• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 24
  • 24
  • 22
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 251
  • 124
  • 97
  • 64
  • 47
  • 39
  • 37
  • 33
  • 28
  • 27
  • 24
  • 21
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Computational Studies of Anti-Tumor Drug Tirapazamine and Reactions and Rearrangements of nitrenes and Carbenes

Liu, Jin 24 August 2005 (has links)
No description available.
112

Computational and Experimental Studies of Excited States of Different Precursors of Carbenes and Nitrenes

Luk, Hoi Ling 16 August 2012 (has links)
No description available.
113

Stereoselective Radical Transformations by Co(II)-Based Metalloradical Catalysis:

Wang, Xiaoxu January 2022 (has links)
Thesis advisor: X. Peter Zhang / Chapter 1. Co(II)-Based Metalloradical Catalysis for Stereoselective Radical Cyclopropanation of Alkenes This Account summarizes our group’s recent efforts in developing metalloradical catalysis as a one-electron approach for catalytic radical cyclopropanation of alkenes with diazo compounds. Chapter 2. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes We have developed a Co(II)-based metalloradical system that is highly effective for asymmetric radical cyclopropanation of alkenes with in situ-generated heteroaryldiazomethanes. Through fine-tuning the cavity-like environments of newly developed D2-symmetric chiral amidoporphyrins as the supporting ligand, the optimized Co(II)-based metalloradical system is broadly applicable to pyridyl and other heteroaryldiazomethanes for asymmetric cyclopropanation of a wide range of alkenes, providing general access to valuable chiral heteroaryl cyclopropanes in high yields with excellent diastereoselectivities and enantioselectivities. Chapter 3. Enantioselective Metalloradical 1,6-C–H Alkylation of In Situ-Generated Alkyldiazomethanes for Synthesis of Chiral Piperidines We have disclosed an effective Co(II)-based metalloradical system as a fundamentally different approach to harness the potential of 1,6-HAA radical process, enabling asymmetric 1,6-C–H alkylation of in situ-generated alkyldiazomethanes to construct chiral piperidines. Supported by an optimal D2-symmetric chiral amidoporphyrin ligand, the Co(II)-catalyzed alkylation system is capable of activating a wide array of alkyldiazomethanes containing C(sp3)–H bonds with varied steric and electronic properties, providing access to chiral piperidines in good to high yields with high enantioselectivities from readily accessible 4-aminobutanal derivatives. In addition to practical attributes, such as operational simplicity and mild conditions, the metalloradical system is highlighted by its tolerance to different functional groups as well as compatibility with heteroaryl units. Chapter 4. Design and Synthesis of A Novel D2-Symmetric Chiral Porphyrin for Co(II)-Based Metalloradical Catalysis A novel D2-symmetric chiral amidoporphyrin derived from chiral cyclopropanecarboxamide containing diphenyl units has been effectively constructed based on Co(II)-catalyzed asymmetric cyclopropanation of alkenes. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
114

Carbènes N-Hétérocycliques : Des catalyseurs en chimie des silicones. Carbodiphosphoranes cycliques : Synthèse, coordination et réactivité

Marrot, Sébastien 09 March 2007 (has links) (PDF)
Dans un premier chapitre, nous nous intéressons à l'utilisation des Carbènes N-Hétérocycliques comme catalyseurs organiques nucléophiles pour la polymérisation par ouverture de cycle de l'octamethylcyclosiloxane et pour des réactions de polycondensation.<br />Dans un deuxième chapitre, nous effectuons une revue bibiliographique sur des composés phosphorés présentant deux fonctions ylures cumulées : les carbodiphosphoranes. <br />Dans le troisième chapitre, nous présentons la synthèse et la coordination de nouveaux carbodiphosphoranes cycliques. Nous montrons que ces ligands ont un caractère fortement donneur.<br />Dans le quatrième chapitre, nous étudions la thermolyse d'un de ces composés qui conduit par réarrangement à la formation deun 1.2 5-azaphosphète. Une étude théorique met en évidence une inter-conversion entre les carbodiphosphoranes et les disphosphinocarbènes.
115

