• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation cristallochimique avancée des composés photovoltaïques dérivés de Cu2ZnSnS4 / Advanced chemical crystallographic investigation on the Cu2ZnSnS4-derived photovoltaic compounds

Bais, Pierre 10 October 2017 (has links)
Dans le domaine des cellules solaires de type couches minces, les composés dérivés de Cu2ZnSnS4 (CZTS) suscitent un intérêt croissant au fil des années. Grâce à un composé CZTS pauvre en Cu et pour lequel une partie du sélénium est substituée par du soufre, le rendement photovoltaïque maximal obtenu est de 12.6%. Plusieurs études suggèrent que des défauts de type Cu/Zn produisent un changement de la structure cristallographique la faisant passer de kësterite (groupe d’espace I4) à kësterite désordonnée (groupe d’espace I42m). Le désordre Cu/Zn ainsi que la distribution S/Se peuvent agir sur les performances des cellules solaires. L'objectif de cette thèse est l'étude approfondie de la structure des composés Cu2ZnSn(S,Se)4 (CZTSSe). Les échantillons étudiés ont été synthétisés par voie céramique et ont été caractérisés par les différentes techniques disponibles au laboratoire ainsi que par diffraction haute résolution et diffraction anomale sur monocristal au synchrotron SOLEIL. La combinaison de la diffraction des rayons-X, l’analyse élémentaire par dispersion d’énergie et la spectroscopie RMN ont permis d’en apprendre plus sur la structure et l’agencement des atomes en fonction du rapport S/(S+Se) ou de l’écart à la stoechiométrie CZTSSe. Les résultats principaux sont les suivants : les composés forment une solution solide de CZTSe à CZTS décrite dans la structure kësterite. De plus, bien qu’il soit possible d’observer des différences d’ordre à l’échelle locale, à longue distance, les anions et les atomes de cuivre et de zinc sont distribués aléatoirement, quelque soit le traitement thermique subi par l’échantillon ou l’écart à la stoechiométrie. / Cu2ZnSnS4-derived compounds (CZTS) show an increasing interest in the field of low-cost thin film solar cells. The best solar energy conversion efficiencies of CZTS-based devices, up to 12.6%, are obtained for both copper-poor and mixed S/Se compounds. Several studies suggest that Cu/Zn antisite defects can occur, leading to the modification of the kësterite structure (space group I4) to the so-called disordered kesterite which is of higher symmetry (space group I42m). In the mixed S/Se compounds, the question of the cationic and anionic disorder is of high importance for solar cells efficiency and as not been already addressed through a crystal structure point of view. This study is dealing with a thorough chemical crystallographic investigation of Cu2ZnSn(S,Se)4 compounds. The studied compounds have been synthesized via a ceramic route and have been characterized by the use of different techniques available in the laboratory and also with the use of the high resolution powder diffraction as well as the anomalous single crystal diffraction at the Synchrotron SOLEIL. Thanks to the combination of X-ray diffraction, energy dispersive X-ray spectroscopy and NMR spectroscopy, transmission electronic microscopy, precise information about the structure and the microstructure as a function of S/(S+Se) ratio or the actual deviation from the 2:1:1:4 stoichiometry is provided. The existence of a full solid solution between CZTSe and CZTS with the full disordered kesterite structure is definitely demonstrated. However, at the local scale, there is a difference of order between compounds according to the cooling or to the stoichiometric deviation.
