERG basé sur le BRET permettra un criblage à haut débit et une meilleure évaluation de l’affinité d’interaction avec hERG, comparativement aux méthodes alternatives actuelles. Dans le modèle HERG-BRET, la protéine hERG fusionnée à la luciférase de renilla (donneur d’énergie) est exprimée dans une lignée cellulaire HEK293. Cette même lignée exprime également une protéine verte fluorescente modifiée (accepteur d’énergie) qui est ancrée à la membrane plasmique. L’échange d’énergie entre le donneur et l’accepteur est un indice de la localisation de hERG à la membrane plasmique. Les fluctuations de ratio BRET suite à une exposition de 16h à un composé pharmaceutique reflètent donc l’effet du composé sur la translocation de Kv11.1. Vingt-cinq composés pharmaceutiques déjà caractérisés dans la littérature scientifique ont été testés : 12 ont été classés comme chaperons pharmacologiques, 4 comme inhibiteurs du trafic, 1 comme inhibiteur ayant les deux effets mentionnés et 8 n’ont pas pu être classés. Le comportement du biosenseur à l’égard des composés testés suggère que la méthode HERG-BRET ne peut pas être utilisée seule pour évaluer le risque cardiotoxique des médicaments. Toutefois, elle peut fournir des informations complémentaires pertinentes quand à la nature de l’interaction entre un composé pharmaceutique et la sous unité hERG du canal Kv11.1. / The Kv11.1 channel is directly involved in cardiotoxic adverse effects since its inhibition is responsible for a prolongation of the QT interval. In 2006, Health Canada established a guideline that constrains drug developers to a preclinical evaluation of QT prolongation risks for new molecules and their metabolites. The gold standard method (patch-clamp) consists in electrophysiology measurements on cultured cardiomyocytes for a brief exposition to the tested compound (<30min). Even though this method is the most reliable, it only allows the identification of molecules that inhibit the channel by preventing ions from traveling through the pore (acute effect). The HERG-BRET method aims to identify molecules that can interact with Kv11.1 and alter its vesicular transport as a proxy for inhibiting the activity of the channel (chronic effects). This study attemps to determine if a BRET-based cellular localization assay will allow a high throughput screening and a better evaluation of the affinity of pharmaceuticals compounds with hERG, in comparison to alternative methods. In the HERG-BRET model, a fusion protein generated with the gene sequence for hERG and the one for the renilla luciferase (energy donor) is stably expressed in a HEK 293 cell line. The same cell line also stably expresses a green fluorescent protein (energy acceptor) that is anchored at the plasma membrane. The energy transfer that occurs between the donor and the acceptor suggests that hERG is located at the membrane. Variations of BRET ratios following a 16 hours inucabtion with a compound reflects the compound’s effects on Kv11.1’s translocation. Twenty-five compounds that have been previously characterized in the literature were tested: 12 were categorized as pharmacological chaperones, 4 as traffic inhibitors, 1 as an inhibitor that undergoes both effects and 8 remain uncategorized. The biosensor’s behavior towards the tested compounds suggests that the HERG-BRET method cannot be used alone to assess cardiotoxic liability, but it can bring interesting facts to our attention regarding the nature of the interaction between the hERG subunits of Kv11.1 and a tested compound.
365

Pharmacological Modulation Of Recombinant Human Two-Pore Domain K+ Channels : Whole-Cell patch-Clamp Analysis