Preparation of well-defined Ir(I)-NHC based catalytic material for the hydrogenation of functional olefins / Élaboration des matériaux hybrides pour hydrogénation catalytique

Romanenko, Iuliia 30 November 2015 (has links)
La réaction d'hydrogénation des alcènes est une réaction clé dans de nombreux procédés industriels permettant la production de produits de commodité et de spécialité. D’importants efforts de recherche ont donc été réalisés pour développer des systèmes catalytiques de plus en plus productifs et sélectifs. Parmi les nombreux catalyseurs homogènes et hétérogènes développés à ce jour, les complexes organométalliques d’Iridium(I), très prometteurs, ont été préparés depuis la découverte du catalyseur de Crabtree, [Ir(COD)(py)(PCy3)]BF4, pour répondre à des problèmes de sélectivité dans l'hydrogénation asymétrique ou celle d’oléfines tétrasubstituées fortement encombrées en conditions homogènes. Cependant, l'utilisation industrielle de ce complexe organométallique d’Ir (I) est limité par sa décomposition rapide en solution, qui conduit à la formation de complexes polynucléaires (hydrures pontés d'Iridium) très stables et inactifs en catalyse. Le but de ce travail de thèse a été de développer des matériaux catalytiques contenant des complexes Ir(NHC) isolés à la surface d’une silice contenant des fonctionnalités imidazolium parfaitement distribuées le long de ses canaux poreux. L'isolement des unités Ir(I) sur le support de silice devrait permettre d’empêcher les processus bimoléculaires de désactivation et faciliter la récupération du catalyseur. La préparation des matériaux catalytiques cible se fait grâce a la transformation des unités imidazolium contenues dans le matériau de départ en carbenes d’argent N-hétérocycliques, qui sont ensuite transmétallés en carbènes d’iridium avec le complexe [Ir(COD)Cl]2. Les matériaux obtenus ont été caractérisés par diverses techniques, notamment une technique de RMN très avancée : la RMN de l’état solide utilisant la polarisation nucléaire dynamique. Ceci a permis de mieux comprendre la structure moléculaire des sites de surface iridiés. Les performances catalytiques des complexes Ir-NHC supportés ont été testées dans réaction d’hydrogénation des alcènes et comparées à celles de leurs homologues homogènes. Divers substrats oléfiniques et différentes conditions de réaction ont été testées. Les résultats montrent que le catalyseur supporté est beaucoup plus stable et 50 fois plus actif en terme de vitesse et de productivité. Cette approche a été étendue au développement de catalyseurs d’iridium supportés sur polymère. Le support choisi a été un polyéthylene téléchélique contenant des fonctionnalités iodées terminales. Le solide obtenu après incorporation de l’iridium a été caractérisé par RMN et spectrométrie de masse (MALDITOF). Les performances catalytique de ce nouveau système ont été elles aussi comparées a celles de complexes homologues en solution / Alkene hydrogenation is a key in many bulk and fine chemicals production processes. Major efforts were therefore directed towards the preparation of ever more productive and selective catalysts. Among the large number of homogeneous and heterogeneous catalysts, promising Iridium (I) organometallic complexes were prepared since the discovery of the well-known Crabtree’s catalyst, [Ir(COD)(py)(PCy3)]BF4, to address selectivity issues in homogeneous asymmetric hydrogenation or hydrogenation of highly hindered tetrasubstituted olefins. However, the industrial use of Ir organometallic complexes as catalysts is limited by their fast decomposition leading to the formation of highly stable and inactive polynuclear iridium hydridebridged complexes. The goal of this PhD project was to elaborate supported Ir(I)-NHC catalytic material to prevent such bimolecular deactivation processes. The targeted supported Ir complexes were based on hybrid organic-inorganic material containing regularly distributed imidazolium units along the pore-channels of the silica framework. Beside the Ir-site isolation on the silica support, this catalytic system was also expected to ease catalyst recovery at the end of the hydrogenation. The preparation of the final systems relies on the preparation of supported silver carbenes first, and further transmetallation with an Ir-precursor, namely [Ir(COD)Cl]2. The materials were characterized by several techniques as for example advanced solid state NMR using Dynamic Nuclear Polarization to gain insight into the molecular structure of the Ir surface sites. Catalytic performances of the supported Ir-NHC complexes were tested in alkene hydrogenation and compared to those of homogeneous homologues. Several different substrates and reaction conditions were tested. The results showed that the supported catalyst was much more stable and 50 times more active in term of rate and productivity. A polymer supported Ir-complex was also elaborated using a telechelic polyethylene iodide as support. The polymeric materials were fully characterized by NMR and MALDI-TOF experiments and their catalytic performances were compared to those of molecular analogues and those of silica supported systems
116