2

Process development and scale-up for low-cost high-efficiency kesterite thin film photovoltaics / Développement des procédés et mise à l'échelle pour le photovoltaïque à couche mince à faible coût et à haute efficacité en kerterite

Vauche, Laura 27 November 2015 (has links)
Dans un contexte général d’augmentation de la demande énergétique et de préoccupation croissante face au réchauffement climatique et à la limitation des ressources naturelles, l’utilisation d’énergie solaire devrait augmenter. L’avenir des différentes technologies photovoltaïques dépend évidemment de leur rendement de conversion photovoltaïque et de leur coût mais aussi de la disponibilité des ressources. Les couches minces de kesterite, Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe) ou Cu2ZnSn(S,Se)4 (CZTSSe), composées d’éléments abondants dans la croûte terrestre se positionnent en candidat prometteur pour la conversion d’énergie solaire à grande échelle.Dans cette thèse, l’électro-dépôt, un procédé compatible avec des exigences industrielles de production, est utilisé pour déposer un précurseur de cuivre, étain et zinc sur des substrats de 15 × 15 cm2, de composition et épaissseur contrôlables. Ce précurseur est ensuite converti en semiconducteur par traitement thermique en présence de soufre ou de sélénium. Les couches ainsi formées de Cu-Zn-Sn-S ou Cu-Zn-Sn-Se, doivent être uniformes et présenter les propriétés appropriées (phases, composition, morphologie) pour la fabrication de cellules solaires à haut rendement. Le procédé de fabrication de la cellule solaire complète, notamment les étapes qui interviennent dans la formation de la jonction p-n (décapage chimique et dépôt de couche tampon) est également optimisé pour maximiser les rendements. A l’issue de ces optimisations, un rendement de 9.1% est obtenu pour une cellule solaire CZTSe, un nouveau record pour les cellules solaires à base de kesterite fabriquées par électro-dépôt. / Facing growing energy demand and increasing concerns about climate change and finite energy sources, solar energy use should increase. The future of the different photovoltaic technologies obviously depends on their power conversion efficiency and cost (summarized by the ratio cost per watt), but also on the elements availability. Thin films of earth-abundant kesterite, Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe) or Cu2ZnSn(S,Se)4 (CZTSSe), which can be manufactured with low-cost processes, are promising candidates for solar energy conversion at large scale.In this thesis, a copper tin and zinc precursor of controllable composition and thickness is electrodeposited on 15 × 15 cm2 substrates. Electrodeposition is a process compatible with high throughput low-cost and safety industry requirements. The precursor is converted into a semiconductor by thermal treatments in presence of sulfur or selenium. The resulting Cu-Zn-Sn-S or Cu-Zn-Sn-Se layers should be uniform and have adequate properties (phases, composition and morphology) to produce high efficient solar cells. Full device processing, including the pn junction formation steps (wet chemical etching and buffer layer deposition) is also investigated in order to maximize device efficiency. The best CZTSe solar cell exhibits a 9.1% powerconversion efficiency, setting a new record for kesterite solar cells produced by electrodeposition.
3

Développement de cellules solaires à base de films minces Cu2ZnSn(S,Se)4

Altamura, Giovanni 01 September 2014 (has links) (PDF)
L'objectif principal de cette thèse consiste à déterminer (et expliquer) les relations entre les conditions de synthèse des couches minces de Cu2ZnSn(Se,S)4 (CZTSSe), leurs propriétés physiques et les performances des dispositifs photovoltaïques. Le mécanisme de formation du matériau est étudié en fonction des conditions de croissance. Le CZTSSe est synthétisé par un procédé en deux étapes, où une première étape de dépôt des précurseurs sous vide est suivie d'une seconde étape de recuit sous atmosphère de sélénium. Différents ordres d'empilement des précurseurs sont étudiés afin de comprendre la séquence de réactions qui, à partir de leur dépôt, conduit à la couche finale de CZTSSe. Le résultat de cette étude montre que le matériau final obtenu après un recuit à haute température (570°C) et de longue durée (30 min) est indépendant de l'ordre de dépôt des précurseurs, mais que les étapes intermédiaires de formation du matériau sont fortement influencées par les positions respectives