• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 9
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 49
  • 49
  • 20
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Factors Affecting the Structural Integrity of Wood-Based Composites: Elevated Temperature and Adhesive Bonding

Li, Yuqin 01 April 2021 (has links)
This study focuses on factors that affect the structural integrity of wood-based composites. Wood-based composites exposed to fire may decompose due to the elevated temperatures, resulting in a degradation in performance. Thermal modelling can only predict the structural integrity of construction materials in fire if it is given accurate inputs. Consequently, methods for the characterization of the thermal, physical, and mechanical behaviors of wood and wood-based composites are selected, designed, and benchmarked. The relevant thermal and physical responses characterized includes porosity, permeability and thermal diffusivity. Common construction materials (white pine board, medium density fiberboard and spruce 24) are characterized from room temperature to complete decomposition. The characterization techniques and processes are based on existing literature and relevant ASTM standards. To reduce the number of experiments required for future material characterization, estimates based upon the degree of decomposition and the measured values for the virgin and charred materials are used. For porosity and thermal diffusivity, these models allow values at intermediate temperatures to be estimated with measurements at room temperature and complete decomposition and thermogravimetric analysis (TGA). We find that permeability depends heavily on the microstructure of materials and should be measured independently at the conditions of interest. An additional important aspect of the performance of wood-based composites is the fracture behavior of wood/adhesive systems. Adhesive bonding enables many engineered wood products such as furniture and structural wood joints and the adhesive fracture toughness often determines the durability. The conventional characterization method for wood/adhesive fracture resistance relies on samples with machined grain angles designed to funnel cracks to the adhesive interface. This method of sample preparation is difficult and time-consuming for certain wood species. In this work, a practical and efficient method is developed to characterize adhesive fracture energy of adhesively bonded veneer systems. In the method, auxiliary aluminum adherends are bonded to the veneers in an effort to drive the crack to the wood/adhesive interface. The method is applied to rotary-peeled veneers and saw-cut veneers produced from three species of wood bonded with three commonly used adhesives. The new tests method yields a high interfacial failure rate and successfully identifies differences in the performance of the three adhesives. SPG (one species of the rotary-peeled veneers) demonstrates a rising R-curve behavior (an increase in the fracture toughness with crack length) when bonded on the loose side. This increase in fracture toughness is observed to be a result of adhesive-substrate interaction, which is a developing process zone behind the crack tip consisting of bridged wood ligaments. / Doctor of Philosophy / Construction materials exposed to elevated temperatures from fires may reach temperatures where the material decomposes from the original material to a char. Protected and unprotected structural timber products exposed to fires may exhibit this behavior resulting in a degradation of performance. Understanding the thermal and physical responses of these materials is crucial in evaluating the materials behavior in fire. Additionally, many wood-based products (such as furniture) rely on adhesive bonds. Consequently, their usefulness is determined by the performance of those bonds. In this work, methods are developed to measure key properties impacting the behavior of wood-based systems at elevated temperatures, such as that experienced in fires and when they are subjected to forces attempting to debond one wood material from another. These techniques are demonstrated on common building materials (white pine board, medium density fiberboard and spruce 24) and wood veneers from three different species bonded with three different adhesives. Mathematical models are developed to expand the use of the data beyond the specific conditions for which it is measured.
32

