• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enantiospecific syntheses of alkaloids from carbohydrates

Lunn, R. J. January 1986 (has links)
No description available.
2

Development of ruthenium catalyzed hydrogenative carbonyl addition reactions

McInturff, Emma Leigh 30 June 2014 (has links)
Metal-catalyzed, hydrogenative methods for carbon-carbon bond formation are attractive alternatives to traditional carbonyl addition reactions. Through in situ generation of aldehyde and organometallic species, these redox-triggered reactions circumvent the need for preactivation of reactive partners, thereby providing a more atom economic, efficient approach to carbonyl addition products. Efforts have been focused on the development of ruthenium-catalyzed coupling reactions of primary and secondary alcohols to basic feedstock chemicals and easily accessible and stable unsaturated compounds. To perform highly stereoselective reactions, investigation into the factors that control stereoselectivity in ruthenium catalyzed transfer hydrogenative couplings was undertaken. As a critical tool for the construction of organic molecules, modernizing methods for carbonyl addition can contribute to the evolution of synthetic organic methodology. / text
3

Carbon-carbon bond formation via catalytic hydrogenation and transfer hydrogenation : application in the total synthesis of bryostatin 7

Lu, Yu, active 2012 13 November 2013 (has links)
Under the conditions of transfer hydrogenation employing ortho-cyclometallated iridium C,O-benzoate catalysts, two protocols of iterative chain elongation of 1,3-diols to furnish 1,3-polyols were developed. First, one-directional chain elongation employing mono-protected 1,3-diols as starting materials was achieved. In all cases, high levels of catalyst-directed enantioselectivity and diastereoselectivity were observed. Then, double asymmetric allylation of 1,n-glycols to deliver C₂-symmetric adducts with exceptional level of enantioselectivity was devised. Iterative two-directional elongation of 1,3-diols to furnish 1,3-polyols with high level of catalyst-directed diastereoselectivity was then achieved. Implementation of this methodology and other hydrogenative C-C bond formations proved to be effective means for the preparation of a known bryostatin A-ring fragment and the total synthesis of bryostatin 7. / text
4

Carbon-Carbon Bond Formation and Unexpected Carbon-Hydrogen Bond Activation at Adjacent Metal Centres

MacDougall, Tiffany J Unknown Date
No description available.
5

Iridium-Catalyzed Carbon-Carbon Bond Formation Reactions via C-H Bond Activation / イリジウム触媒によるC-H結合活性化を経るC-C結合形成反応

Ebe, Yusuke 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20192号 / 理博第4277号 / 新制||理||1615(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 丸岡 啓二, 講師 西村 貴洋 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
6

Development of New C-C Bond Forming Reactions Utilizing Light as Energy Source / 光をエネルギー源とする新規炭素―炭素結合形成反応の開発

Masuda, Yuusuke 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20409号 / 工博第4346号 / 新制||工||1674(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 村上 正浩, 教授 吉田 潤一, 教授 杉野目 道紀 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
7

Avaliação da promiscuidade catalítica de soroalbuminas em sínteses orgânicas / Evaluation of catalytic promiscuity of serum albumins in organic synthesis

