Spelling suggestions: "subject:"jahn billiard equations"" "subject:"jahn billiard aquations""
1 |
Morphology formation via a ternary Cahn-Hilliard system during one species evaporation as a moving boundary problem - Finite Element approximation and implementation in FEniCS / Morforlogiformation via ett trekomponents Cahn-Hilliard system under enkomponents avdunstning i en tidsberoende domän - Finita element metoden och implementation i FEniCSJävergård, Nicklas January 2020 (has links)
In this thesis we derive a coupled system of Cahn-Hilliard equations posed in a domain with moving boundary using arguments from thermodynamics. The physical setting we have in mind is a ternary solution observed during one species evaporation as a moving boundary problem. The mixture is made of two types of polymers blended in a solvent that is allowed to evaporate at part of the surface of the domain. After formulating the evolution system as a moving-boundary problem with kinetic interface condition, we fix the moving boundary to facilitate a suitable numerical approximation. We project the resulting model equations on a finite element space and then integrate the obtained system in Python using FEniCS. We show numerically the formation of morphologies and track the evolution of the remaining solvent and of the moving boundary position. The conjecture is that such a system would produce phase separation and that the resulting morphologies are mappable to the observations of organic solar cells. Finally, we study the effect of the most relevant parameters on the output of our Cahn-Hilliard system, particularly on the speed of the moving boundary and of the morphology formation. / I denna tes härleder vi ett kopplat system av Cahn-Hilliard ekvationer fomulerad i en tidsberoende domän med hjälp av termodynamiska argument. Den fysiska miljön vi tänker oss är en trekomponents lösning observerad under avdunstning med hänsyn till en tidsberoende domän. Blandningen består av två polymerer utspädda i ett lösningsmedel som tillåts förånga vid en av domänens gränser. Efter att vi formulerat evolutions ekvationerna i en tidsberoende domän med kinetiska gränsvillkor så utförs en transformation till en tidsoberoende domän för att underlätta en lösning med finita elementmetoden. Vi projicerar de resulterande ekvationerna på ett diskret rum skapat m.h.a. finita elementmetoden för att sedan integrera systemet med hjälp av FEniCS platformen skrivet i Python. Vi visar nummeriska lösningar för morfologiformationen och följer evolutionen av lösningsmedlet samt positionen för den rörliga gränsen. Vår förmodan är att ett sådant system kommer producera fas-seperation och den resulterande morfologin kommer vara jämnförbar med det som observeras hos organiska solceller. Slutligen studerar vi hur variationer av dom mest relevanta parametrarna påverkar på vårt Cahn-Hilliard system, i synnerhet positionen som en funktion av tid hos den rörliga gränsen samt morfologiformationen.
|
2 |
Two-scale homogenization of systems of nonlinear parabolic equationsReichelt, Sina 11 December 2015 (has links)
Ziel dieser Arbeit ist es zwei verschiedene Klassen von Systemen nichtlinearer parabolischer Gleichungen zu homogenisieren, und zwar Reaktions-Diffusions-Systeme mit verschiedenen Diffusionslängenskalen und Gleichungen vom Typ Cahn-Hilliard. Wir betrachten parabolische Gleichungen mit periodischen Koeffizienten, wobei die Periode dem Verhältnis der charakteristischen mikroskopischen zu der makroskopische Längenskala entspricht. Unser Ziel ist es, effektive Gleichungen rigoros herzuleiten, um die betrachteten Systeme besser zu verstehen und den Simulationsaufwand zu minimieren. Wir suchen also einen Konvergenzbegriff, mit dem die Lösung des Ausgangsmodells im Limes der Periode gegen Null gegen die Lösung des effektiven Modells konvergiert. Um die periodische Mikrostruktur und die verschiedenen Diffusivitäten zu erfassen, verwenden wir die Zwei-Skalen Konvergenz mittels periodischer Auffaltung. Der erste Teil der Arbeit handelt von Reaktions-Diffusions-Systemen, in denen einige Spezies mit der charakteristischen Diffusionslänge der makroskopischen Skala und andere mit der mikroskopischen diffundieren. Die verschiedenen Diffusivitäten führen zu einem Verlust der Kompaktheit, sodass wir nicht direkt den Grenzwert der nichtlinearen Terme bestimmen können. Wir beweisen mittels starker Zwei-Skalen Konvergenz, dass das effektive Modell ein zwei-skaliges Modell ist, welches von der makroskopischen und der mikroskopischen Skale abhängt. Unsere Methode erlaubt es uns, explizite Raten für die Konvergenz der Lösungen zu bestimmen. Im zweiten Teil betrachten wir Gleichungen vom Typ Cahn-Hilliard, welche ortsabhängige Mobilitätskoeffizienten und allgemeine Potentiale beinhalten. Wir beweisen evolutionäre Gamma-Konvergenz der zugehörigen Gradientensysteme basierend auf der Gamma-Konvergenz der Energien und der Dissipationspotentiale. / The aim of this thesis is to derive homogenization results for two different types of systems of nonlinear parabolic equations, namely reaction-diffusion systems involving different diffusion length scales and Cahn-Hilliard-type equations. The coefficient functions of the considered parabolic equations are periodically oscillating with a period which is proportional to the ratio between the charactersitic microscopic and macroscopic length scales. In view of greater structural insight and less computational effort, it is our aim to rigorously derive effective equations as the period tends to zero such that solutions of the original model converge to solutions of the effective model. To account for the periodic microstructure as well as for the different diffusion length scales, we employ the method of two-scale convergence via periodic unfolding. In the first part of the thesis, we consider reaction-diffusion systems, where for some species the diffusion length scale is of order of the macroscopic length scale and for other species it is of order of the microscopic one. Based on the notion of strong two-scale convergence, we prove that the effective model is a two-scale reaction-diffusion system depending on the macroscopic and the microscopic scale. Our approach supplies explicit rates for the convergence of the solution. In the second part, we consider Cahn-Hilliard-type equations with position-dependent mobilities and general potentials. It is well-known that the classical Cahn-Hilliard equation admits a gradient structure. Based on the Gamma-convergence of the energies and the dissipation potentials, we prove evolutionary Gamma-convergence, for the associated gradient system such that we obtain in the limit of vanishing periods a Cahn-Hilliard equation with homogenized coefficients.
