• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 17
  • 12
  • 11
  • 9
  • 9
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Reconfigurations discrètes de robots parallèles à câbles / Discrete Reconfigurations of Cable-Driven Parallel Robots

Gagliardini, Lorenzo 19 September 2016 (has links)
Les Robots Parallèles à Câbles (RPCs) sont des robots parallèles dont les jambes se composent de câbles. Les applications industrielles potentielles des RPCs sont nombreuses telles que le grenaillage et la peinture de structures massives et de grandes dimensions.La première partie de ce manuscrit est dédié à la modélisation des RPCs. Deux modèles élasto-statiques ont été introduits dans ce manuscrit, pour décrire le petit déplacement de la plate-forme mobile en raison de la nature non-rigide des câbles. Le modèle élasto-statique basé sur des câbles pesants a été exprimé en faisant la différence entre la matrice de raideur active et la matrice de raideur passive du RPC.La deuxième partie de ce manuscrit traite de l’analyse d’espaces de travail de RPCs vis-à-vis de leurs performances statiques et dynamiques. Deux nouveaux espaces de travail ont été définis : (i) l'Espace des Vitesses Générables (EVG);(ii) l’Espace de Travail Dynamique Amélioré (ETDA). La troisième partie de ce manuscrit décrit une stratégie de conception générique de RPCs et des Robots Parallèles à Câbles Reconfigurables (RPCRs). Les reconfigurations sont limitées uniquement aux points de sortie des câbles. Dans ce manuscrit, les points de sortie des câbles peuvent être placés dans une large mais limité ensemble de positions. La stratégie proposée envisage la possibilité de déplacer les points de sortie des câbles du RPCR sur une grille prédéfinie d'emplacements.La quatrième partie de ce manuscrit présente un algorithme pour calculer une stratégie de reconfiguration optimale pour les RPCRs. Cette stratégie peut être utilisée lorsque l'environnement de travail de RPCRs est extrêmement encombré et qu’il n'est pas possible de prévoir le nombre de configurations nécessaires pour compléter la tâche.L'efficacité de l'algorithme a été analysée en étudiant les reconfigurations d’un robot parallèle à câbles planaire et d’un robot parallèle à câbles spatial en lien avec des applications industrielles. / Cable-Driven Parallel Robots (CDPRs) are parallel robots whose legs consist of cables. CDPRs may be used successfully in several industrial applications such as sandblasting and painting of large and heavy structures.The first part of this manuscript is dedicated to the modelling of CDPRs. Two elasto-static models have been introduced in this manuscript, in order to describe the small displacement of the moving platform due to the non-rigid nature of the cables. These models can be used for the modal analysis of the CDPRs, as well. The elasto-static model based on linear cables has been computed including the effect of the pulleys orienting the cables into the CDPR workspace.The second part of this manuscript deals with the investigation of the workspace of CDPRs, in terms of their moving platform static and dynamic equilibria, and in terms of their moving platform kinematic constraints. Two novel workspaces have been defined: (i) the Twist Feasible Workspace (TFW); (ii) the Improved Dynamic Feasible Workspace (IDFW). The third part of this manuscript describes a generic design strategy for CDPRs and a novel design strategy for Reconfigurable Cable-Driven Parallel Robots (RCDPRs). In this manuscript, reconfigurations are limited to the thedisplacement of the cable exit points, assuming the cables exit points can be installed on a large but finite set of locations.The fourth part of this manuscript introduces an algorithm to compute an optimal reconfiguration strategy for RCDPRs. This strategy can be used when the working environment of the RCDPR is extremely cluttered and when it is not possible to predict how many configurations are necessary to complete the task. The effectiveness of the algorithm hasbeen analysed by means of a planar and a spatial casestudies reproducing some industrial tasks.
12

Modélisation et design de robots parallèles à câbles de grande dimension / Modeling and Design of large dimension cable-driven robots