des couches de cuivre et d'étain. Les possibles implications bénéfiques de l'incorporation de sodium dans le CZTSSe sont également étudiées. Ce travail est réalisé en synthétisant la couche de CZTSSe sur différents substrats contenant diffèrents taux de sodium: de cette manière, pendant la synthèse, le sodium migre du substrat vers l'absorbeur. Après quantification du Na dans le CZTSSe juste après la croissance, le matériau est caractérisé afin d'évaluer sa qualité. Ensuite il est employé dans une cellule solaire complète pour vérifier ses propriétés photovoltaïques. Les résultats montrent que, comme dans le cas de la technologie CIGS, le sodium est bénéfique pour le CZTSSe, permettant l'augmentation de la tension à circuit ouvert et le rendement des cellules. Le molybdène est le contact arrière le plus utilisé pour les cellules solaires à base de CZTSSe. Cependant, il a été suggéré récemment que le Mo n'est pas stable à l'interface avec le CZTSSe. En outre, aucune étude expérimentale n'a été effectuée à ce jour pour tester si les cellules solaires construites sur un autre contact arrière pourraient présenter de meilleures propriétés photovoltaïques. Ainsi, divers métaux (Au, W, Pd, Pt et Ni) sont déposés sur le Mo et testés comme contacts arrières dans les cellules solaires à base de CZTSSe. Il est démontré qu'il est possible de synthétiser des couches minces de CZTSSe de qualité quand le tungstène, l'or et le platine sont employé comme contacts arrière. Il est observé que les contacts en W et Au permettent d'augmenter le courant photogénéré, mais aussi que le Mo reste le meilleur contact arrière du point de vue du rendement de conversion photovoltaïque. Les effets de la variation du rapport [S]/([S]+[Se]) sur les performances des cellules solaires à base de CZTSSe sont étudiés. Cette étude est effectuée par simulations des cellules solaires à base de CZTSSe, avec un ratio variable des éléments chalcogènes dans l'absorbeur, en ayant pour objectif la détermination de la composition optimale de l'absorbeur. Les simulations conduisent à un rendement de 16,5% (avec une tension en circuit ouvert de 0,56 V, courant de court-circuit de 37,0 mA/cm2 et un facteur de forme de 79,0%) lorsque la teneur en soufre est diminué linéairement à partir du contact arrière en direction de la couche tampon. Sur la base de ces résultats, nous proposons que l'ingénierie de bande interdite avec une variation du taux [S]/([S]+[Se]) dans l'absorbeur soit un moyen efficace qui permet d'augmenter les performances des cellules solaires à base CZTSSe sans nécessiter de changer la qualité même de l'absorbeur.
4

Développement de cellules solaires à base de films minces CZTSSe

Altamura, Giovanni 01 September 2014 (has links) (PDF)
L'objectif principal de cette thèse est dirigé vers l'établissement et l'explication des relations entre les conditions de synthèse des couches minces de CZTSSe, ses propriétés physiques et les performances des dispositifs photovoltaïques. Pour faire face à cette tâche la première approche était de comprendre le mécanisme de formation de la matière par rapport aux conditions de croissance du matériau. Le CZTSSe est synthétisé par un processus de sélénisation en deux étapes, où une première étape de dépôt par PVD de précurseurs est nécessaire, suivie d'une seconde étape de recuit sous atmosphère de sélénium. Différents ordres d'empilement de précurseurs ont été étudiés afin de comprendre la séquence de réactions qui, à partir de leur dépôt, conduise à la couche finale de CZTSSe. Cette étude, fait en plusieurs étapes, a nécessité de un effort important sur la caractérisation du matériau à chaque étape de la synthèse. Le résultat a montré que dans le cas du procédé en deux étapes, le matériau final est indépendant du dépôt de précurseurs. Les possibles implications bénéfiques en raison de l'incorporation de sodium dans le CZTSSe sont également décrites. Cette étude est réalisée en synthétisant la couche de CZTSSe sur différents substrats contenant diffèrent taux de sodium: de cette manière, pendant la synthèse, le sodium migre de substrats vers l'absorbeur. Après quantification du Na dans le CZTSSe juste après la croissance, le matériau est caractérise afin d'évaluer sa qualité. Ensuite il est employé dans une cellule solaire complète pour vérifier ses propriétés photovoltaïques. Les résultats ont montré que, comme pour la technologie CIGS, le sodium est bénéfique pour le CZTSSe, permettant l'augmentation de la