A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

Makarova, Anna A., Grachova, Elena V., Niedzialek, Dorota, Solomatina, Anastasia I., Sonntag, Simon, Fedorov, Alexander V., Vilkov, Oleg Yu., Neudachina, Vera S., Laubschat, Clemens, Tunik, Sergey P., Vyalikh, Denis V. 12 December 2016 (has links) (PDF)
The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system "Pt complex-alkali metal ion"; the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.
117

Synthesis Of Ferrocenyl Cyclopentenones

Tumay, Tulay Asli 01 August 2005 (has links) (PDF)
ABSTRACT SYNTHESIS OF FERROCENYL CYCLOPENTENONES TUMAY, T&uuml / lay Asli M.S., Department of Chemistry Supervisor: Assoc. Prof. Dr. Metin Zora August 2005, 80 pages Construction of highly functionalized five-membered rings via cycloaddition reaction of cyclopropylcarbene-chromium complex with alkynes has become a very active area of research in recent years by virtue of their presence in antitumour natural products. Also with the finding that ferrocene derivatives are active against various tumours, considerable interest has been devoted to the synthesis of new ferrocene derivatives since properly functionalized ferrocene derivatives could be potential antitumour substances. So, the incorporation of the essential structural features of cyclopentenones with a ferrocene moiety could provide compounds with enhanced antitumour activities. For this purpose, we have investigated the reaction between cyclopropylcarbene-chromium complex and ferrocenyl alkynes. The reaction of cyclopropylcarbene-chromium complex with ferrocenyl alkynes afforded &amp / #945 / -hydroxycyclopentenones in a one-pot process, whereas the same reaction with alkynes gave cyclopentenones as major products. Interestingly, water addition was observed instead of reduction according to the previously proposed mechanism. This is a different result than those in literature. The reaction was regioselective both with terminal ferrocenyl alkynes and internal unsymmetrical ferrocenyl alkynes. The products obtained were those where the sterically larger alkyne substituent, ferrocene, was &amp / #945 / to the carbonyl group.
118

A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

Makarova, Anna A., Grachova, Elena V., Niedzialek, Dorota, Solomatina, Anastasia I., Sonntag, Simon, Fedorov, Alexander V., Vilkov, Oleg Yu., Neudachina, Vera S., Laubschat, Clemens, Tunik, Sergey P., Vyalikh, Denis V. 12 December 2016 (has links)
The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system 'Pt complex-alkali metal ion'; the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.
119

Frontiers in the organometallic chemistry of silver: Accessing new structures and reactivity through sterically demanding, electron-rich N-heterocyclic carbene ligands

Tate, Brandon Kyle 07 January 2016 (has links)
The synthesis and characterization of novel complexes of silver supported by sterically demanding, highly electrophilic N-heterocyclic carbene (NHC) ancillary ligands, is described. Stable hydride, fluoride, alkoxide, alkyl, aryl, and alkynyl complexes are characterized by NMR spectroscopy and X-ray diffraction crystallography, and their reactivity is investigated. The interaction of silver centers in dinuclear complexes is probed by 109Ag NMR spectroscopy. Relevance to renewable fuel technology is demonstrated through the mediation of fundamental chemical transformations, including the heterolysis of hydrogen, the transfer of hydride to carbon dioxide, and the formation of carbon-carbon bonds. Kinetic studies shed light on the mechanism of hydrogen activation by hard-soft mismatched complexes of silver, and a formal catalytic cycle for the hydrogenation of carbon dioxide to formate derivatives is reported.
120