Riehl, Nicolas 04 May 2011 (has links)
Les robots parallèles à câbles sont une variante originale des robots parallèles. L'utilisation de câbles en lieu et place des segments rigides procure à ce type de robots un espace de travail potentiellement très grand car des longueurs importantes de câbles peuvent être déroulées. Toutefois, dans la plupart des études sur les robots à câbles, un modèle de câble sans masse non élastique est utilisé. Si dans le cas de robots de faibles dimensions soumis à de faibles efforts, ce modèle est valide, lorsque l'on considère des applications de très grande dimension pour lesquels la masse des câbles et l'élasticité ne peuvent plus être négligées, ces modèles simples ne sont plus valables. Ces travaux de thèse proposent des nouvelles méthodes d'étude des robots parallèles à câbles de grande dimension. Dans un premier temps, des tests de traction réalisés sur différents câbles permettent de proposer différents modèles élastiques. La modélisation d'un câble par une caténaire élastique est ensuite rappelée, et l'erreur importante obtenue en négligeant la masse des câbles est mise en exergue. La modélisation par caténaire élastique bien que précise, nécessite la résolution d'un système d'équations couplées non-linéaires. Un modèle simplifié de câble pesant est alors présenté. Il permet, sous l'hypothèse de faible déflection du câble, de simplifier la résolution de l'équilibre statique d'un robot à câble. Ce modèle permet également de développer des outils utiles à la détermination de l'ensemble des torseurs d'efforts admissibles à la plate-forme d'un robot parallèle à câbles. La vérification de l'inclusion de l'ensemble des torseurs nécessaires à la réalisation d'une tâche dans l'ensemble des torseurs admissibles est finalement utilisée comme critère d'optimisation pour une méthode de conception de robots à câbles de grandes dimensions. / Cable-driven robot is an original variation of parallel robots. Replacing rigid bodies by cables provides new capabilities to these robots, and particularly large-size workspaces, since long cable lengths can be deployed. In the literature, cables are usually supposed to be inextensible and massless. If this modeling is valid for small robots with moderate payloads, this cable model is not accurate enough to be used for large dimension cable-driven robots. The work presented here focuses on the modeling of such large cable robots. First, from a set of traction tests applied to various cables, elastic models are proposed. Then, the well-know elastic catenary model is recalled, and its effects on the modeling of large dimension cable robots is shown. However, when using this cable model, solving the platform static equilibrium require the resolution of a non-linear coupled equation system. Assuming a low sagging of the cable, some simplifications can be made to this model. The resulting simplified hefty cable model is then presented and the new expression of the static equilibrium is shown to be close to the one obtained with the massless cable model. Thus, it allows us to determine the set of admissible mobile platform wrenches at a given pose. By comparing this set to the set of required wrenches for a specific task a cost function is finally defined and used in a design procedure dedicated to large dimension cable-driven robots.
13

Hybrid cable thruster-actuated underwater vehicle manipulator system : modeling, analysis and control / Modélisation, étude et commande d'un robot sous-marin à câbles

