• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of an Algae Harvesting Cable Robot, Including a Novel Solution to the Forward Pose Kinematics Problem

Needler, Noah J. 25 September 2013 (has links)
No description available.
2

Aplikace lanového robota / Application of cable robot

Bulenínec, Martin January 2017 (has links)
The thesis deals with the changes of a cable robot to a manipulator. The mechanical changes are mostly about adding an active part to a moving platform with the ability to transfer objects and the effort to exchange the silicon cables for metal ones. The main part of the thesis is the proposed design and implementation of the algorithm for detection of a possible collision of the cable robot with an object in its working space.
3

Mathematical Modeling of Cable Sag, Kinematics, Statics, and Optimization of a Cable Robot

Sridhar, Dheerendra M. January 2015 (has links)
No description available.
4

A Cable-Actuated Robotic Lumbar Spine as the Haptic Interface for Palpatory Training of Medical Students

Karadogan, Ernur January 2011 (has links)
No description available.
5

Cable-Suspended Robot System with Real Time Kinematics GPS Position Correction for Algae Harvesting

Pagan, Jesus Manuel January 2018 (has links)
No description available.
6

Kinematics, Dynamics, and Controller Design for the Contour Crafting Cartesian Cable (C4) Robot

Xin, Ming 08 August 2008 (has links)
No description available.
7

Force-Feasible Workspace Analysis and Motor Mount Disturbance Compensation for Point-Mass Cable Robots

Riechel, Andrew T. 12 April 2004 (has links)
Cable-actuated manipulators (or 'cable robots') constitute a relatively new classification of robots which use motors, located at fixed remote locations, to manipulate an end-effector by extending or retracting cables. These manipulators possess a number of unique properties which make them proficient with tasks involving high payloads, large workspaces, and dangerous or contaminated environments. However, a number of challenges exist which have limited the mainstream emergence of cable robots. This thesis addresses two of the most important of these issues-- workspace analysis and disturbance compensation. Workspace issues are particularly important, as many large-scale applications require the end-effector to operate in regions of a particular shape, and to exert certain minimum forces throughout those regions. The 'Force-Feasible Workspace' represents the set of end-effector positions, for a given robot design, for which the robot can exert a set of required forces on its environment. This can be considered as the robot's 'usable' workspace, and an analysis of this workspace shape for point-mass cable robots is therefore presented to facilitate optimal cable robot design. Numerical simulation results are also presented to validate the analytical results, and to aid visualization of certain complex workspace shapes. Some cable robot applications may require mounting motors to moving bases (i.e. mobile robots) or other surfaces which are subject to disturbances (i.e. helicopters or crane arms). Such disturbances can propagate to the end-effector and cause undesired motion, so the rejection of motor mount disturbances is also of interest. This thesis presents a strategy for measuring these disturbances and compensating for them. General approaches and implementation issues are explored qualitatively with a simple one-degree-of-freedom prototype (including a strategy for mitigating accelerometer drift), and quantitative simulation results are presented as a proof of concept.

Page generated in 0.0436 seconds