tension à circuit ouvert et le rendement de cellule. Le molybdène est le contact arrière le plus utilisé pour les cellules solaires à base CZTSSe. Cependant, il a été suggéré récemment que le Mo n'est pas stable à l'interface avec le CZTSSe. En outre, à ma connaissance, aucune étude expérimentale n'a été effectuée à ce jour pour tester si les cellules solaires construites sur un autre contact arrière pourraient présenter de meilleures propriétés photovoltaïques. A cet effet, divers métaux (Au, W, Pd, Pt et Ni) sont déposées sur le dessus de Mo et testés comme contacts arrières dans les cellules solaire à base de CZTSSe. Il est démontré qu'il est possible synthétiser de films minces de CZTSSe de qualité quand le tungstène, l'or et le platine sont employé comme contacts arrière. Il est démontré que les contacts en W et Au permettent d'augmenter le courant photogénéré, mais aussi que le Mo reste le meilleur contact arrière en termes d'efficacité de conversion. Les effets de la variation du rapport [S]/([S]+[Se]) sur les performances des cellules solaires à base CZTSSe ont été étudiés. Cette étude a été faite par simulations des cellules solaires à base de CZTSSe, où le taux de chalcogènes dans l'absorbeur est varié, avec l'objective de trouver la composition optimale de l'absorbeur. Deux types d'approche différente ont été étudiés: la variation linéaire du rapport des chalcogènes, et une variation parabolique. Les simulations conduisent à un rendement de 16,5% (avec une tension en circuit ouvert de 0,56 V, courant de court-circuit de 37,0 mA/cm2 et un facteur de forme de 79,0%) lorsque la teneur en soufre est diminué linéairement à partir du contact arrière en direction de la couche tampon. Sur la base de ces résultats, nous proposons que l'ingénierie de bande interdite sur la base de la variation du taux [S]/([S]+[Se]) dans l'absorbeur est un outil puissant qui permet d'augmenter les performances des cellules solaires à base CZTSSe sans changer la qualité de l'absorbeur en lui-même.
5

Développement de cellules solaires à base de films minces CZTSSe / Development of CZTSSe based thin film solar cells

Altamura, Giovanni 01 September 2014 (has links)
L'objectif principal de cette thèse est dirigé vers l'établissement et l'explication des relations entre les conditions de synthèse des couches minces de CZTSSe, ses propriétés physiques et les performances des dispositifs photovoltaïques. Pour faire face à cette tâche la première approche était de comprendre le mécanisme de formation de la matière par rapport aux conditions de croissance du matériau. Le CZTSSe est synthétisé par un processus de sélénisation en deux étapes, où une première étape de dépôt par PVD de précurseurs est nécessaire, suivie d'une seconde étape de recuit sous atmosphère de sélénium. Différents ordres d'empilement de précurseurs ont été étudiés afin de comprendre la séquence de réactions qui, à partir de leur dépôt, conduise à la couche finale de CZTSSe. Cette étude, fait en plusieurs étapes, a nécessité de un effort important sur la caractérisation du matériau à chaque étape de la synthèse. Le résultat a montré que dans le cas du procédé en deux étapes, le matériau final est indépendant du dépôt de précurseurs. Les possibles implications bénéfiques en raison de l'incorporation de sodium dans le CZTSSe sont également décrites. Cette étude est réalisée en synthétisant la couche de CZTSSe sur différents substrats contenant diffèrent taux de sodium: de cette manière, pendant la synthèse, le sodium migre de substrats vers l'absorbeur. Après quantification du Na dans le CZTSSe juste après la croissance, le matériau est caractérise afin d'évaluer sa qualité. Ensuite il est employé dans une cellule solaire complète pour vérifier ses propriétés photovoltaïques. Les résultats ont montré que, comme pour la technologie CIGS, le sodium est bénéfique pour le CZTSSe, permettant l'augmentation de la tension à circuit ouvert et le rendement de cellule. Le molybdène est le contact arrière le plus utilisé pour les cellules solaires à base CZTSSe. Cependant, il a été suggéré récemment que le Mo n'est pas stable à l'interface avec le CZTSSe. En outre, à ma connaissance, aucune étude expérimentale n'a été effectuée à ce jour pour tester si les cellules solaires construites sur un autre contact arrière pourraient présenter de meilleures propriétés photovoltaïques. A cet effet, divers métaux (Au, W, Pd, Pt et Ni) sont déposées sur le dessus de Mo et testés comme contacts