Spelling suggestions: "subject:"car.software"" "subject:"capturingsoftware""
1 |
Teaching Derivations of Area and Measurement Concepts of the Circle: A Conceptual-Based Learning Approach through Dissection Motion OperationsShields, Tracy, Rahim, Medhat H. 20 March 2012 (has links) (PDF)
No description available.
|
2 |
The use of visualization for learning and teaching mathematicsRahim, Medhat H., Siddo, Radcliffe 09 May 2012 (has links) (PDF)
In this article, based on Dissection-Motion-Operations, DMO (decomposing a figure into several pieces and composing the resulting pieces into a new figure of equal area), a set of visual
representations (models) of mathematical concepts will be introduced. The visual models are producible through manipulation and computer GSP/Cabri software. They are based on the van Hiele’s Levels (van Hiele, 1989) of Thought Development; in particular, Level 2 (Informal
Deductive Reasoning) and level 3 (Deductive Reasoning). The basic theme for these models has been visual learning and understanding through manipulatives and computer representations of mathematical concepts vs. rote learning and memorization. The three geometric transformations or motions: Translation, Rotation, Reflection and their possible combinations were used; they are illustrated in several texts. As well, a set of three commonly used dissections or decompositions
(Eves, 1972) of objects was utilized.
|
3 |
The use of visualization for learning and teaching mathematicsRahim, Medhat H., Siddo, Radcliffe 09 May 2012 (has links)
In this article, based on Dissection-Motion-Operations, DMO (decomposing a figure into several pieces and composing the resulting pieces into a new figure of equal area), a set of visual
representations (models) of mathematical concepts will be introduced. The visual models are producible through manipulation and computer GSP/Cabri software. They are based on the van Hiele’s Levels (van Hiele, 1989) of Thought Development; in particular, Level 2 (Informal
Deductive Reasoning) and level 3 (Deductive Reasoning). The basic theme for these models has been visual learning and understanding through manipulatives and computer representations of mathematical concepts vs. rote learning and memorization. The three geometric transformations or motions: Translation, Rotation, Reflection and their possible combinations were used; they are illustrated in several texts. As well, a set of three commonly used dissections or decompositions
(Eves, 1972) of objects was utilized.
|
4 |
Teaching Derivations of Area and Measurement Concepts of the Circle: A Conceptual-Based Learning Approach through Dissection Motion OperationsShields, Tracy, Rahim, Medhat H. 20 March 2012 (has links)
No description available.
|
Page generated in 0.0383 seconds