Elghazaly, Gamal 12 June 2017 (has links)
L’industrie offshore, pétrolière et gazière est le principal utilisateur des robots sous-marins, plus particulièrement de véhicules télé-opérés (ou ROV, Remotely Operated Vehicle). L'inspection, la construction et la maintenance de diverses installations sous-marines font parties des applications habituelles des ROVs dans l’industrie offshore. La capacité à maintenir un positionnement stable du véhicule ainsi qu’à soulever et déplacer des charges lourdes est essentielle pour certaines de ces applications. Les capacités de levage des ROVs sont cependant limitées par la puissance de leur propulsion. Dans ce contexte, cette thèse présente un nouveau concept d’actionnement hybride constitué de câbles et de propulseurs. Le concept vise à exploiter les fortes capacités de levage des câbles, actionnés par exemple depuis des navires de surfaces, afin de compléter l’actionnement d’un robot sous-marin. Plusieurs problèmes sont soulevés par la nature hybride (câbles et propulseurs) de ce système d'actionnement. En particulier, nous étudions l’effet de l'actionnement supplémentaire des câbles par rapport à un actionnement exploitant uniquement des propulseurs et nous tâchons de minimiser les efforts exercés par ces derniers. Ces deux objectifs sont les principales contributions de cette thèse. Dans un premier temps, nous modélisons la cinématique et la dynamique d'un robot sous-marin actionné à la fois par des propulseurs et des câbles et équipé d'un bras manipulateur. Un tel système possède une redondance cinématique et d'actionnement.. L'étude théorique sur l'influence de l'actionnement supplémentaire par câbles est appuyée par une étude en simulation, comparant les capacités de force d'un système hybride (câbles et propulseurs) à celles d'un système actionné uniquement par des propulseurs. L'évaluation des capacités est basée sur la détermination de l'ensemble des forces disponibles, en considérant les limites des forces d'actionnement. Une nouvelle méthode de calcul est proposée, pour déterminer l'ensemble des forces disponibles. Cette méthode est basée sur le calcul de la projection orthogonale de polytopes et son coût calculatoire est analysé et comparé à celui d'une méthode de l’état de l’art. Nous proposons également une nouvelle méthode pour le calcul de la distribution des forces d'actionnement, permettant d'affecter une priorité supérieure au sous-système d'actionnement par câbles afin de minimiser les efforts exercés par les propulseurs. Plusieurs cas d'études sont proposés pour appuyer les méthodes proposées. / The offshore industry for oil and gas applications is the main user of underwater robots, particularly, remotely operated vehicles (ROVs). Inspection, construction and maintenance of different subsea structures are among the applications of ROVs in this industry. The capability to keep a steady positioning as well as to lift and deploy heavy payloads are both essential for most of these applications. However, these capabilities are often limited by the available on-board vehicle propulsion power. In this context, this thesis introduces the novel concept of Hybrid Cable-Thruster (HCT)-actuated Underwater Vehicle-Manipulator Systems (UVMS) which aims to leverage the heavy payload lifting capabilities of cables as a supplementary actuation for ROVs. These cables are attached to the vehicle in a setting similar to Cable-Driven Parallel Robots (CDPR). Several issues are raised by the hybrid vehicle actuation system of thrusters and cables. The thesis aims at studying the impact of the supplementary cable actuation on the capabilities of the system. The thesis also investigate how to minimize the forces exerted by thrusters. These two objectives are the main contributions of the thesis. Kinematic, actuation and dynamic modeling of HCT-actuated UVMSs are first presented. The system is characterized not only by kinematic redundancy with respect to its end-effector, but also by actuation redundancy of the vehicle. Evaluation of forces capabilities with these redundancies is not straightforward and a method is presented to deal with such an issue. The impact of the supplementary cable actuation is validated through a comparative study to evaluate the force capabilities of an HCT-actuated UVMS with respect to its conventional UVMS counterpart. Evaluation of these capabilities is based on the determination of the available forces, taking into account the limits on actuation forces. A new method is proposed to determine the available force set. This method is based on the orthogonal projection of polytopes. Moreover, its computational cost is analyzed and compared with a standard method. Finally, a novel force resolution methodology is introduced. It assigns a higher priority to the cable actuation subsystem, so that the forces exerted by thrusters are minimized. Case studies are presented to illustrate the methodologies presented in this thesis.
14

Modélisations géométrique et statique des robots parallèles à câbles avec des méthodes d'analyse par intervalles / Kinematics and statics of cable-driven parallel robots by interval-analysis-based methods