arrières dans les cellules solaire à base de CZTSSe. Il est démontré qu'il est possible synthétiser de films minces de CZTSSe de qualité quand le tungstène, l'or et le platine sont employé comme contacts arrière. Il est démontré que les contacts en W et Au permettent d'augmenter le courant photogénéré, mais aussi que le Mo reste le meilleur contact arrière en termes d'efficacité de conversion. Les effets de la variation du rapport [S]/([S]+[Se]) sur les performances des cellules solaires à base CZTSSe ont été étudiés. Cette étude a été faite par simulations des cellules solaires à base de CZTSSe, où le taux de chalcogènes dans l'absorbeur est varié, avec l'objective de trouver la composition optimale de l'absorbeur. Deux types d'approche différente ont été étudiés: la variation linéaire du rapport des chalcogènes, et une variation parabolique. Les simulations conduisent à un rendement de 16,5% (avec une tension en circuit ouvert de 0,56 V, courant de court-circuit de 37,0 mA/cm2 et un facteur de forme de 79,0%) lorsque la teneur en soufre est diminué linéairement à partir du contact arrière en direction de la couche tampon. Sur la base de ces résultats, nous proposons que l'ingénierie de bande interdite sur la base de la variation du taux [S]/([S]+[Se]) dans l'absorbeur est un outil puissant qui permet d'augmenter les performances des cellules solaires à base CZTSSe sans changer la qualité de l'absorbeur en lui-même. / The main objective of this PhD thesis was directed toward establishing and explaining the relationships between synthesis conditions of CZTSSe, its physical properties and performance of photovoltaic devices. To tackle on this task the first approach was to understand the formation mechanism of the material in relation to the growth conditions. CZTSSe is synthesized by two-step selenization process, where a first step of precursor deposition by PVD is required, followed by a second step of annealing. Different precursor stacking orders have been studied in order to understand the sequence of reactions that, starting from their deposition, lead to the final CZTSSe layer. This study made step-by-step has required a strong effort on the material characterization at each step of the synthesis. The result demonstrated that in the case of two-step process, the final material is independent of the precursor deposition. The possible beneficial involvements due to incorporation of sodium in CZTSSe are also disclosed. This study is carried out by synthesizing CZTSSe on different sodium-containing substrates: in this way sodium migrates from the substrates to the absorber. After quantification of Na in CZTSSe right after growth, the latter is characterized to evaluate its quality and employed in a full solar cell to check on its photovoltaic properties. Results demonstrated that, as for CIGS technology, sodium is beneficial for CZTSSe allowing increasing the open circuit voltage and efficiency. Molybdenum is the most used back contact in CZTSSe based solar cells. However, it has been suggested recently that Mo is not stable at the interface with CZTSSe. In addition, to the best of our knowledge, no experimental study has been carried out so far to test whether solar cells built on another back contact could exhibit better photovoltaic properties. For this purpose, various metals (Au, W, Pd, Pt, and Ni) are deposited on top of Mo, and it is demonstrated that it is possible to synthesize device-quality CZTSSe thin films on W, Au, and Pt back contacts. It is shown that that W and Au back contacts allow enhancing the photogenerated current, but that Mo remains the best back contact in terms of power conversion efficiency. The effects of [S]/([S]+[Se]) ratio tuning on CZTSSe based solar cell performances have been studied by solar cell capacitance simulator (SCAPS) to find out the optimum absorber composition. Two different kind of approach have been studied: linear variation of the chalcogens ratio, and a parabolic variation. The simulations lead to an efficiency of 16.5% (with open-circuit voltage of 0.56 V, short-circuit current of 37.0 mA/cm2 and fill factor of 79.0%) when the sulfur content is linearly decreased from the back contact towards the buffer layer. Based on these results, we propose that bandgap engineering based on the control of [S]/([S]+[Se]) ratio in the absorber is a powerful tool which allows increasing the performances of CZTSSe based solar cells without changing the absorber material quality.
