• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 23
  • 10
  • Tagged with
  • 76
  • 76
  • 40
  • 39
  • 29
  • 25
  • 25
  • 22
  • 22
  • 19
  • 19
  • 19
  • 18
  • 16
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Thermographie et mesures de concentrations multi-espèces par diffusion Raman spontanée pour la combustion turbulente / Thermography and multi-species concentrations measurements by spontaneous Raman scattering for turbulent combustion

Ajrouche, Hassan 08 July 2016 (has links)
Les diagnostics lasers ont prouvé leur potentiel pour l'analyse des écoulements et des phénomènes de combustion par la mesure de champs de vitesses, de concentration d'espèces et de température. La diffusion Raman spontanée (DRS) est une des rares méthodes permettant de mesurer la température et la concentration de manière in-situ avec la possibilité de sonder plusieurs espèces simultanément. L'analyse des flammes turbulentes par DRS est difficile en raison de la nécessité de mesures mono-coup avec de fortes résolutions spatiales et temporelles et de la présence de lumière parasite. L'originalité de notre nouveau dispositif de mesure réside dans l'utilisation d'un obturateur électro-optique à base de cellule de Pockels (OCP), permettant d'éliminer les lumières non polarisées de fond de flamme, compatible avec une mesure 1D. Une réduction significative de l'émission de flamme et une amélioration du rapport signal sur bruit des espèces Raman actives ont été obtenues. La capacité de la DRS en tant que méthode de thermométrie mono-coup a été testée avec succès dans le cas d'une flamme de prémélange et de diffusion laminaire fuligineuse. L'écart relatif entre les températures moyennes mesurées dans les gaz brûlés et celles données par la modélisation de flamme est inférieur à 1 %. L'analyse de la thermométrie Raman à basse température a montré qu'une meilleure précision était obtenue avec la modélisation de 02 comparée à celle N2. Par la suite, le potentiel de la DRS à fournir des mesures simultanées de concentrations instantanées de N2, 02 et CO dans les flammes a été validé. Une évaluation des performances de différents détecteurs CCD accompagnés de l'OCP a également été réalisée. Les résultats obtenus avec la BI-CCD et la BI-EMCCD pour la température, le gradient de température et la forte densité sont en bon accord avec les calculs laminaires 1D de flamme adiabatique fournis par COSILAB. La BI-EMCCD a montré qu'elle est le détecteur le plus sensible pour la détection des espèces à faibles concentrations comme le CO. Enfin, des mesures par DRS ont été obtenues dans une flamme-jet de diffusion turbulente, en présence des suies illustrant le potentiel de cette technique pour construire une base de données importante pour la modélisation numérique des flammes / Laser diagnostics have been proven to be an indispensable tool to analyze the flow and combustion phenomena by allowing non-intrusive measurements of the velocity field, concentration and temperature. Spontaneous Raman Scattering (SRS) is one of the few methods providing simultaneously in-situ temperature and multi-species concentrations. Measurement in turbulent flames by SRS is still challenging due to the emission background and the requirement of single-shot measurements with high spatial and temporal resolutions. The originality of the present approach consists in use of a large aperture Pockels cell based electro-optical shutter (PCS), that allows removing unpolarised background flame emission and compatible with a 1D measurement. A significant reduction of flame emission was observed and consequently signal to noise ratio was enhanced. The ability of SRS in terms of thermometric single-shot method was demonstrated successfully in premixed laminar flames and sooty laminar diffusion flames. The measured temperature in burnt gases and those calculated by adiabatic flame modelling was within 1 %. Thermometric Raman analysis for low temperatures demonstrates the reliability of measurements, with a better accuracy for 02 compared to N2. Subsequently, the ability of SRS technique to simultaneously measure instantaneous concentrations of N2, 02 and CO was demonstrated. The ability to measure single-shot scalar values accurately is assessed by comparing different CCD detectors with the PCS. The results obtained from the BI-CCD and the BI-EMCCD concerning temperature, temperature gradient and high density were in good agreement with the COSILAB calculation for 1D laminar adiabatic flame. The BI-EMCCD observed to be the most sensitive in detecting low concentration elements like CO. Finally, SRS technique was applied to a turbulent sooting jet flame, illustrating the potentiel of this technique to build an important database for flame modelling
62