|
3 |
Analyse mathématique et numérique de plusieurs problèmes non linéaires / Mathematical and numerical analysis of some nonlinear problemsPeng, Shuiran 07 December 2018 (has links)
Cette thèse est consacrée à l’étude théorique et numérique de plusieurs équations aux dérivées partielles non linéaires qui apparaissent dans la modélisation de la séparation de phase et des micro-systèmes électro-mécaniques (MSEM). Dans la première partie, nous étudions des modèles d’ordre élevé en séparation de phase pour lesquels nous obtenons le caractère bien posé et la dissipativité, ainsi que l’existence de l’attracteur global et, dans certains cas, des simulations numériques. De manière plus précise, nous considérons dans cette première partie des modèles de type Allen-Cahn et Cahn-Hilliard d’ordre élevé avec un potentiel régulier et des modèles de type Allen-Cahn d’ordre élevé avec un potentiel logarithmique. En outre, nous étudions des modèles anisotropes d’ordre élevé et des généralisations d’ordre élevé de l’équation de Cahn-Hilliard avec des applications en biologie, traitement d’images, etc. Nous étudions également la relaxation hyperbolique d’équations de Cahn-Hilliard anisotropes d’ordre élevé. Dans la seconde partie, nous proposons des schémas semi-discrets semi-implicites et implicites et totalement discrétisés afin de résoudre l’équation aux dérivées partielles non linéaire décrivant à la fois les effets élastiques et électrostatiques de condensateurs MSEM. Nous faisons une analyse théorique de ces schémas et de la convergence sous certaines conditions. De plus, plusieurs simulations numériques illustrent et appuient les résultats théoriques. / This thesis is devoted to the theoretical and numerical study of several nonlinear partial differential equations, which occur in the mathematical modeling of phase separation and micro-electromechanical system (MEMS). In the first part, we study higher-order phase separation models for which we obtain well-posedness and dissipativity results, together with the existence of global attractors and, in certain cases, numerical simulations. More precisely, we consider in this first part higher-order Allen-Cahn and Cahn-Hilliard equations with a regular potential and higher-order Allen-Cahn equation with a logarithmic potential. Moreover, we study higher-order anisotropic models and higher-order generalized Cahn-Hilliard equations, which have applications in biology, image processing, etc. We also consider the hyperbolic relaxation of higher-order anisotropic Cahn-Hilliard equations. In the second part, we develop semi-implicit and implicit semi-discrete, as well as fully discrete, schemes for solving the nonlinear partial differential equation, which describes both the elastic and electrostatic effects in an idealized MEMS capacitor. We analyze theoretically the stability of these schemes and the convergence under certain assumptions. Furthermore, several numerical simulations illustrate and support the theoretical results.
|
4 |
Modely s neostrým rozhraním v teorii směsí / Diffuse interface models in theory of interacting continuaŘehoř, Martin January 2018 (has links)
We study physical systems composed of at least two immiscible fluids occu- pying different regions of space, the so-called phases. Flows of such multi-phase fluids are frequently met in industrial applications which rises the need for their numerical simulations. In particular, the research conducted herein is motivated by the need to model the float glass forming process. The systems of interest are in the present contribution mathematically described in the framework of the so-called diffuse interface models. The thesis consists of two parts. In the modelling part, we first derive standard diffuse interface models and their generalized variants based on the concept of multi-component continuous medium and its careful thermodynamic analysis. We provide a critical assessment of assumptions that lead to different models for a given system. Our newly formulated class of generalized models of Cahn-Hilliard-Navier-Stokes-Fourier (CHNSF) type is applicable in a non-isothermal setting. Each model belonging to that class describes a mixture of separable, heat conducting Newtonian fluids that are either compressible or incompressible. The models capture capillary and thermal effects in thin interfacial regions where the fluids actually mix. In the computational part, we focus on the development of an efficient and robust...
|
Page generated in 0.0759 seconds