6

Elektrochemische Legierungsabscheidung zur Herstellung von Cu2ZnSnS4 Dünnschichtsolarzellen / Electrochemical Alloy Deposition for Cu2ZnSnS4 Thin Film Solar Cell Applications

Kühnlein, Holger H. 11 November 2007 (has links) (PDF)
Die als Absorbermaterial für Dünnschichtsolarzellen geeigneten Verbindungshalbleiter Cu2ZnSnS4 (CZTS) und Cu2ZnSnS(4-x)Sex (x<3, CZTSSe) konnten erfolgreich durch Kombination der elektrochemischen Legierungsabscheidung und der anschließenden Sulfurisierung in H2S-haltiger Atmosphäre hergestellt werden. In früheren Arbeiten wurden die viel versprechenden Eigenschaften von CZTS und Cu2ZnSnSe4 (CZTSe), als In und Ga freie und damit kostengünstige Alternativen, bereits ausführlich vorgestellt. Im Rahmen dieser Arbeit konnte anhand von kristallographischen Ergebnissen sowie durch Untersuchungen der Bandlückenenergien bestätigt werden, dass die Kesterite CZTS (1,46eV) und CZTSSe (1,32eV) erfolgreich mittels einer nasschemischen Vorstufe herstellbar sind. Weiterhin wurde erstmalig der Zusammenhang unterschiedlicher Stöchiometrien anhand ermittelter Halbleitereigenschaften (Na, Eg, EFB) gezeigt. Auf diesen Ergebnissen basierend wurde eine optimale Zusammensetzung zur Herstellung funktionaler Absorberschichten bestimmt. Dennoch zeigt sich, dass die Prozessparameter der Gasphasen-Sulfurisierung entscheidend die Bildung homogener Schichten beeinflusst. Die beobachtete große Kristallverteilung und die dabei auftretenden lokalen Löcher setzten die Funktionalität der hergestellten Solar Zellen (Al/ZnO:Al/CdS/CZTS/Mo/Glas) deutlich herab. Trotz der geringen Wirkungsgrade konnte aus einer Reihe unterschiedlicher Absorbermaterialien eine optimale Stöchiometrie (~Cu2Zn1.1Sn0.9S4) ermittelt werden. Die elektrochemische Coabscheidung von Se (~Cu2Zn1.2Sn0.9Se0.3) und die dadurch erfolgte partielle Substitution von S durch Se bewirkte, verglichen zur CZTS Morphologie, eine kompaktere und geschlossene Schichtstruktur. Der Einfluss des Selenanteils wurde dabei anhand detaillierter kristallographischer Untersuchungen und einer reduzierten Bandlückenenergie (1,32eV) bestätigt. Obwohl deutlich reproduzierbare Diodeneigenschaften über große Flächen beobachtet wurden, konnten keine Verbesserung des Wirkungsgrads erzielt werden. Cu2ZnSn (CZT) und Cu2ZnSnSe0.3 (CZTSe) Precursorschichten wurden mittels eines neu entwickelten alkalischen sowie zyanidfreien Elektrolyten auf Mo beschichteten Glassubstraten abgeschieden. Dieser alkalische Elektrolyt zeigte eine hohe Langzeitstabilität und die bisher unbekannte Möglichkeit der Abscheidung hoher Zinnanteile bei niedrigen Temperaturen. Aufgrund detaillierter elektrochemischer Untersuchungen konnte ein fundamentales Verständnis hinsichtlich der Einflüsse unterschiedlicher Additive, Konzentrationen und Temperaturen erzielt werden. Diese Ergebnisse konnten zur Interpretation der beobachteten potentialabhängigen Legierungsbildung herangezogen werden. Im Rahmen eines wesentlich fundamentalen Ansatzes erfolgte weiterhin die Charakterisierung der Legierungsbildung, ausgehend von unterschiedlicher Metallgehalte im Elektrolyten, anhand eines kürzlich publizierten kinetischen Modells zur elektrochemischen Legierungsabscheidung. Basierend auf diesen Untersuchungen konnte das vorgestellte Badsystem aufgrund einer genauen Einstellbarkeit und Nachdosierung erfolgreich zur ternären Abscheidung von Precursorschichten verwendet werden. / Cu2ZnSnS4 (CZTS) and Cu2ZnSnS(4-x)Sex (x<0.3, CZTSSe) thin film solar cell absorber materials were successfully formed by combining a one step electrochemical precursor deposition followed by a vapour phase sulfurization process. CZTS and Cu2ZnSnSe4 (CZTSe) are known as promising candidates for thin film solar cell applications without using rare and thus expensive materials like In and Ga. This thesis confirmed by XRD and band gap energy data the potential to produce the kesterite type semiconductor materials CZTS (1,46eV) and CZTSSe (1,32eV) via a wet chemical