Santana, Ana Carolina de Toledo [UNESP] 26 February 2016 (has links)
Submitted by ANA CAROLINA DE TOLEDO SANTANA null (actoledo@iq.unesp.br) on 2016-03-17T17:25:32Z No. of bitstreams: 1 Dissertação Carol Final.pdf: 7825510 bytes, checksum: 921c29706ed56e5ef489712bae28fc30 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-03-21T20:10:04Z (GMT) No. of bitstreams: 1 santana_act_me_iq_par.pdf: 4512361 bytes, checksum: 07a7dc911b2bdd27db8608948a16848b (MD5) / Made available in DSpace on 2016-03-21T20:10:04Z (GMT). No. of bitstreams: 1 santana_act_me_iq_par.pdf: 4512361 bytes, checksum: 07a7dc911b2bdd27db8608948a16848b (MD5) Previous issue date: 2016-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O presente trabalho teve como principal objetivo estudar a atividade catalítica de soroalbumina bovina (BSA) em reações formadoras de uma nova ligação C-C: Reações aldólica, de Henry e Morita-Baylis-Hillman (MBH). Em todos os casos a BSA atuou como catalisador, visto que quando as reações foram realizadas sem sua presença, não houve formação dos produtos desejados. Os rendimentos obtidos para as reações aldólica (37%), Henry (80%) e MBH (73%), variaram de bons a moderados e não foi observada enantiosseletividade para nenhuma das reações estudadas. As soroalbuminas são proteínas que formam muita emulsão dificultando os processos downstream na separação dos produtos e materiais de partida. Visando minimizar este inconveniente, a BSA foi submetida à imobilização em MCLEA (magnetic cross-linking enzyme aggregates) utilizando nanopartículas magnéticas de óxido de ferro. Nestes casos, o biocatalisador pôde ser facilmente retirado do meio reacional com aplicação de um campo magnético externo. Esta metodologia afetou diretamente no rendimento da reação de Henry, passando de 80% para 89%. Porém, para as outras reações a melhoria no rendimento não foi tão expressiva. A imobilização também não foi eficaz para o aumento dos excessos enantioméricos. Até o momento para a reação de MBH com os substratos utilizados, não há relatos na literatura para a síntese do aduto desejado catalisado pela BSA. Sendo assim, optamos por realizar um planejamento fatorial completo dessa reação visando otimizar as condições reacionais bem como os rendimentos. As variáveis estudadas foram: temperatura, concentração do biocatalisador e condição do biocatalisador (livre ou imobilizado). Os resultados obtidos mostraram que a variável com maior influência na reação, é a concentração do biocatalisador. A conversão obtida passou de 30% para 40% utilizando 2,2 μmol de BSA. Em seguida, realizamos um estudo de ascendência da concentração do catalisador visando otimizar este parâmetro. A conversão obtida passou para 73% quando foram utilizadas 3,7 μmol de biocatalisador imobilizado. Realizamos um estudo de reciclagem do biocatalisador imobilizado. Foi possível reutiliza-lo porém com diminuição da conversão a partir do segundo ciclo. Os resultados obtidos nesta dissertação evidenciam o potencial biocatalítico da BSA em reações para a formação de ligação C-C. / This work aimed to study the catalytic activity of bovine serum albumin (BSA) in reactions that form a new C-C bond: aldol reactions, Henry and Morita-Baylis-Hillman (MBH). In all cases BSA served as the catalyst, whereas when the reactions were carried out without their presence there was no formation of the desired products. The yields obtained for aldol reactions (37%), Henry (80%) and MBH (73%), ranged from good to moderate enantioselectivity and was not observed for any of the studied reactions. The serum albumins are proteins that form the much emulsion difficulting downstream processes in separation of the products and starting materials. To minimize this inconvenience, the BSA was subjected to immobilization in M-CLEA (magnetic cross-linking enzyme aggregates) using magnetic nanoparticles of iron oxide. In these cases the biocatalyst could be easily removed from the reaction medium by applying an external magnetic field. This methodology directly affect the yield of the Henry reaction, from 80% to 89%. However, for other reactions the improvement of yields was less pronounced. The immobilization was also not effective for improving the enantiomeric excess. So far for the MBH reaction with the worked substrates, there are no reports in the literature for the synthesis of the desired adduct catalyzed by BSA. So we decided to study a full factorial design of this reaction to optimize the reaction conditions and yields. The variables studied were: temperature, the biocatalyst concentration and biocatalyst conditions (free and immobilized). The concentration of biocatalyst was the major factor with interference in all reactions. The conversion increased from 30% to 40% using 2.2 μmol of BSA. Then we perform a study of catalyst concentration to optimize this parameter. The conversion increased to 73% when they were used 3.7 μmol immobilized biocatalyst. To evaluate the retention of catalytic activity of BSA immobilized, it was performed a study of the immobilized biocatalyst recycling. It was possible the reuse but with reduced conversion from the second cycle. The results obtained in this work demonstrated the potential of BSA in C-C bond formation reactions.
8

Development of New Carbon-Carbon Bond-Forming Strategies: Formation and Reactivity of sp³-gem-Organodimetallic Palladium(II)/MRn Alkane Intermediates (MRn=Dialkylalumino, Trialkylstannyl)