Synthesis of selected cage alkenes and their attempted ring-opening metathesis polymerisation with well-defined ruthenium carbene catalysts / Justus Röscher

Röscher, Justus January 2011 (has links)
In this study a number of cage alkenes were synthesised and tested for activity towards ringopening metathesis polymerisation (ROMP) with the commercially available catalysts 55 (Grubbs-I) and 56 (Grubbs-II). The first group of monomers are derivatives of tetracyclo[6.3.0.04,1105,9]undec-2-en-6-one (1). The synthesis of these cage alkenes are summarised in Scheme 7.1. The cage alkene 126b was synthesised by a Diels-Alder reaction between 1 and hexachlorocyclopentadiene (9, Scheme 7.2). The geometry of 126b was determined from XRD data. Knowledge of the geometry of 126b also established the geometry of 127 since conformational changes during the conversion from 126b to 127 are unlikely. Synthesis of the cage alkene 125 by the cycloaddition of 9 to 118 failed. The cage alkene exo-11- hydroxy-4,5,6,7,16,16-hexachlorohexacyclo[7.6.1.03,8.02,13.010,14]hexa-dec-5-ene (124, Scheme 7.3) could therefore not be prepared. Synthesis of 125 by reduction of 126b with various reduction systems was not successful. Theoretical aspects of these reactions were investigated with molecular modelling. A possible explanation for the unreactive nature of 126b towards reduction is presented, but the lack of reactivity of 118 towards 9 eluded clear explanations. The synthesis of cage alkenes from 4-isopropylidenepentacyclo[5.4.0.02,6.03,10.05,9]-undecane-8,11- dione (23) did not meet with much success (Scheme 7.4). Numerous synthetic methods were investigated to affect the transformation from 134a/134b to 135 (Scheme 7.5). These attempts evolved into theoretical investigations to uncover the reasons for the observed reactivity. Possible explanations were established by considering the differences and similarities between the geometries and electronic structures of reactive and unreactive cage alcohols. ROMP of cage monomers based on 1 were mostly unsuccessful. Only the cage monomer 127 showed some reactivity. Endocyclic cage monomers with a tetracycloundecane (TCU) framework showed no reactivity. The results from NMR experiments verified the experimental results. Hexacyclo[8.4.0.02,9.03,13.04,7.04,12]tetradec-5-en-11,14-dione (3) exhibited notable ROMP reactivity. Examination of the orbitals of the cage alkenes used in this study suggested that the reactivity of 1 and 3 could possibly be enhanced by removal of the carbonyl groups. Decarbonylation of 1 and 3 yielded the cage hydrocarbons 159 and 175, respectively. ROMP tests revealed that 175 is an excellent monomer, but 159 was unreactive. The results obtained for the ROMP reactions in this study was rationalised by considering aspects such as ring strain, energy profiles, steric constraints, and frontier orbital theory. The concept of ring strain is less useful when describing the reactivity of cage alkenes towards ROMP and therefore the concepts of fractional ring strain and fractional ring strain energy (RSEf) were developed. A possible link between RSEf and the ROMP reactivity of cage alkenes was also established. The following criteria were put forth to predict the reactivity or explain the lack of reactivity of cage alkenes towards ROMP reactions with Grubbs-I and Grubbs-II. The criteria for ROMP of cage monomers: 1. Sufficient fractional ring strain energy (RSEf). 2. A reasonable energy profile when compared to a reference compound such as cyclopentene. 3. Ability to form a metallacyclobutane intermediate with reasonable distances between different parts of the cage fragment. 4. Sufficient ability of the polymer fragment to take on a conformation that exposes the catalytic site. 5. Sufficient size, shape, orientation and energy of HOMO and/or NHOMO at the alkene functionality of the cage monomer and of the LUMO at the catalytic site. / Thesis (Ph.D. (Chemistry))--North-West University, Potchefstroom Campus, 2012

Page generated in 0.0389 seconds