precursor step. This paper presents for the first time the impact of different absorber compositions on semiconductor properties (NA, Eg, EFB) of the bulk material. Based on this data an optimum stoichiometry was identified to produce a functional absorber layer. However, sulfurization remained as the most critical process to achieve homogeneous thin films. In the most cases local pin holes and a large crystal size distribution diminished the conversion efficiency of produced solar cell samples (Al/ZnO:Al/CdS/CZTS/Mo/glass). Nevertheless an optimum performance was found for a slight excess of Zn (~Cu2Zn1.1Sn0.9S4). The electrochemical codeposition of Se (~Cu2Zn1.2Sn0.9Se0.3) at the precursor step enabled to do a partial substitution of S by Se which was identified to improve CZTS morphology into a homogeneous and dense layer. The expected impact of Se was also confirmed by detailed crystallographic and band gap energy (1.32eV) measurements. Although solar cell function was found for enlarged areas the low overall conversion efficiency could be not pushed to higher levels. Cu2ZnSn (CZT) and Cu2ZnSnSe0.3 (CZTSe) precursor layers were directly electrodeposited on Mo coated soda line glass substrates from a new developed alkaline cyanide free alloy bath system. The presented electrolyte showed high long term stability and an up to now unknown high rate of Sn codeposition at low electrolyte temperatures. Results of a detailed electrolyte characterization gave a fundamental understanding of additive, concentration and temperature effects. This knowledge was successfully linked to explain the potential depended alloy composition effects. As a more fundamental approach a new kinetic model of the electrochemical alloy deposition was used to characterize the impact of changed electrolyte metal contents on the resulting alloy composition. Based on this data the presented alloy bath system was successfully applied for precise adjustment and replenishment during the ternary precursor deposition.
7

Elektrochemische Legierungsabscheidung zur Herstellung von Cu2ZnSnS4 Dünnschichtsolarzellen

Kühnlein, Holger H. 28 September 2007 (has links)
Die als Absorbermaterial für Dünnschichtsolarzellen geeigneten Verbindungshalbleiter Cu2ZnSnS4 (CZTS) und Cu2ZnSnS(4-x)Sex (x<3, CZTSSe) konnten erfolgreich durch Kombination der elektrochemischen Legierungsabscheidung und der anschließenden Sulfurisierung in H2S-haltiger Atmosphäre hergestellt werden. In früheren Arbeiten wurden die viel versprechenden Eigenschaften von CZTS und Cu2ZnSnSe4 (CZTSe), als In und Ga freie und damit kostengünstige Alternativen, bereits ausführlich vorgestellt. Im Rahmen dieser Arbeit konnte anhand von kristallographischen Ergebnissen sowie durch Untersuchungen der Bandlückenenergien bestätigt werden, dass die Kesterite CZTS (1,46eV) und CZTSSe (1,32eV) erfolgreich mittels einer nasschemischen Vorstufe herstellbar sind. Weiterhin wurde erstmalig der Zusammenhang unterschiedlicher Stöchiometrien anhand ermittelter Halbleitereigenschaften (Na, Eg, EFB) gezeigt. Auf diesen Ergebnissen basierend wurde eine optimale Zusammensetzung zur Herstellung funktionaler Absorberschichten bestimmt. Dennoch zeigt sich, dass die Prozessparameter der Gasphasen-Sulfurisierung entscheidend die Bildung homogener Schichten beeinflusst. Die beobachtete große Kristallverteilung und die dabei auftretenden lokalen Löcher setzten die Funktionalität der hergestellten Solar Zellen (Al/ZnO:Al/CdS/CZTS/Mo/Glas) deutlich herab. Trotz der geringen Wirkungsgrade konnte aus einer Reihe unterschiedlicher Absorbermaterialien eine optimale Stöchiometrie (~Cu2Zn1.1Sn0.9S4) ermittelt werden. Die elektrochemische Coabscheidung von Se (~Cu2Zn1.2Sn0.9Se0.3) und die dadurch erfolgte partielle Substitution von S durch Se bewirkte, verglichen zur CZTS Morphologie, eine kompaktere und geschlossene Schichtstruktur. Der Einfluss des Selenanteils wurde dabei anhand detaillierter kristallographischer Untersuchungen