Trepanier, Vincent Hector Emile 07 November 2006 (has links)
Investigation of the catalytic formation, reactivity and synthetic scope of sp³-gem-organodimetallic palladio(II)/main group metal (main group metal = tributylstannyl, dialkylalumino) alkane species has been carried out. Insight was expanded regarding the inter- and intramolecular reactivity of vinylmetallic reagents in presence of transition metal catalysts. New Pd-catalysed methodologies for carbon-carbon bond formation were developed, such as cyclopropanation of strained olefins, as well as tandem vinylalane arylation/1,2-methyl transfer and 1,2-diarylation. On the one hand, geminal π-allylpalladio(II)/tributylstannylalkane intermediates are produced by oxidative addition of Pd(0) catalysts to α-tributylstannylpropenyl acetate derivatives. They adopt ambiphilic behaviour depending on the transition metal pre-catalyst, presence or absence of phosphine ligands, and reaction temperature. In presence of tetrakis(triphenylphosphine)palladium(0) with additional bidentate ligand, the carbenoid reactivity of these gem-organobismetallic species is exposed by reaction with dimethyl malonate. Deuterium-labeling studies demonstrated sequential functionalisation of the C-Sn and C-Pd bonds. Conversely, phosphine-free catalyst bis(dibenzylideneacetone)palladium(0) uncovers metal-carbene reactivity, and dimerisation and strained alkene cyclopropanation reactions are observed. The nature of the palladium catalyst controls the reactivity of the carbenoid species. Finally, bis(cyclooctadienerhodium(I) chloride) catalytically activates the alkenylstannane moiety, leaving the allylic acetate leaving group available for further transformations. On the other hand, gem-disubstituted trifluoromethanesulfonyloxy- and iodopalladio(II)/ dialkylaluminoneopentane species are generated by intramolecular migratory insertion of 2,2-disubstituted-1-butenyldialkylalanes with σ-arylpalladium(II) triflate and iodide intermediates. Using excess Lewis-basic 1,4-diazabicyclo[2.2.2]octane, electron-rich tris(para-methoxyphenyl)phosphine ligand and acetonitrile as solvent, tandem arylation/1,2-alkyl migration from aluminum to carbon affords 7-substituted-1-ethyl-1-methylindanes containing an all-carbon quaternary stereogenic centre in good yields. This reaction is tolerant of 6-aryl methyl ethers, thioethers and trimethylsilanes. Deuterium labeling established that protiodealumination of the key neopentyl(methyl)aluminum triflate intermediate is caused by the acetonitrile solvent. The organodimetallic species in that study were shown to be configurationally stable, hence the stereospecificity of the process that proceeds via carbopalladation, transmetalation and reductive elimination of an alkylpalladium(II) intermediate. When applied to 1-naphthyl triflate-tethered vinylalanes, the same reaction conditions mediate stereospecific 1,2-diarylation, leading to 2,3,3a,4-tetrahydro-1H-cyclopenta[def]phenanthrenes in excellent yields. The influence of DABCO, tether length and solvent polarity was studied. Selective tandem arylation/1,2-methyl migration could also be achieved in non-polar solvent in absence of Lewis base. While steric properties took precedence over electronic considerations when inducing product selection, preagostic C-H···Pd interactions were postulated to facilitate 1,3-metal migration in the production of 1H-cyclopenta[def]phenanthrene derivatives.
9

Development of New Carbon-Carbon Bond-Forming Strategies: Formation and Reactivity of sp³-gem-Organodimetallic Palladium(II)/MRn Alkane Intermediates (MRn=Dialkylalumino, Trialkylstannyl)