Performance Evaluation and Durability Studies of Adhesive Bonds

Ranade, Shantanu Rajendra 06 October 2014 (has links)
In this dissertation, four test approaches were developed to characterize the adhesion performance and durability of adhesive bonds for specific applications in areas spanning from structural adhesive joints to popular confectionaries such as chewing gum. In the first chapter, a double cantilever beam (DCB) specimen geometry is proposed for combinatorial fracture studies of structural adhesive bonds. This specimen geometry enabled the characterization of fracture energy vs. bondline thickness trends through fewer tests than those required during a conventional "one at a time" characterization approach, potentially offering a significant reduction in characterization times. The second chapter investigates the adhesive fracture resistance and crack path selection in adhesive joints containing patterns of discreet localized weak interfaces created using physical vapor deposition of copper. In a DCB specimen tested under mode-I conditions, fracture energy within the patterned regions scaled according to a simple rule of mixture, while reverse R-curve and R-curve type trends were observed in the regions surrounding weak interface patterns. Under mixed mode conditions such that bonding surface with patterns is subjected to axial tension, fracture energy did not show R-curve type trends while it was observed that a crack could be made to avoid exceptionally weak interfaces when loaded such that bonding surface with defects is subjected to axial compression. In the third chapter, an adaptation of the probe tack test is proposed to characterize the adhesion behavior of gum cuds. This test method allowed the introduction of substrates with well-defined surface energies and topologies to study their effects on gum cud adhesion. This approach and reported insights could potentially be useful in developing chewing gum formulations that facilitate easy removal of improperly discarded gum cuds from adhering surfaces. In the fourth chapter we highlight a procedure to obtain insights into the long-term performance of silicone sealants designed for load-bearing applications such as solar panel support sealants. Using small strain constitutive tests and time-temperature-superposition principle, thermal shift factors were obtained and successfully used to characterize the creep rupture master curves for specific joint configurations, leading to insights into delayed failures corresponding to three years through experiments carried out in one month. / Ph. D.
33

Fracture and Friction Characterization of Polymer Interfaces

Vu, Ivan 18 December 2015 (has links)
Understanding the interactions of polymer interfaces is essential to improve polymer-based designs, as the properties of the interface are often different than those of the bulk material. This thesis explores the interfacial interactions of polymer interfaces for two classes of materials, additive manufacturing materials and fiber-reinforced composites. Additive manufacturing (AM) refers to a number of processes which rely on data generated from computer-aided design (CAD) programs to construct components by adding material in a layer-by-layer fashion. AM continues to generate a substantial amount of interest to produce fully functional products while reducing tooling costs associated with traditional manufacturing techniques such as casting and welding. Recent advancements in the field have led to the production of multi-material printing that has the potential to create products with enhanced mechanical properties and additional functionality. This thesis attempts to characterize the fracture resistance of AM materials produced by the PolyJet process. Test standards established for mode I fracture testing of adhesive joints are adapted to evaluate the fracture resistance and interface between two printed acrylic-based photopolymers. Significant differences in fracture energy and loci of failure between the selected test configurations were observed depending on the print orientation. Failures were nominally seen to occur at the interface, alternating from one adherend interface to another in a random fashion. Results demonstrated a decreasing trend in fracture energy at slower crack propagation rates, indicating that such dependency is associated with the fracture resistance of the interface. T-peel tests conducted on specimens prepared with both constant and graded interlayers revealed enhanced peel resistance with gradient interlayers, suggesting design opportunities of enhanced fracture toughness by implementing intricate material patterns at the interface of the two photopolymers. Fiber reinforced composite (FRCs) materials have become increasingly desirable in a number of industrial applications where weight reduction is critical for increased payloads and higher performance. When manufacturing structures from these materials, the presence of friction in the composite forming process is seen to have a major effect on the finished quality. Friction between the plies, or between the composite laminate and forming tool, can be undesirable as shape distortions such as wrinkles can appear and compromise the structural integrity of the finished product. To evaluate these frictional processes, a standard rheometer is used to evaluate tool-ply friction on dry textile fabrics and graphite/epoxy prepregs over a range of temperatures, pressures, and sliding velocities. The results provide some general insights into the frictional response of composite prepregs as a function of the manufacturing environment. The materials tested are shown to have different mechanisms that govern the frictional processes. In particular, the results of friction testing on the prepreg indicate that friction comes from a contribution of both Coulomb and viscous-related mechanisms, the latter which become especially at higher temperatures. / Master of Science
34

Design, Modeling, and Nonlinear Dynamics of a Cantilever Beam-Rigid Body Microgyroscope