Harinath, S 10 1900 (has links) (PDF)
Background potassium currents play an important role in the regulation of the resting membrane potential and excitability of mammalian neurons. Recently cloned two- pore domain potassium channels (K2p) are believed to underlie these currents. The roles of K2P channels in general anesthesia and neuroprotection have been proposed recently. In view of this, we investigated the ability of trichloroethanol (an active metabolite of the non-volatile general anesthetic cldoral hydrate, widely used as a pediatric sedative) to modulate the activity of human TREK-1 and TRAAK channels. We found that trichloroethanol potently activates both hTREK-1 and hTRAAK channels at pharmacologically relevant concentrations. The parent compound chloral hydrate was also found to augtnent the activity of both the channels reversibly. Studies with carboxy- terminal deletion mutants (hTREK-1A89, hTREK-1 A100 and hTREK-1 A1 19), suggested that C-terminal tail is not essential for the activation of TREK-1 by trichloroethanol. Our findings identify TREK-1 and TRCL4K channels as molecular targets for trichloroethanol and we propose that activation of both these channels might contribute to the CNS depressant effects of chloral hydrate. Another channel TASK-2, which is essentially absent in the human brain was also found to be potently activated by both trichloroethanol and chloral hydrate. In another series of experiments, we studied the effects of methyl xanthines caffeine and theophylline on hTREK-1 channels. Caffeine and theophylline are used for therapeutic purposes and frequently cause life-threatening convulsive seizures due to systemic toxicity. The mechanisms for the epileptogenicity of caffeine and theophylline are not clear. Recent experiments using knockout mice provided direct evidence for a role for TREK-1 in the control of epileptogenesis. We hypothesized that the epileptogenicity of caffeine and theophylline may be related to the inhibition of TREK-1 channels. We investigated this possibility and observed massive inhibition of TREK-1 channels at toxicologically relevant concentrations. Experiments with the mutant TREK-1 channel (S348A mutant) suggested the involvement of cANP/PKA pathway in the inhibition of TREK-1 channels by caffeine and theophylline. We suggest that inhibition of TREK-1 channels may contribute to the convulsive seizures induced by toxic levels of caffeine and theophylline. Local anesthetics exhibit their clinical effects not only by binding to voltage-gated sodium channels, but also by interacting with other ion channels such as potassium channels. Because of the physiological significance of TREK-1 channels and their abundant expression in peripheral sensory neurons, we investigated the effects of lidocaine to see whether its interaction with 'REK-1 channels contribute to the conduction blockade. Lidocaine caused dose-dependent inhibition of TREK-1channels and the inhibition was voltage-independent. Cytoplasmic C-terminal tail is critically required for lidocaine action. Inhibition of TREK-1 channels is achieved at concentrations for iiz vivo action and this effect may have implications for the clinically observed drug action of lidocaine.
366

The Neural Substrate of Sex Pheromone Signalling in Male Goldfish (Carassius auratus)

Lado, Wudu E. January 2012 (has links)
The transmission of sex pheromone-mediated signals is essential for goldfish reproduction. However, the neural pathways underlying this reproductive signalling pathway in the goldfish brain is not well described. Lesioning experiments have shown previously that two brain areas, the preoptic area (POA) and the ventral telencephali pars ventralis (Vv) in particular, are important for reproduction. We used patch clamp electrophysiology to study the electrical activities of POA and Vv neurons. Based on the intrinsic properties of these neurons, we suggest there are five different functional classes of POA neurons and a single class of Vv neurons. In addition, by electrically stimulating the olfactory bulb (OB), we were able to show that this primary sensory structure makes monosynaptic glutamatergic connections with both POA and Vv neurons. While electrophysiology measures signalling events occurring at short time scales on the order of milliseconds to minutes, we were also interested in studying sex pheromone signalling in the goldfish brain over a long time scale. Thus, we describe changes in gene expression in male goldfish exposed to waterborne sex pheromones (17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha) over 6 hours. We perform cDNA microarrays on Prostaglandin-F2alpha-treated fish to study the rapid modulation of transcription and define the signalling pathways affected. Our microarrays showed that 71 genes were differentially regulated (67 up and 4 down). Through gene ontology enrichment analysis, we found that these genes were involved in various biological processes such as RNA processing, neurotransmission, neuronal development, apoptosis, cellular metabolism and sexual reproduction. RT-PCRs were performed to validate our microarrays and to facilitate direct comparisons of the effects of the two sex pheromones, 17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha. By combining electrophysiology and gene expression analyses, we were able to study sex-pheromone signalling on two different time scales. One short, occurring on the order of milliseconds to minutes, that involves electrical activities in the brain through the glutamatergic amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate receptors; and the other long occurring several hours later that involves changes in the gene expression levels of calmodulin and ependymin among other genes underlying neuroplasticity. Reproductive neuroplasticity in the goldfish may therefore require the activation of glutamatergic receptors which then activate downstream signals like calmodulin and ependymin to transform the sex pheromones-mediate signal into gene expression.
367

Molekulární mechanismus regulace signalizace kanabinoidního receptoru 1 proteinem SGIP1 / Molecular mechanism of Cannabinoid receptor 1 regulation by SGIP1