Mesures 1D mono-coups multi-espèces de température et de concentration par ajustement de spectres de diffusion Raman spontanée : application dans les flammes aérobies et les oxyflammes turbulentes / 1D single-shot multi-species temperature and number density measurements by Spontaneous Raman Scattering spectral fitting : application in turbulent air and oxyfuel flames

Guichard, Florestan 19 December 2018 (has links)
Les progrès technologiques des dispositifs expérimentaux ainsi que les récentes avancées pour la simulation des spectres Raman à haute température rendent aujourd’hui possible la mise en oeuvre d’une technique de mesures multi-espèces de température et de concentration uniquement fondée sur l’ajustement des spectres mono-coups de diffusion Raman spontanée collectés au sein des flammes turbulentes. Dans cette étude, cette stratégie de post-traitement, associée à une chaîne de mesure spécifique, est développée selon plusieurs axes pour permettre l’extension des mesures à des cas de flammes ordinairement hostiles aux mesures classiques Rayleigh/Raman résolues par inversion matricielle ou par méthode hybride. Dans une flamme diphasique d’éthanol, une thermométrie fondée sur l’ajustement des spectres de N2 a été mise en place afin de s’affranchir des contraintes liées à la diffusion de Mie des gouttes. L’intégration d’une thermométrie Raman à partir du spectre du méthane ainsi que d’une procédure de minimisation de l’émission de C2 dans le post-traitement des spectres ont permis la réalisation de cartographies multi-scalaires (température et toutes espèces majoritaires) dans toute la zone de recirculation d’une flamme turbulente légèrement fuligineuse générée par un brûleur bluff-body. Une thermométrie fondée sur la minimisation du spectre Raman de CO2 a également été développée et éprouvée au cours d’une campagne de mesures dans une installation d’échelle semi-industrielle reproduisant les conditions d’oxycombustion des cycles de turbines à gaz dans l’objectif de la capture et de la séquestration du CO2. / Recent progress in experimental devices and simulation of high-temperature Raman spectra enable the implementation of a spectral fitting method to solve single-shot Spontaneous Raman Scattering spectra collected in turbulent flames. In this study, this post-processing method, associated to a specific experimental set-up, has been developed to extend measurements to several cases of non-Raman friendly flames where matrix inversion or hybrid methods are usually limited. In a two-phase flame, N2 Raman thermometry has been used to overcome issues from Mie scattering of droplets. The implementation of a CH4 Raman thermometry and a minimization procedure of C2 emission in the data post-processing allowed the achievement of multi-scalar cartographies (temperature and all major species) throughout the recirculation zone of a slightly sooting turbulent flame stabilized on a bluff-body burner. A thermometry based on the minimization of CO2 Raman spectrum has also been developed and tested during a measurement campaign in a semi-industrial scale installation designed for the study of oxyfuel gas turbine cycle in the aim of carbon capture and sequestration.
63

Mécanismes chimiques virtuels optimisés pour la prédiction des polluants dans des flammes turbulentes / Virtual chemical mechanisms optimized to capture pollutant formation in turbulent flames