Berti, Alessandro 22 April 2015 (has links)
Pendant les dernières décennies, le travail d'une partie toujours croissante de chercheurs qui s'occupent de robotique s'est focalisé sur un groupe spécifique de robots qui fait partie de la famille des manipulateurs parallèles: les robots à câbles. Malgré les nombreuses études que l'on a consacrées à ce sujet, ces robots présentent encore aujourd'hui plusieurs problématiques complètement ou partiellement irrésolues. En particulier l'étude de leur cinématique, qui se révèle déjà complexe pour les manipulateurs parallèles traditionnels, est rendu encore plus compliqué par la nature non linéaire des câbles qui peuvent seulement exercer des efforts de traction. Le travail présenté dans cette thèse concentre donc son attention sur l'étude de la cinématique des robots à câbles et sur la mise au point de techniques numériques capables d'aborder une partie des problématiques liées à cela. La plupart du travail se concentre sur l'élaboration d'un algorithme pour la résolution du problème géométrique direct pour n'importe quel manipulateur à câbles qui se fonde sur l'analyse par intervalles. Cette technique d'analyse permet non seulement de résoudre rapidement le problème mais également de garantir les résultats obtenus en cas d'erreurs d'élimination et d'arrondi et de prendre en considération les incertitudes éventuellement présentes dans le modèle du problème. Le code développé a été testé grâce à un petit prototype de manipulateur à câbles dont la réalisation, qui a eu lieu pendant le parcours de doctorat, est décrite à l'intérieur du mémoire en accord avec la phase de conception du projet et de simulation. / In the past two decades the work of a growing portion of researchers in robotics focused on a particular group of machines, belonging to the family of parallel manipulators: the cable robots. Although these robots share several theoretical elements with the better known parallel robots, they still present completely (or partly) unsolved issues. In particular, the study of their kinematic, already a difficult subject for conventional parallel manipulators, is further complicated by the non-linear nature of cables, which can transmit forces only when they are taut. The work presented in this thesis therefore focuses on the study of the kinematics of these robots and on the development of numerical techniques able to address some of the problems related to it. Most of the work is focused on the development of an interval-analysis-based procedure for the solution of the direct geometric problem (DGP) of a generic cable manipulator. This technique, as well as allowing for a rapid solution of the problem, also guarantees the results obtained against rounding and elimination errors and can take into account any uncertainties in the model of the problem. The developed code has been tested with the help of a small manipulator whose realization is described in this dissertation together with its design and simulation phases.
15

Static and dynamic stiffness analysis of cable-driven parallel robots / Analyse des raideurs statique et dynamique des robots parallèles à câbles

Yuan, Han 11 March 2015 (has links)
Cette thèse contribue à l'analyse des raideurs statique et dynamique des robots parallèles à câbles dans un objectif d'amélioration de la précision de positionnement statique et de la précision de suivi de trajectoire. Les modélisations statique et dynamique proposées des câbles considèrent l'effet du poids du câble sur son profil et l'effet de masse du câble sur la dynamique de ce dernier. Sur la base du modèle statique de câble proposé, l'erreur de pose statique au niveau de l'organe terminal du robot est définie et sa variation en fonction de la charge externe appliquée est utilisée pour évaluer la raideur statique globale de la structure. Un nouveau modèle dynamique vibratoire de robots à câbles est proposé en considérant le couplage de la dynamique des câbles avec les vibrations de l'organe terminal. Des validations expérimentales sont réalisées sur des prototypes de robots à câbles. Une série d'expériences de statique, d'analyses modales, d'analyses en régime libre et de suivi de trajectoire sont réalisées. Les modèles statiques et dynamiques proposés sont confirmés. Les dynamiques des câbles et du robot ainsi que leur couplage sont discutées montrant la pertinence des modèles développés pour l’amélioration des performances des robots à câbles en termes de design et le contrôle. Outre l'analyse des raideurs statique et dynamique, les modèles proposés sont appliqués dans l'amélioration du calcul de la distribution des efforts dans les câbles des robots redondants. Une nouvelle méthode de calcul de la distribution des efforts dans les câbles basée sur la détermination de la limite inférieure des forces dans les câbles est présentée. La prise en compte de la dépendance à la position dans l'espace de travail permet de limiter les efforts dans les câbles et ainsi d'améliorer l'efficience des robots d'un point de vue énergétique. / This thesis contributes to the analysis of the static and dynamic stiffness of cable-driven parallel robots (CDPRs) aiming to improve the static positioning accuracy and the trajectory tracking accuracy. The proposed static and dynamic cable modeling considers the effect of cable weight on the cable profile and the effect of cable mass on the cable dynamics. Based on the static cable model, the static pose error of the end-effector is defined and the variation of the end-effector pose error with the external load is used to evaluate the static stiffness of CDPRs. A new dynamic model of CDPRs is proposed with considering the coupling of the cable dynamics and the end-effector vibrations. Experimental validations are carried out on CDPR prototypes. Static experiments, modal experiments, free vibration experiments and trajectory experiments are performed. The proposed static and dynamic models are verified. Cable dynamics, robot dynamics and their coupling are discussed. Results show the relevance of the proposed models on improving the performances of CDPRs in terms of design and control. Besides stiffness analysis, the proposed models are applied on the force distribution of redundant actuated CDPRs. A new method on the calculation of the cable forces is proposed, where the determination of the lower-boundary of the cable forces is presented. The consideration of the pose-dependence of the lower force boundary can minimize the cable forces and improve the energy efficiency of CDPRs.
16