Dvořáková, Michaela January 2021 (has links)
Molecular mechanism of Cannabinoid receptor 1 regulation by SGIP1 Abstract Src homology 3-domain growth factor receptor-bound 2-like endophilin interacting protein 1 (SGIP1) has been identified as an interacting partner of cannabinoid receptor 1 (CB1R). Their protein-protein interaction was confirmed by co-immunoprecipitation. SGIP1 hinders the internalization of activated CB1R and modulates its signaling in HEK293 cells. Employing whole-cell patch-clamp electrophysiology, we have shown that SGIP1 affects CB1R signaling in autaptic hippocampal neurons. Using a battery of behavioral tests in SGIP1 constitutive knock-out (SGIP1-/- ) and WT mice, we investigated the consequences of SGIP1 deletion on behavior regulated by the endocannabinoid system. In SGIP1-/- mice, exploratory levels, working memory and sensorimotor gating were unaltered. SGIP1-/- mice showed decreased anxiety-like and depressive-like behaviors. Fear extinction to tone was enhanced in SGIP1-/- females. Several cannabinoid tetrad behaviors were altered in the absence of SGIP1. SGIP1-/- males exhibited abnormal THC withdrawal behaviors. SGIP1 deletion also reduced acute nociception, and SGIP1-/- mice were more sensitive to antinociceptive effects of CB1R agonists and morphine. CB1R-SGIP1 interaction results in profound modification of CB1R...
368

Quantitative analysis of the spontaneous activity and response profiles of odorant receptor neurons in larval Xenopus laevis using the cell-attached patch-clamp technique

Topci, Rodi 24 June 2020 (has links)
No description available.
369

Governing Dynamics of Divalent Copper Binding by Influenza A Matrix Protein 2 His37 Imidazole

McGuire, Kelly Lewis 04 August 2020 (has links)
Influenza A is involved in hundreds of thousands of deaths globally every year resulting from viral infection-related complications. Previous efforts to subdue the virus by preventing proper function of wild-type (WT) neuraminidase (N), and M2 proteins using oseltamivir and amantadine (AMT) or rimantadine (RMT), respectively, exhibited success initially. Over time, these drugs began exhibiting mixed success as the virus developed drug resistance. M2 is a proton channel responsible for the acidification of the viral interior which facilitates release of the viral RNA into the host. M2 has a His37-tetrad that is the selective filter for protons. This protein has been demonstrated to be a feasible target for organic compounds. However, due to a mutation from serine to asparagine at residue 31 of M2, which is found in the majority of influenza strains circulating in humans, AMT and RMT block is insufficient. From simulations, it is unclear whether the insensitivity results from weak binding or incomplete block. The question of how the S31N mutation caused MT and RMT insensitivity in M2 is addressed here by analyzing the binding kinetics of AMT and RMT using the two-electrode voltage clamp electrophysiology method. The dissociation rate constant (k2) is dramatically increased compared to WT for both AMT and RMT, by 1500-fold and 17000-fold respectively. Testing of AMT at 10 mM demonstrates complete block, albeit weak, of the S31N M2 channel. At 10 mM, RMT does not reach complete block even though the binding site is saturated. When RMT is in the bound state, it is not blocking all the current, and is binding without block. These results motivated the development of novel M2 blockers using copper complexes focusing on the His37 complex in M2. I hypothesized that copper complexes would bind with the imidazole of a histidine in the His37 complex and prevent proton conductance. The His37 complex is highly conserved in the M2 channel and, therefore, would be important target for influenza therapeutics. By derivatizing the amines of known M2 blockers, AMT and cyclooctyalmine, to form the iminodiacetate or iminodiacetamide, we have synthesized Cu(II) containing complexes and characterized them by NMR, IR, MS, UV–vis, and inductively coupled plasma mass spectroscopy (ICP-MS). The copper complexes, but not the copper-free ligands, demonstrated H37-specific blocking of M2 channel currents and low micromolar anti-viral efficacies in both Amt-sensitive and Amt-resistant IAV strains with, for the best case, nearly 10-fold less cytotoxicity than CuCl2. Isothermal titration calorimetry was used to obtain enthalpies that showed the copper complexes bind to one imidazole and curve fitting to the electrophysiology data provided rate constants for binding in the M2 channel. Computational chemistry was used to obtain binding geometries and energies of the copper complexes to the His37-tetrad. The results show that the copper complexes do bind with the His37 complex and prevent proton conductance and influenza infection.
370