Mousavi Lajimi, Seyed Amir 05 December 2013 (has links)
A new type of cantilever beam gyroscope is introduced, modeled, and analyzed. The main structure includes a cantilever beam and a rigid body attached to the free end of the beam. The model accounts for the eccentricity, that is the offset of the center of mass of the rigid body relative to the beam's free end. The first and second moments of mass and the rotary inertia appear in the equations of motion and boundary conditions. The common mechanism of electrostatic actuation of microgyroscopes is used with the difference of computing the force at the center of mass resulting in the electrostatic force and moment in the boundary conditions. By using the extended Hamilton's principle, the method of assumed modes, and Lagrange's differential equations, the equations of motion, boundary conditions, and the discretized model are developed. The generalized model simplifies to other beam gyroscope models by setting the required parameters to zero. Considering the DC and AC components of the actuating and sensing methods, the response is resolved into the static and dynamic components. The static configuration is studied for an increasing DC voltage. For the uncoupled system of equations, the explicit equation relating the DC load and the static configuration is computed and solved for the static configuration of the beam-rigid body in each direction. Including the rotation rate, the stationary analysis is performed, the stationary pull-in voltage is identified, and it is shown that the angular rotation rate does not affect the static configuration. The modal frequencies of the beam-rigid body gyroscope are studied and the instability region due to the rotation rate is computed. It is shown that the gyroscope can operate in the frequency modulation mode and the amplitude modulation mode. To operate the beam-rigid body gyroscope in the frequency modulation mode, the closed-form relation of the observed modal frequency split and the input rotation rate is computed. The calibration curves are generated for a variety of DC loads. It is shown that the scale factor improves by matching the zero rotation rate natural frequencies. The method of multiple scales is used to study the reduced-order nonlinear dynamics of the oscillations around the static equilibrium. The modulation equations, the ``slow'' system, are derived and solved for the steady-state solutions. The computational shooting method is employed to evaluate the results of the perturbation method. The frequency response and force response plots are generated. For combinations of parameters resulting in a single-valued response, the two methods are in excellent agreement. The synchronization of the response occurs in the sense direction for initially mismatched natural frequencies. The global stability of the system is studied by drawing phase-plane diagrams and long-time integration of response trajectories. The separatrices are computed, the jump phenomena is numerically shown, and the dynamic pull-in of the response is demonstrated. The fold bifurcation points are identified and it is shown that the response jumps to the higher/lower branch beyond the bifurcation points in forward/backward sweep of the amplitude and the excitation frequency of AC voltage. The mechanical-thermal (thermomechanical) noise effect on the sense response is characterized by using a linear approximation of the system and the nonlinear "slow" system obtained by using the method of multiple scales. To perform linear analysis, the negligible effect of Coriolis force on the drive amplitude is discarded. The second-order drive resonator is solved for the drive amplitude and phase. Finding the sense response due to the thermal noise force and the Coriolis force and equating them computes the mechanical-thermal noise equivalent rotation rate in terms of system parameters and mode shapes. The noise force is included in the third-order equation of the perturbation and equation to account for that in the reduced-order nonlinear response. The numerical results of linear and reduced-order nonlinear thermal noise analyses agree. It is shown that higher quality factor, higher AC voltage, and operating at lower DC points result in better resolution of the microsensor.
35

New Generation of Vibration Experiments Remotely Controlled Over the Internet:Development of Labview based Spectrum Analyzer and Interface. / New Generation of Vibration Experiments Remotely Controlled Over the Internet:Development of Labview based Spectrum Analyzer and Interface.

Ullah, Farooq Kifayat January 2010 (has links)
This thesis is part of the on going work at BTH (Blekinge Technical University) to develop a remote lab for Sound and Vibration Experiments. The aim of this undertaking is to develop a Spectrum Analyzer that can simultaneously take inputs from 10 sensors and be able to measure the Power Spectral Density, Cross correlation, Frequency Response Functions (FRF) and coherence. The Interface and analysis algorithms are developed inLabview programming language. The thesis starts by introducing the overall aim of the project and its scope, the place of this particular thesis in the whole picture and the algorithms used for analysis are introduced. In the second part of the thesis the development of the software is explained and the main aim is to thoroughly document the software. This part of the thesis explains Labview programming concepts in detail to make it easier for other students who want to undertake theses to continue this work and who may not have experience of Labview programming.Two versions of the spectrum analyzer were developed. The third part explains theexperimental set up and results obtained and compares measurements to those obtained using other spectrum analyzers. An accurate Spectrum Analyzer Virtual Instrument has been developed and tested during this thesis project and it can be used as a component of the proposed Sound and vibration analysis laboratory and also for general Spectral Analysis tasks. / Good guide to learn Labview and sound and vibration analysis.. / fkul08@gmail.com Is my email and i can be contacted via messenger usually at farooq_kifayat@hotmail.com And i can also be contacted via skype using farooqkifayat as my name. I move around a lot so i have no permanent address that stays longer than half a year .
36