Development of Learning Control Strategies for a Cable-Driven Device Assisting a Human Joint

Hao Xiong (7954217) 25 November 2019 (has links)
<div>There are millions of individuals in the world who currently experience limited mobility as a result of aging, stroke, injuries to the brain or spinal cord, and certain neurological diseases. Robotic Assistive Devices (RADs) have shown superiority in helping people with limited mobility by providing physical movement assistance. However, RADs currently existing on the market for people with limited mobility are still far from intelligent.</div><div><br></div><div>Learning control strategies are developed in this study to make a Cable-Driven Assistive Device (CDAD) intelligent in assisting a human joint (e.g., a knee joint, an ankle joint, or a wrist joint). CDADs are a type of RADs designed based on Cable-Driven Parallel Robots (CDPRs). A PID–FNN control strategy and DDPG-based strategies are proposed to allow a CDAD to learn physical human-robot interactions when controlling the pose of the human joint. Both pose-tracking and trajectory-tracking tasks are designed to evaluate the PID–FNN control strategy and the DDPG-based strategies through simulations. Simulations are conducted in the Gazebo simulator using an example CDAD with three degrees of freedom and four cables. Simulation results show that the proposed PID–FNN control strategy and DDPG-based strategies work in controlling a CDAD with proper learning.</div>
17

SEVEN-DOF CABLE-SUSPENDED ROBOT WITH INDEPENDENT SIX-DOF METROLOGY

Snyder, Benjamin M. 18 April 2006 (has links)
No description available.
18

Kinematically singular pre-stressed mechanisms as new semi-active variable stiffness springs for vibration isolation

Azadi Sohi, Mojtaba 11 1900 (has links)
Researchers have offered a variety of solutions for overcoming the old and challenging problem of undesired vibrations. The optimum vibration-control solution that can be a passive, semi-active or active solution, is chosen based on the desired level of vibration-control, the budget and the nature of the vibration source. Mechanical vibration-control systems, which work based on variable stiffness control, are categorized as semi-active solutions. They are advantageous for applications with multiple excitation frequencies, such as seismic applications. The available mechanical variable stiffness systems that are used for vibration-control, however, are slow and usually big, and their slowness and size have limited their application. A new semi-active variable stiffness solution is introduced and developed in this thesis to address these challenges by providing a faster vibration-control system with a feasible size. The new solution proposed in this thesis is a semi-active variable stiffness mount/isolator called the antagonistic Variable Stiffness Mount (VSM), which uses a variable stiffness spring called the Antagonistic Variable stiffness Spring (AVS). The AVS is a kinematically singular prestressable mechanism. Its stiffness can be changed by controlling the prestress of the mechanisms links. The AVS provides additional stiffness for a VSM when such stiffness is needed and remains inactive when it is not needed. The damping of the VSM is constant and an additional constant stiffness in the VSM supports the deadweight. Two cable-mechanisms - kinematically singular cable-driven mechanisms and Prism Tensegrities - are developed as AVSs in this thesis. Their optimal configurations are identified and a general formulation for their prestress stiffness is provided by using the notion of infinitesimal mechanism. The feasibility and practicality of the AVS and VSM are demonstrated through a case study of a typical engine mount by simulation of the mathematical models and by extensive experimental analysis. A VSM with an adjustable design, a piezo-actuation mechanism and a simple on-off controller is fabricated and tested for performance evaluation. The performance is measured based on four criteria: (1) how much the VSM controls the displacement near the resonance, (2) how well the VSM isolates the vibration at high frequencies, (3) how well the VSM controls the motion caused by shock, and (4) how fast the VSM reacts to control the vibration. For this evaluation, first the stiffness of the VSM was characterized through static and dynamic tests. Then performance of the VSM was evaluated and compared with an equivalent passive mount in two main areas of transmissibility and shock absorption. The response time of the VSM is also measured in a realistic scenario.
19