Rôle de la somatostatine dans la plasticité synaptique des interneurones somatostatinergiques de l’hippocampe

Racine, Anne-Sophie 04 1900 (has links)
Dans la région CA1 de l’hippocampe, une population d’interneurones exprimant la somatostatine (SOM-INs) est reconnue pour une potentialisation à long terme (PLT) dépendante des récepteurs métabotropes du glutamate de type 1a (mGluR1a) à leurs synapses excitatrices provenant des cellules pyramidales (CP). Il a récemment été démontré que cette PLT est induite par l’apprentissage contextuel lié à la peur, illustrant l’importance de cette PLT des SOM-INs dans l’apprentissage et la mémoire. Cependant, l’implication du neuropeptide somatostatine (SST) dans cette PLT demeure inconnue. Dans la présente étude, le rôle de la SST dans la PLT dépendante des mGluR1a a été étudié, tout comme, l’effet de la somatostatine-14 (SST-14) exogène aux synapses excitatrices des SOM-INs. Pour ce faire, des souris transgéniques exprimant la « enhanced yellow fluorescent protein » (eYFP) sous le contrôle du promoteur de la SST ont été utilisées. Des enregistrements électrophysiologiques jumelés à une approche pharmacologique ont été réalisés sur ces souris. Les résultats suggèrent que la SST-14 exogène engendre une PLT persistante grâce aux récepteurs à la somatostatine 1-5 (SST1-5), aux synapses excitatrices des SOM-INs, mais n’affecte pas les synapses des CP ou bien des interneurones exprimant la parvalbumine (PV-INs). Cette potentialisation induite par SST-14 était indépendante des récepteurs à l’acide N-méthyl-D-aspartique (NMDAR) et mGluR1a, dépendante de l’activité synaptique concomitante et inhibée par le blocage des récepteurs GABAA. De plus, la PLT dépendante des récepteurs mGluR1a a été affectée par l’inhibition des SST1-5 ou bien par un traitement avec de la cystéamine suggérant un rôle pour de la SST endogène dans cette PLT. Nos résultats suggèrent que la SST endogène pourrait contribuer à la PLT hébbienne aux synapses excitatrices des SOM-INs en contrôlant l’inhibition GABAA. La SST aurait alors un rôle dans la modulation de la plasticité à long terme des SOM-INs qui pourrait être important dans la mémoire dépendante de l’hippocampe. / The CA1 region of the hippocampus includes a population of GABAergic interneurons expressing somatostatin (SOM-INs). This type of interneurons displays a long-term potentiation (LTP) dependant on type 1a metabotropic glutamate receptors (mGluR1a) at their excitatory synapses from pyramidal cells (PC). It was recently demonstrated that mGluR1a dependent LTP can be induce by contextual fear learning showing an important role of this LTP in learning and memory. However, the implication of the peptide somatostatin (SST) in this LTP remains unknown. In the present study, the role of SST in mGluR1 dependent LTP and the effect of exogenous somatostatin-14 (SST-14) onto excitatory synapses of SOM-INs were investigated. To do this, transgenic mice expressing enhanced yellow fluorescent protein (eYFP) under the control of the promoter of SST were used. Patch clamp recordings and pharmacological approaches were used with these mice. Results suggested that application of exogenous SST-14 induces a LTP through type 1-5 somatostatin receptors (SST1-5) of excitatory synapses of SOM-INs but does not affect synapses of PC or parvalbumin-expressing interneurons (PV-INs). This LTP induced by SST-14 was independent of N-methyl-D-aspartate receptor (NMDAR) and mGluR1a, activity dependent, and prevented by blocking GABAA receptors. Furthermore, mGluR1a dependent LTP was prevented by inhibition of SST1-5 and by depletion of SST by cysteamine treatment, suggesting a role of endogenous SST in LTP. Our results indicate that endogenous SST may contribute to Hebbian LTP at excitatory synapses by controlling GABAA inhibition. SST would then have a role in regulating SOM-INs LTP that may be important for hippocampus dependent memory processes.

Page generated in 0.1898 seconds