Cailler, Mélody 08 October 2018 (has links)
La nature conflictuelle des contraintes de performances, d'opérabilité et de respect des normes environnementales conduit les motoristes à optimiser finement la géométrie du brûleur afin d'identifier le meilleur design.La Simulation aux Grande Echelles (SGE) est aujourd'hui un outil performant et est déployé de manière courante dans les Bureaux d'Etudes pour la prédiction des propriétés macroscopiques de l'écoulement.Toutefois, de nombreux phénomènes influencés par les effets de chimie complexe, tels que la stabilisation, l'extinction de flamme et la formation des polluants, reste un problème crucial.En effet, la description des effets de chimie complexe nécessite l'utilisation de modèles cinétiques détaillés imposant des coûts de calculs prohibitifs, des problèmes de raideurs numérique et des difficultés de couplage avec les échelles non résolues turbulentes.Afin d'inclure une description des processus chimiques, dans les simulations numériques de chambres de combustion réelles, des modèles réduits doivent être proposés.Dans cette thèse, une méthode originale, appelée chimie virtuelle optimisée, est développée.Cette stratégie a pour objectif la description de la structure chimique de la flamme et la formation des polluants dans des configurations de flamme représentatives.Les schémas cinétiques virtuels optimisés, composés de réactions virtuelles et d'espèces virtuelles, sont construits par optimisation des paramètres réactionnels et des propriétés thermochimiques des espèces virtuelles afin de capturer les propriétés de flamme d'intérêt. / The conflicting nature of performance, operability and environmental constraints leads engine manufacturers to perform a fine optimization of the burner geometry to find the best design compromise.Large Eddy Simulation (LES) is an attractive tool to achieve this challenging task, and is routinely used in design office to capture macroscopic flow features.However, the prediction of phenomena influenced by complex kinetic effects, such as flame stabilization, extinction and pollutant formation, is still a crucial issue.Indeed, the comprehensive description of combustion chemistry effects requires the use of detailed models imposing prohibitive computational costs, numerical stiffness and difficulties related to model the coupling with unresolved turbulent scales.Reduced-cost chemistry description strategies must then be proposed to account for kinetic effects in LES of real combustion chambers.In this thesis an original modeling approach, called virtual optimized chemistry, is developed.This strategy aims at describing the chemical flame structure and pollutant formation in relevant flame configurations, at a low computational cost.Virtual optimized kinetic schemes, composed by virtual reactions and virtual species, are built through optimization of both kinetic rate parameters and virtual species thermo-chemical properties so as to capture reference target flame quantity.
64

Simulation numérique instationnaire de la combustion turbulente au sein de foyers aéronautiques et prédiction des émissions polluantes / Unstationnary numerical simulations of turbulent combustion inside aeronautical burners and pollutant formation modeling

Savre, Julien 26 January 2010 (has links)
Afin de pouvoir simuler la formation des principaux polluants au sein de foyers aéronautiques réalistes, un modèle de réduction de la chimie détaillée (FPI), basé sur la construction de tables à partir de calculs de flammes de prémélange laminaires élémentaires, est adapté et couplé au code d’aérothermochimie CEDRE de l’ONERA. Après une brève validation de ce modèle via la simulation de flammes laminaires canoniques, les interactions chimie/turbulence sont modélisées sous l’hypothèse des flammelettes, en approchant les PDF des paramètres d’entrée des tables par des fonctions beta. Cette approche complète est appliquée à la simulation numérique de l’écoulement au sein d’une configuration plus appliquée : la chambre PRECCINSTA. Ce cas bien connu a permis notamment l’évaluation des capacités du modèle dans un contexte plus industriel par comparaison des résultats de calcul aux données expérimentales disponibles. Il a en particulier permis de tester l’approche FPI étendue à la modélisation de la combustion partiellement prémélangée. Par ailleurs, l’utilisation d’un modèle de chimie réduite s’avère particulièrement appropriée pour prédire l’émission de substances polluantes, par exemple CO. Cependant, lorsque l’on considère la formation de NO, FPI ne peut pas être utilisé directement du fait de la lente dynamique chimique de cette espèce.Pour pallier à cette limitation, deux approches permettant de modéliser la production de NO au sein d’écoulements complexes sont proposées, fondées sur l’utilisation des tables chimiques FPI. Les capacités de ces modèles sont finalement analysées à l’aide de calculs effectués sur la configuration PRECCINSTA. / In order to simulate major pollutant formation inside realistic aeronautical combustion chambers, a detailed chemistry reduction technique (FPI), based on the construction of databases from elementary laminar premixed flame calculations, is adapted and coupled to the ONERA household CFD code : CEDRE. After a short validation of this model based on the numerical simulation of simplified laminar flames, the chemistry turbulence interactions are modeled under the laminar flamelet hypothesis, by assuming the shape of the FPI progress variable PDFs using beta functions. This comprehensive approach is then applied to the numerical simulation of the flow inside a realistic geometry :the PRECCINSTA combustion chamber. This well-known configuration has enabled the evaluation of the model’s abilities within an industrial framework using numerical/experimental results comparisons. It has especially allowed to test an extension of the model to partially premixed combution. Furthermore, the use of a tabulated chemistry model turns out to be particularly appropriate to predict pollutant species formation such as CO. However, when considering the formation of nitrogen oxides,FPI cannot be applied directly because of the slow dynamics of the chemical processes involved. Toovercome these limitations, two approaches allowing NO production modeling within complexe flowsare proposed, derived from the use of the tabulated data. The capacities of these models are finally analysed using computations performed on the PRECCINSTA chamber.
65