Návrh testovacího přípravku piezoelektrických vlastností PVDF vrstvy / Design of tester of piezoelectric PVDF layers

Sijková, Simona January 2020 (has links)
The diploma thesis deals with a design of a tester device, a selection and verification of a suitable method for comparing the piezoelectric properties of tested PVDF samples. In the introduction, a basic overview of the theory is important to understand the issue and the various branches of use of PVDF in the field of energy harvesting. The tester device includes a unimorph piezoelectric cantilever beam with tip mass, whose properties are described by three models: a model with N degrees of freedom reduced to one degree of freedom (NDOF), a single degree of freedom model (SDOF), both created in Matlab and a model for verifying results in FEM ANSYS Workbench program. The voltage time response and the voltage frequency response of the models is compared with each other. For two different PVDF samples, the voltage response to harmonic excitation is measured using a tester device, and the piezoelectric properties of one of them are determined using the NDOF and SDOF models.
37

Characterization of thin laminate interface by using Double Cantilever Beam and End Notched Flexure tests

Majeed, Moiz, Venkata Teja Geesala, Rahitya January 2020 (has links)
This thesis is intended to identify the mode I and mode II fracture toughness to characterize the thin laminate interface by using the Double Cantilever Beam test (DCB) and End Notched Flexure test (ENF). This study’s thin laminate was Polyethylene Terephthalate and Low-Density Polyethylene (PET-LDPE), which is mostly used by packaging industries in the manufacturing of packages to store liquid food. As PET-LDPE film is very flexible and difficult to handle, DCB and ENF tests cannot be performed directly so, sheet metal (Aluminium) was used as carrier material. PET-LDPE film is placed between two aluminum plates to reduce the flexibility and perform the tests. Therefore, the Aluminium plate was also studied to find the constitutive parameters (young’s modulus (E) and mixed hardening parameters (Plastic properties)) under the tensile test and three-point bending test. From the test response, energy release rate calculation has been done for different Pre-crack lengths to validate the DCB and ENF experimental setup, study the different Pre-crack lengths, and characterize the laminate interface. Finite Element simulation (FE simulation) for those tests were carried out in AbaqusTM2020. When needed, the force versus displacement response from FE simulation was optimized against experimental response to find the required constitutive parameters (Young’s modulus, Hardening parameters, and PET-LDPE material properties). Implementing of optimization algorithm and automated simulation has been done with the help of MATLAB code. In contrast, MATLAB works as a server, and Abaqus works as a client and connected two interfaces to run the optimization. The results obtained from experiments and FE simulations were compared to the results found in the literature.
38

Evaluating Thermal and Mechanical Properties of Electrically Conductive Adhesives for Electronic Applications