und einer reduzierten Bandlückenenergie (1,32eV) bestätigt. Obwohl deutlich reproduzierbare Diodeneigenschaften über große Flächen beobachtet wurden, konnten keine Verbesserung des Wirkungsgrads erzielt werden. Cu2ZnSn (CZT) und Cu2ZnSnSe0.3 (CZTSe) Precursorschichten wurden mittels eines neu entwickelten alkalischen sowie zyanidfreien Elektrolyten auf Mo beschichteten Glassubstraten abgeschieden. Dieser alkalische Elektrolyt zeigte eine hohe Langzeitstabilität und die bisher unbekannte Möglichkeit der Abscheidung hoher Zinnanteile bei niedrigen Temperaturen. Aufgrund detaillierter elektrochemischer Untersuchungen konnte ein fundamentales Verständnis hinsichtlich der Einflüsse unterschiedlicher Additive, Konzentrationen und Temperaturen erzielt werden. Diese Ergebnisse konnten zur Interpretation der beobachteten potentialabhängigen Legierungsbildung herangezogen werden. Im Rahmen eines wesentlich fundamentalen Ansatzes erfolgte weiterhin die Charakterisierung der Legierungsbildung, ausgehend von unterschiedlicher Metallgehalte im Elektrolyten, anhand eines kürzlich publizierten kinetischen Modells zur elektrochemischen Legierungsabscheidung. Basierend auf diesen Untersuchungen konnte das vorgestellte Badsystem aufgrund einer genauen Einstellbarkeit und Nachdosierung erfolgreich zur ternären Abscheidung von Precursorschichten verwendet werden. / Cu2ZnSnS4 (CZTS) and Cu2ZnSnS(4-x)Sex (x<0.3, CZTSSe) thin film solar cell absorber materials were successfully formed by combining a one step electrochemical precursor deposition followed by a vapour phase sulfurization process. CZTS and Cu2ZnSnSe4 (CZTSe) are known as promising candidates for thin film solar cell applications without using rare and thus expensive materials like In and Ga. This thesis confirmed by XRD and band gap energy data the potential to produce the kesterite type semiconductor materials CZTS (1,46eV) and CZTSSe (1,32eV) via a wet chemical precursor step. This paper presents for the first time the impact of different absorber compositions on semiconductor properties (NA, Eg, EFB) of the bulk material. Based on this data an optimum stoichiometry was identified to produce a functional absorber layer. However, sulfurization remained as the most critical process to achieve homogeneous thin films. In the most cases local pin holes and a large crystal size distribution diminished the conversion efficiency of produced solar cell samples (Al/ZnO:Al/CdS/CZTS/Mo/glass). Nevertheless an optimum performance was found for a slight excess of Zn (~Cu2Zn1.1Sn0.9S4). The electrochemical codeposition of Se (~Cu2Zn1.2Sn0.9Se0.3) at the precursor step enabled to do a partial substitution of S by Se which was identified to improve CZTS morphology into a homogeneous and dense layer. The expected impact of Se was also confirmed by detailed crystallographic and band gap energy (1.32eV) measurements. Although solar cell function was found for enlarged areas the low overall conversion efficiency could be not pushed to higher levels. Cu2ZnSn (CZT) and Cu2ZnSnSe0.3 (CZTSe) precursor layers were directly electrodeposited on Mo coated soda line glass substrates from a new developed alkaline cyanide free alloy bath system. The presented electrolyte showed high long term stability and an up to now unknown high rate of Sn codeposition at low electrolyte temperatures. Results of a detailed electrolyte characterization gave a fundamental understanding of additive, concentration and temperature effects. This knowledge was successfully linked to explain the potential depended alloy composition effects. As a more fundamental approach a new kinetic model of the electrochemical alloy deposition was used to characterize the impact of changed electrolyte metal contents on the resulting alloy composition. Based on this data the presented alloy bath system was successfully applied for precise adjustment and replenishment during the ternary precursor deposition.

Page generated in 0.0252 seconds