Simulation aux Grandes Echelles et chimie complexe pour la modélisation de la structure chimique des flammes turbulentes / Large Eddy Simulations and complex chemistry for modeling the chemical structure of turbulent flames

Mehl, Cédric 12 June 2018 (has links)
La Simulation aux Grandes Echelles (SGE) est appliquée à des brûleurs industriels pour prédire de nombreux phénomènes physiques complexes, tel que l’allumage ou la formation de polluants. La prise en compte de réactions chimiques détaillées est alors indispensable pour obtenir des résultats précis. L’amélioration des moyens de calculs permet de réaliser des simulations de brûleurs avec une chimie de plus en plus détaillée. La principale problématique est le couplage entre les réactions chimiques et l’écoulement turbulent. Bien que la dynamique de flamme soit souvent bien reproduite avec les modèles actuels, la prédiction de phénomènes complexes comme la formation de polluants reste une tâche difficile. En particulier, des études ont montré que l’influence du plissement de sous-maille sur la structure chimique des flammes n’était pas prise en compte de manière précise. Deux modèles basés sur le filtrage explicite des fronts de flammes sont étudiés dans cette thèse afin d’améliorer la prédiction de polluants en combustion turbulente prémélangée : (i) le premier modèle met en jeu une méthode de déconvolution des variables filtrées ; (ii) le second modèle implique l’optimisation de la chimie pour obtenir des flammes turbulentes filtrées. L’objectif de la thèse est d’obtenir une prédiction précise des polluants à coût de calcul réduit. / Large Eddy Simulation (LES) is applied to industrial burners to predict a wide range of complex physical phenomena, such as flame ignition and pollutants formation. The prediction accuracy is tightly linked to the ability to describe in detail the chemical reactions and thus the flame chemical structure. With the improvement of computational clusters, the simulation of industrial burners with detailed chemistry becomes possible. A major issue is then to couple detailed chemical mechanisms to turbulent flows. While the flame dynamics is often correctly simulated with stateof- the-art models, the prediction of complex phenomena such as pollutants formation remains a difficult task. Several investigations show that, in many models, the impact of flame subgrid scale wrinkling on the chemical flame structure is not accurately taken into account. Two models based on explicit flame front filtering are explored in this thesis to improve pollutants formation in turbulent premixed combustion: (i) a model based on deconvolution of filtered scalars; (ii) a model involving the optimization of chemistry to reproduce filtered turbulent flames. The objective of the work is to achieve high accuracy in pollutants formation prediction at low computational costs.
66

Impact de la description chimique dans la Simulation Numerique Directe et la Simulation aux Grandes Echelles pour la combustion turbulente des foyers aéronautiques.