Xu, Shuangyan 26 April 2002 (has links)
The objective of this study was to evaluate and gain a better understanding of the short-term impact performance and the long-term durability of electrically conductive adhesives for electronic interconnection applications. Three model conductive adhesives, designated as ECA1, ECA2 and ECA3, supplied by Emerson & Cuming, were investigated, in conjunction with printed circuit board (PCB) substrates with metallizations of Au/Ni/Cu and Cu, manufactured by Triad Circuit Inc. Effects of environmental aging on the durability of conductive adhesives and their joints were evaluated. All the samples for both mechanical tests and thermal tests were aged at 85%, 100%RH for periods of up to 50 days. Studies of bulk conductive adhesives suggested that both plasticization, which is reversible and further crosslinking and thermal degradation, which are irreversible, might have occurred upon exposure of ECAs to the hot/wet environment. The durability of electrically conductive adhesive joints was then investigated utilizing the double cantilever beam (DCB) test. It was observed that the conductive adhesive joint was significantly weakened following hydrothermal aging, and there was a transition from cohesive failure to interfacial failure as aging continued. A comparative study of the durability of different conductive adhesive and substrate metallization combinations suggested that the resistance of the adhesive joints to moisture attack is related to the adhesive properties, as well as the substrate metallizations. It was noted that the gold/adhesive interface had better resistance to moisture attack than the copper/adhesive interface. A reasonable explanation of this phenomenon was given based upon the concept of surface free energy and interfacial free energy. XPS analysis was performed on the fractured surfaces of DCB samples. For adhesive joints with copper metallization, copper oxide was detected on the failed surfaces upon exposure of the conductive adhesive joints following aging. XPS analysis on the fractured surfaces of adhesive joints with Au metallization suggested that diffusion of Cu to the Au surface might have happened on the Au/Ni/Cu plated PCB substrates during aging. The impact performance of conductive adhesives was quantitatively determined using a falling wedge test. This unique impact resistance testing method could serve as a useful tool to screen conductive adhesives at the materials level for bonding purpose. Moreover, this test could also provide some useful information for conductive adhesive development. This study revealed that the viscoelastic energy, which is a result of the internal friction created by chain motions within the adhesive material, played an important role in the impact fracture behavior of the conductive adhesives. This study also demonstrated that the loss factor, evaluated at the impact environment conditions, is a good indicator of a conductive adhesive's ability to withstand impact loading. / Ph. D.
39

Etude de dispositifs piézoélectriques et de leurs interfaces pour la récupération d'énergie / Designs for MEMS and Bulk-Sized Piezoelectric Energy Harvesting Systems for Ultra Low Power and Bandwidth Extension

Shih, Ya Shan 12 January 2018 (has links)
La récupération d'énergie ambiante permet d’alimenter de manière autonome des systèmes de petite taille tels que des neouds de capteurs ou des objets connectés à internet (IoT) en remplacement des batteries. Les sources d’énergie ambiante sont par exemple, l’énergie solaire, le gradient thermique, les forces mécaniques, le rayonnement électromagnétique et la pile microbienne. Les matériaux piézoélectriques permettent de valoriser électriquement l’énergie mécanique de vibration en la convertissant directement en énergie électrique. Les niveaux de puissance assez faible (de quelques μW au mW) ont amené à développer des interfaces électriques de récupération afin d’extraire le maximum d'énergie en améliorant le couplage électromécanique. Dans ce travail, nous nous intéressons à l’amélioration de dispositif de récupération d’énergie. Deux aspects sont abordés : dans un premier temps l’étude d’un commutateur hybride synchrone électrique-mécanique est faite pour remplacer le transistor MOSFET couramment utilisé, afin de réduire sa consommation d’énergie ; dans un deuxième temps, un travail est mené sur une nouvelle structure mécanique à base de poutres reliées entre elle par des forces de répulsion magnétique. La structure obtenue par cet ensemble de poutres et de type non-linéaire à plusieurs degrés de liberté (MDOF) ce qui permet augmenter la bande passante. / The future trend of Internet of Things (IoT) is bringing energy harvesting in to the core technique due to its requirement of self-power supplying. For best customer interface and eco-friendly issues, additional sensing systems are to be designed small, wireless and self-powering. Energy harvesting provides a way to realize the wireless self-powered system, it enables the device itself to obtain its own energy from their environment. Solar energy, thermal gradient, mechanical forces, are some commonly seen methods to obtain energy from the environment. The piezoelectric energy harvester is chosen to harvest vibrational energy in this study. In this work, a simple model of the original electrical smart switch driven under ultra-low power is proposed. By using the miniature device to drive the smart switch, the efficiency when low power is provided was examined. To construct an energy harvesting system in a more complete aspect, two newly proposed methods are as below: First, the hybrid-electrical-mechanical switches were utilized to replace the commonly seen electrical smart switches, to reduce its energy consumption such as threshold loss. Secondly, we designed a new mechanical structure for the cantilever array by connecting the beams using magnetic repelling force. In this way, the beams within the array were connected physically, forming a nonlinear multi-degree of freedom (MDOF) -like result.
40

Investigation of Interfacial Bonding Between Shape Memory Alloys and Polymer Matrix Composites

Quade, Derek J. January 2017 (has links)
No description available.

Page generated in 0.106 seconds