Trepanier, Vincent Hector Emile 07 November 2006 (has links)
Investigation of the catalytic formation, reactivity and synthetic scope of sp³-gem-organodimetallic palladio(II)/main group metal (main group metal = tributylstannyl, dialkylalumino) alkane species has been carried out. Insight was expanded regarding the inter- and intramolecular reactivity of vinylmetallic reagents in presence of transition metal catalysts. New Pd-catalysed methodologies for carbon-carbon bond formation were developed, such as cyclopropanation of strained olefins, as well as tandem vinylalane arylation/1,2-methyl transfer and 1,2-diarylation. On the one hand, geminal π-allylpalladio(II)/tributylstannylalkane intermediates are produced by oxidative addition of Pd(0) catalysts to α-tributylstannylpropenyl acetate derivatives. They adopt ambiphilic behaviour depending on the transition metal pre-catalyst, presence or absence of phosphine ligands, and reaction temperature. In presence of tetrakis(triphenylphosphine)palladium(0) with additional bidentate ligand, the carbenoid reactivity of these gem-organobismetallic species is exposed by reaction with dimethyl malonate. Deuterium-labeling studies demonstrated sequential functionalisation of the C-Sn and C-Pd bonds. Conversely, phosphine-free catalyst bis(dibenzylideneacetone)palladium(0) uncovers metal-carbene reactivity, and dimerisation and strained alkene cyclopropanation reactions are observed. The nature of the palladium catalyst controls the reactivity of the carbenoid species. Finally, bis(cyclooctadienerhodium(I) chloride) catalytically activates the alkenylstannane moiety, leaving the allylic acetate leaving group available for further transformations. On the other hand, gem-disubstituted trifluoromethanesulfonyloxy- and iodopalladio(II)/ dialkylaluminoneopentane species are generated by intramolecular migratory insertion of 2,2-disubstituted-1-butenyldialkylalanes with σ-arylpalladium(II) triflate and iodide intermediates. Using excess Lewis-basic 1,4-diazabicyclo[2.2.2]octane, electron-rich tris(para-methoxyphenyl)phosphine ligand and acetonitrile as solvent, tandem arylation/1,2-alkyl migration from aluminum to carbon affords 7-substituted-1-ethyl-1-methylindanes containing an all-carbon quaternary stereogenic centre in good yields. This reaction is tolerant of 6-aryl methyl ethers, thioethers and trimethylsilanes. Deuterium labeling established that protiodealumination of the key neopentyl(methyl)aluminum triflate intermediate is caused by the acetonitrile solvent. The organodimetallic species in that study were shown to be configurationally stable, hence the stereospecificity of the process that proceeds via carbopalladation, transmetalation and reductive elimination of an alkylpalladium(II) intermediate. When applied to 1-naphthyl triflate-tethered vinylalanes, the same reaction conditions mediate stereospecific 1,2-diarylation, leading to 2,3,3a,4-tetrahydro-1H-cyclopenta[def]phenanthrenes in excellent yields. The influence of DABCO, tether length and solvent polarity was studied. Selective tandem arylation/1,2-methyl migration could also be achieved in non-polar solvent in absence of Lewis base. While steric properties took precedence over electronic considerations when inducing product selection, preagostic C-H···Pd interactions were postulated to facilitate 1,3-metal migration in the production of 1H-cyclopenta[def]phenanthrene derivatives.
10

Estudo da Aplicação de Brometo de Índio(I) em Reações para Formação de Ligações Carbono-Carbono / Studies on the Application of Indium(I) Bromide in Carbon-Carbon

Chagas, Rafael Pavão das 01 March 2011 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / This PhD thesis describes our results on the application of indium(I) bromide in carbon-carbon bond forming reactions. Indium enolates, generated in situ from the reaction between indium(I) bromide and α,α-dichloroketones, react with carbonyl compounds and electron-deficient alkenes. Reactions of indium enolate with α,α-dichloroketones, in presence of extra InBr, leads to the formation of 1,4-diketones. The coupling with aldehydes leads alternatively, according as the stoichiometry, to the diastereoselective synthesis of (syn+anti)-2-chloro-3-hydroxy-propan-1-ones (which can be converted to the respective trans-epoxyketones), (E)-α,β-unsaturated ketones and cyclopropanes, upon a sequenced reaction mechanism. We also have developed a methodology for the preparation of cyclopropanes through the reaction of the indium enolate and other organoindium(III) compounds, derived from the reactions between InBr and α,α-dihalo carbonyl compounds and halo-acetonitriles, with electron-deficient alkenes. / Este trabalho descreve os resultados dos estudos realizados sobre aplicações de brometo de índio(I) em reações para formação de ligações carbono-carbono. A reação entre brometo de índio(I) e α,α-diclorocetonas produz, in situ, enolatos de índio que reagem com compostos carbonílicos e alcenos deficientes em elétrons. As reações do enolato de índio com outras moléculas de α,α-diclorocetonas, na presença de InBr em excesso, leva à formação de 1,4-dicetonas. O acoplamento com aldeídos leva alternativamente, conforme a estequiometria, à formação diastereosseletiva de (syn+anti)-α-cloro-β-hidróxi-cetonas (que podem ser convertidas às respectivas trans-epóxi-cetonas), cetonas (E)-α,β-insaturadas e ciclopropanos, segundo um mecanismo de reações sequenciais. Ainda foi desenvolvida uma metodologia para preparação de ciclopropanos através da reação do enolato de índio e de outros compostos organoíndio(III), derivados da reação entre InBr e vários compostos carbonílicos α,α-di-halogenados e halogeno-acetonitrilas, com alcenos deficientes em elétrons.

Page generated in 0.139 seconds