Franzelli, Benedetta Giulia 19 September 2011 (has links) (PDF)
Le développement de nouvelles technologies pour le transport aérien moins polluant est de plus en plus basé sur la simulation numérique, qui nécessite alors une description fiable de la chimie. Pour la plupart des carburants, la description de la combustion nécessite des mécanismes détaillés mais leur utilisation dans une simulation numérique de combustion turbulente est limitée par le coût calcul. Des mécanismes cinétiques réduits et des méthodes de tabulation ont été proposés pour surmonter ce problème. Ces descriptions chimiques simplifiées ayant été développées dans le cadre de configurations laminaires, cette thèse propose de les évaluer dans des configurations turbulentes: une DNS de flamme prémélangée méthane/air de type Bunsen et une LES d'un brûleur expérimental. Les mécanismes sont analysés en termes de structure de flamme, paramètres de flamme globaux, longuer de flamme, prediction des concentrations en espèces majoritaires et des émissions polluantes. Une méthodologie pour évaluer a priori la capacité d'un mécanisme à prédire correctement des phénomènes chimiques tridimensionnels est proposée en se basant sur les résultats de flammes laminaires monodimensionnelles non étirées et étirées. Il ressort que, d'une part, pour construire un mécanisme réduit, il est nécessaire de faire un compromis entre coût calcul, robustesse et qualité des résultats. D'autre part, la qualité des résultats de DNS et LES de configurations tridimensionnelles turbulentes peut être anticipée par une analyse du comportement des schémas réduits dans des configurations simplifiées de flammes monodimensionnelles laminaires non étirées et étirées.
67

Modèles de flammelette en combustion turbulente avec extinction et réallumage : étude asymptotique et numérique, estimation d’erreur a posteriori et modélisation adaptative

Turbis, Pascal 01 1900 (has links)
On s’intéresse ici aux erreurs de modélisation liées à l’usage de modèles de flammelette sous-maille en combustion turbulente non prémélangée. Le but de cette thèse est de développer une stratégie d’estimation d’erreur a posteriori pour déterminer le meilleur modèle parmi une hiérarchie, à un coût numérique similaire à l’utilisation de ces mêmes modèles. Dans un premier temps, une stratégie faisant appel à un estimateur basé sur les résidus pondérés est développée et testée sur un système d’équations d’advection-diffusion-réaction. Dans un deuxième temps, on teste la méthodologie d’estimation d’erreur sur un autre système d’équations, où des effets d’extinction et de réallumage sont ajoutés. Lorsqu’il n’y a pas d’advection, une analyse asymptotique rigoureuse montre l’existence de plusieurs régimes de combustion déjà observés dans les simulations numériques. Nous obtenons une approximation des paramètres de réallumage et d’extinction avec la courbe en «S», un graphe de la température maximale de la flamme en fonction du nombre de Damköhler, composée de trois branches et d’une double courbure. En ajoutant des effets advectifs, on obtient également une courbe en «S» correspondant aux régimes de combustion déjà identifiés. Nous comparons les erreurs de modélisation liées aux approximations asymptotiques dans les deux régimes stables et établissons une nouvelle hiérarchie des modèles en fonction du régime de combustion. Ces erreurs sont comparées aux estimations données par la stratégie d’estimation d’erreur. Si un seul régime stable de combustion existe, l’estimateur d’erreur l’identifie correctement ; si plus d’un régime est possible, on obtient une fac˛on systématique de choisir un régime. Pour les régimes où plus d’un modèle est approprié, la hiérarchie prédite par l’estimateur est correcte. / We are interested here in the modeling errors of subgrid flamelet models in nonpremixed turbulent combustion. The goal of this thesis is to develop an a posteriori error estimation strategy to determine the best model within a hierarchy, with a numerical cost at most that of using the models in the first place. Firstly, we develop and test a dual-weighted residual estimator strategy on a system of advection-diffusion-reaction equations. Secondly, we test that methodology on another system of equations, where quenching and ignition effects are added. In the absence of advection, a rigorous asymptotic analysis shows the existence of many combustion regimes already observed in numerical simulations. We obtain approximations of the quenching and ignition parameters, alongside the S-shaped curve, a plot of the maximal flame temperature as a function of the Damköhler number, consisting of three branches and two bends. When advection effects are added, we still obtain a S-shaped curve corresponding to the known combustion regimes. We compare the modeling errors of the asymptotic approximations in the two stable regimes and establish new model hierarchies for each combustion regime. These errors are compared with the estimations obtained by using the error estimation strategy. When only one stable combustion regime exists, the error estimator correctly identifies that regime; when two or more regimes are possible, it gives a systematic way of choosing one regime. For regimes where more than one model is appropriate, the error estimator’s predicted hierarchy is correct.
68