Kinematically singular pre-stressed mechanisms as new semi-active variable stiffness springs for vibration isolation

Azadi Sohi, Mojtaba Unknown Date
No description available.
20

Vibration Analysis and Reduction of Cable-Driven Parallel Robots / Analyse et réduction des vibrations des Robots Parallèles à Câbles

Baklouti, Sana 11 December 2018 (has links)
Cette thèse vise à améliorer le positionnement statique et la précision de suivi de trajectoire des Robots Parallèles à Câbles (RPC) tout en prenant en compte leur élasticité globale. A cet effet, deux stratégies de commandes complémentaires valables pour toute configuration de RPC sont proposées.Tout d'abord, une analyse de robustesse est réalisée pour aboutir à une commande robuste des RPC référencée modèle. Un modèle de RPC approprié est défini en fonction de l'application visée et les principales sources d'erreurs de pose de la plate-forme mobile sont identifiées.Une première méthode de commande est proposée sur la base des résultats de l'analyse de robustesse. Cette première méthode réside dans le couplage d'une commande référencée modèle d’un contrôleur PID.Dans le cadre de cette thèse, un modèle élasto-dynamique de RPC est exprimé afin de compenser le comportement oscillatoire de sa plate-forme mobile dû à l'élongation des câbles et de son comportement dynamique.La deuxième méthode de commande utilise des filtres "input-shaping" dans la commande référencée modèle proposée afin d'annuler les mouvements oscillatoires de la plate-forme mobile. Ainsi, le signal d'entrée est modifié pour que le RPC annule automatiquement les vibrations résiduelles. Les résultats théoriques obtenus sont validés expérimentalement à l'aide d'un prototype de RPC non redondant en actionnement et en configuration suspendue. Les résultats expérimentaux montrent la pertinence des stratégies de commande proposées en termes d'amélioration de la précision de suivi de trajectoire et de réduction des vibrations. / This thesis aims at improving the static positioning and trajectory tracking accuracy of Cable- Driven Parallel Robots (CDPRs) while considering their overall elasticity. Accordingly, two complementary control strategies that are valid for any CDPR configuration are proposed.First, a robustness analysis is performed to lead to a robust model-based control of CDPRs. As a result, an appropriate CDPR model is defined as a function of the targeted application and the main sources of CDPR moving-platforms pose errors are identified.A first control method is determined based on the results of the robustness analysis. This first method lies in the coupling of a model-based feed-forward control scheme for CDPR with a PID feedback controller.Here, an elasto-dynamic model of the CDPR is expressed to compensate the oscillatory motions of its moving-platform due to cable elongations and its dynamic behavior.The second control method uses input-shaping filters into the proposed model-based feed-forward control in order to cancel the oscillatory motions the movingplatform. Thus, the input signal is modified for the CDPR to self-cancel residual vibrations.Experimental validations are performed while using suspended and non-redundant CDPR prototype. The proposed feed-forward model-based control schemes are implemented, and their effectiveness is discussed.Results show the relevance of the proposed control strategies in terms of trajectory tracking accuracy improvement and vibration reduction.

Page generated in 0.05 seconds