Diffusion raman spontanée pour la combustion turbulente et les plasmas

Lo, Amath 03 July 2012 (has links) (PDF)
Du fait de sa faible efficacité, la diffusion Raman spontanée reste une méthode encore peu utilisée pour l'analyse des écoulements réactifs, en particulier s'ils sont instationnaires comme la combustion turbulente ou les décharges impulsionnelles. Pour de telles situations, une chaîne de mesure a été développée, associée à des procédures d'analyse spécifiques. Cette chaîne de mesure a été évaluée dans deux situations : une flamme de prémélange et une décharge nanoseconde envisagée comme nouveau procédé d'allumage. Les mesures réalisées démontrent la richesse et la nouveauté des résultats que peut apporter la diffusion Raman spontanée pour l'analyse d'écoulements réactifs complexes. La décharge est générée en configuration pointe-plan dans l'air et dans un mélange pauvre de propane-air grâce à l'application à la pointe d'une haute de tension positive de 25 KV d'amplitude et 25 ns de largeur à mi-hauteur à la fréquence de 10 Hz. La modélisation des spectres expérimentaux de diffusion Raman spontanée par les spectres synthétiques minimisés, en prenant en compte le hors-équilibre vibrationnel et les couplages rotation-vibration, a permis d'obtenir les températures de vibration et rotation de N2 et O2 durant la post-décharge d'air et propane-air. L'étude du dépôt d'énergie effectuée à partir des mesures de températures et de densités d'espèces majoritaires a permis de caractériser les différents processus de transferts d'énergie qui se produisent lors de l'allumage par décharge nanoseconde. La faisabilité des mesures de températures instantanées pour la combustion turbulente par diffusion Raman spontanée a ensuite été explorée sur des flammes laminaires de méthane-air obtenues sur un brûleur de type bec Bunsen. Dans les gaz brûlés de la flamme la température instantanée est obtenue avec une très bonne précision. Dans les deux situations étudiées, la qualité de la mesure de température est obtenue grâce notamment à une procédure de détermination in-situ de la fonction d'appareil et évaluée par une méthode de détermination des incertitudes. Les résultats permettent d'envisager des mesures simultanées de températures instantanées et de densités d'espèces majoritaires avec le même dispositif expérimental ouvrant ainsi des perspectives intéressantes pour l'analyse d'autres écoulements réactifs.
69

Large Eddy Simulation of the combustion and heat transfer in sub-critical rocket engines / Prédiction des flux thermiques dans les moteurs fusée

Potier, Luc 24 May 2018 (has links)
La combustion cryogénique dans les moteurs de fusée dits à propulsion liquide utilise généralement un couple d'ergols, le plus couramment composé d'hydrogène/oxygène (H2/O2). Privilégiée pour le fort pouvoir calorifique du dihydrogène, cette combustion à haute pression, induit des températures de fonctionnement très élevées et nécessite l'intégration d'un système de refroidissement. La prédiction des flux thermiques aux parois est donc un élément essentiel de la conception d'une chambre de combustion de moteur fusée. Ces flux sont le résultat d'écoulements fortement turbulents, compressibles, avec une cinétique chimique violente induisant de forts gradients d'espèces et de température. La simulation de ces phénomènes nécessite des approches spécifiques telles que la Simulation aux Grandes Echelles (SGE) qui réalise un très bon compromis entre précision et coût de calcul. Cette thèse a ainsi pour objectif la simulation par SGE des transferts de chaleur aux parois dans les chambres de combustion de moteurs fusée opérant en régime sous-critique. Le régime sous-critique implique un état liquide pour un des ergols, dont il faut traiter l'injection et l'atomisation. Dans un premier temps ce travail s'intéresse à plusieurs éléments de modélisation nécessaire pour réaliser les simulations visées. Le comportement des flammes H2/O2 est décrit par un schéma cinétique réduit et validé sur des configurations académiques. La prédictivité de ce schéma est évaluée sur une large gamme de fonctionnement dans des conditions représentatives des moteurs fusée. La simulation de l'injection de l'oxygène liquide (LOx) est un autre point critique qui nécessite de décrire l'atomisation et la phase dispersée ainsi que son couplage avec la phase gazeuse. La déstabilisation et l'atomisation primaire du jet liquide, trop complexe à simuler en SGE 3D, sont omises ici pour injecter directement un spray paramétré grâce à des corrélations empiriques. Enfin, la prédiction des flux thermiques utilise un modèle de loi de paroi spécifiquement dédiée aux écoulements à fort gradient de température. Cette loi de paroi est validée sur des configurations de canaux turbulents par comparaison avec des simulations avec résolution directe de la couche limite. La méthodologie basée sur les modèles développés est ensuite employée pour la simulation d'une chambre de combustion représentative du fonctionnement des moteurs cryogéniques. Il s'agit de la configuration CONFORTH testée sur le banc MASCOTTE (ONERA) et pour laquelle des mesures de température de paroi et de flux thermiques sont disponibles. Les résultats des SGE montrent un bon accord avec l'expérience et démontrent la capacité de la SGE à prédire les flux thermiques dans une chambre de combustion de moteur fusée. Enfin, dans un dernier chapitre ce travail s'intéresse à une méthode d'augmentation des transferts thermiques via une expérience de JAXA utilisant des parois rainurées dans la direction axiale. Par comparaison avec une chambre à parois lisses, les résultats démontrent la bonne prédiction par la SGE de l'augmentation du flux de chaleur grâce aux rainures et confirment la validité de la méthode développée pour des géométries de paroi complexes. / Combustion in cryogenic engines is a complex phenomenon, involving either liquid or supercritical fluids at high pressure, strong and fast oxidation chemistry, and high turbulence intensity. Due to extreme operating conditions, a particularly critical issue in rocket engine is wall heat transfer which requires efficient cooling of the combustor walls. The concern goes beyond material resistance: heat fluxes extracted through the chamber walls may be reused to reduce ergol mass or increase the power of the engine. In expander-type engine cycle, this is even more important since the heat extracted by the cooling system is used to drive the turbo-pumps that feed the chamber in fuel and oxidizer. The design of rocket combustors requires therefore an accurate prediction of wall heat flux. To understand and control the physics at play in such combustor, the Large Eddy Simulation (LES) approach is an efficient and reliable numerical tool. In this thesis work, the objective is to predict wall fluxes in a subcritical rocket engine configuration by means of LES. In such condition, ergols may be in their liquid state and it is necessary to model liquid jet atomization, dispersion and evaporation.The physics that have to be treated in such engine are: highly turbulent reactive flow, liquid jet atomization, fast and strong kinetic chemistry and finally important wall heat fluxes. This work first focuses on several modeling aspects that are needed to perform the target simulations. H2/O2 flames are driven by a very fast chemistry, modeled with a reduced mechanism validated on academic configurations for a large range of operating conditions in laminar pre- mixed and non-premixed flames. To form the spray issued from the atomization of liquid oxygen (LOx) an injection model is proposed based on empirical correlations. Finally, a wall law is employed to recover the wall fluxes without resolving directly the boundary layer. It has been specifically developed for important temperature gradients at the wall and validated on turbulent channel configurations by comparison with wall resolved LES. The above models are then applied first to the simulation of the CONFORTH sub-scale thrust chamber. This configuration studied on the MASCOTTE test facility (ONERA) has been measured in terms of wall temperature and heat flux. The LES shows a good agreement compared to experiment, which demonstrates the capability of LES to predict heat fluxes in rocket combustion chambers. Finally, the JAXA experiment conducted at JAXA/Kakuda space center to observe heat transfer enhancement brought by longitudinal ribs along the chamber inner walls is also simulated with the same methodology. Temperature and wall fluxes measured with smooth walls and ribbed walls are well recovered by LES. This confirms that the LES methodology proposed in this work is able to handle wall fluxes in complex geometries for rocket operating conditions.
70

Modélisation 0D pour la combustion dans les moteurs à allumage commandé : développements en proche paroi et dans le front de flamme / 0D Modeling for combustion in SI Engines : near walls and front of flame developments

Kaprielian, Leslie 12 June 2015 (has links)
Depuis quelques années, les modèles 0D trouvent un regain d'intérêt auprès des motoristes. En effet, ces modèles, fournissant aisément un comportement thermodynamique du moteur, peuvent être couplés avec des outils de contrôle moteur. Néanmoins, leur précision doit être augmentée, pour répondre aux enjeux technologiques actuels. Dans les moteurs à allumage commandé, la flamme turbulente prémélangée est modélisée comme un ensemble de flammelettes cohérentes entre elles. Cette approche généraliste nécessite un traitement particulier en proche paroi, motivé par une modification de la structure de flamme due aux couches limites thermique et cinématique. Ce présent travail propose des approches de modélisations 0D de la combustion, en proche paroi et dans la zone réactionnelle de la flamme. Pour modéliser la combustion en proche paroi, la flamme est scindée en une contribution en propagation libre, et une contribution en interaction avec les parois. Chaque contribution est divisée en une zone de transport, dans laquelle l'entraînement des gaz frais est décrit, et une zone de réaction, dans laquelle la réaction de combustion est modélisée. L'ajout d'une zone de réaction en interaction avec les parois permet de modéliser un gradient de température et une réaction de combustion ralentie en proche paroi. Pour modéliser la zone réactionnelle, une discrétisation de la flamme en N zones de réaction indépendantes est proposée. Une plage de fonctionnement moteur a été simulée avec nos approches de modélisation, afin de quantifier la variabilité des paramètres de calibration. Pour ce faire, les modèles sont calibrés sur chaque point de fonctionnement, par une méthode de minimisation de l'erreur quadratique moyenne sur la loi de dégagement d'énergie. Des corrélations aisées de paramètres de calibration peuvent être établies, en fonction de paramètres moteurs. Les résultats de simulations, obtenus à partir de ces corrélations, sont satisfaisants. / Recently, the interest for zero-dimensional models has increased. Indeed, these models provide easily the engines thermodynamic behavior and can be coupled with control tools. However, their accuracy must be improved to meet the current technological challenges. In the spark ignition engines, the premixed turbulent flame is modeled as a set of coherent flamelets. This approach requires special treatment near the walls, motivated by the modifications of the flame structure due to boundary layers. The present work proposes 0D modeling of combustion near the walls and in the reaction zone of the flame. To combustion model near the walls, the flame is divided into a free propagation contribution, and an interacting contribution with the walls. Each contribution is divided into a convective zone, wherein the entrainment of fresh gas is described, and a reaction zone, wherein the combustion reaction is modeled. Adding a reaction zone near the walls allows modeling a thermal gradient and a slower combustion reaction near the walls. To model the reaction zone, a flame discretization is made into several reaction zones. An engine operating range is simulated with our models, for quantifying the calibration parameters variability. To do this, models are calibrated on each operating point, by a method of minimization of the quadratic error on the heat released rate. Linear correlations can be found, depending on engines parameters. A good agreement between experimental data and simulation results is obtained with these parameters correlations.

Page generated in 0.0278 seconds