• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 35
  • 24
  • 11
  • 10
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 215
  • 55
  • 52
  • 49
  • 34
  • 25
  • 24
  • 24
  • 24
  • 23
  • 21
  • 20
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Multiscale X-Ray Analysis of Biological Cells and Tissues by Scanning Diffraction and Coherent Imaging

Nicolas, Jan-David 05 July 2018 (has links)
No description available.
182

Avaliação da contribuição do receptor AT1 de angiotensina II e do papel da via de sinalização AKT/GSK-3/mTOR no processo de hipertrofia do cardiomiócito induzido pelo hormônio tiroideano / Angiotensin type 1 receptor mediates Thyroid Hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3ß/mTOR signaling pathway

Gabriela Placoná Diniz 12 February 2010 (has links)
O presente estudo avaliou o papel do receptor AT1 de Angiotensina II no desenvolvimento da hipertrofia dos cardiomiócitos promovida pelo T3, bem como a participação dos mecanismos intracelulares deflagrados pelo receptor AT1 neste modelo de hipertrofia cardíaca. O silenciamento do receptor AT1 com RNA de interferência preveniu totalmente o desenvolvimento da hipertrofia dos cardiomiócitos induzida pelo T3. Os cardiomiócitos tratados com T3 demonstraram uma rápida ativação da via da Akt/GSK-3/mTOR, a qual foi atenuada ou prevenida pelo silenciamento do receptor AT1. Ainda, a expressão de Angiotensina I/II no lisado celular e a expressão do receptor AT1 foram rapidamente aumentados pelo T3. Esses dados demonstram pela primeira vez que o receptor AT1 é um mediador crítico da hipertrofia dos cardiomiócitos induzida pelo T3, bem como para a ativação da via da Akt, sugerindo que a via Ang I/II-AT1-Akt/GSK-3/mTOR corresponde a um potencial mediador dos efeitos tróficos exercidos pelo T3 nessas células. / The present study investigated the role of Angiotensin type 1 receptor (AT1R) in T3-induced cardiomyocyte hypertrophy, as well as the participation of the intracellular mechanisms mediated by AT1R in this cardiac hypertrophy model. The AT1R silencing using small interfering RNA totally prevented the development of T3-induced cardiomyocyte hypertrophy. The cardiomyocytes treated with T3 demonstrated a rapid activation of Akt/GSK-3/mTOR signaling pathway, which was attenuated or prevented by the AT1R silencing. In addition, local Angiotensin I/II (Ang I/II) levels and the AT1R expression were rapidly increased by T3 treatment. These data demonstrate for the first time that the AT1R is a critical mediator to the T3-induced cardiomyocyte hypertrophy, as well as to the activation of the Akt signaling, suggesting that the Ang I/II-AT1R-Akt/GSK-3/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T3 in cardiomyocytes.
183

Etude des mécanismes d'action de CXCL12a (SDF-1gas) sur les cardiomyocytes néonataux de rats

Hadad, Ielham 12 January 2015 (has links)
L’infarctus du myocarde est une cause majeure de morbidité et mortalité adulte dans les pays développés. Le manque de perfusion myocardique induit la mort des cardiomyocytes notamment par apoptose. Un remodelage moléculaire et cellulaire s’ensuit et comprend une hypertrophie des cardiomyocytes dans la zone péri-infarcie, de la fibrose, une réactivation des gènes fœtaux et des changements métaboliques. Ce remodelage entraîne à terme une diminution de fonction menant à la défaillance cardiaque. Les traitement médicamenteux améliorent la qualité de vie et la survie mais ne peuvent guérir. La thérapie hybride (cellulaire et génique) est une approche thérapeutique nouvelle et prometteuse pour l’infarctus du myocarde. C’est dans ce contexte que s’inscrivent les travaux de ma thèse. <p>Les cellules souches mésenchymateuses (CSM) sont des cellules souches adultes de choix pour la thérapie cellulaire. Plusieurs études ont montré qu’elles participent à la cardioprotection et à la régénération du myocarde en sécrétant une myriade de facteurs de croissance et de cytokines aux effets pro-angiogéniques et anti-apoptotiques.<p>Le « stromal-derived factor-1 » (SDF-1) ou CXCL12 est une chimiokine produite par un grand nombre de cellules dont les CSM et les cardiomyocytes. Il est un ligand pour CXCR4 et CXCR7, 2 récepteurs de la famille des récepteurs liés aux protéines G. CXCL12a est un facteur critique pour la migration, la domiciliation et la survie des cellules souches de la moelle osseuse dans le myocarde infarci et pour la survie des cardiomyocytes. Dans l’infarctus aigu du myocarde, un délai entre la fenêtre temporelle d’activation du ligand et de son récepteur rend cet axe peu efficace. Dans les pathologies ischémiques chroniques, une altération de la signalisation CXCL12a/CXCR4 réduit ses effets bénéfiques.<p>Ces observations ont conduit au développement d’approches thérapeutiques ciblant l'axe CXCL12a/CXCR4. CXCL12a peut être administré seul, sa production peut être stimulée par la transplantation de cellules souches, enfin sa synthèse peut être augmentée dans le myocarde par thérapie génique ou par l’association d’une thérapie cellulaire et génique. La majorité des études montrent une amélioration du remodelage et de la fonction cardiaque associée essentiellement à une néovascularisation et un effet antiapoptotique. Cependant, les effets directs de CXCL12a sur les cardiomyocytes ne sont pas encore complètement élucidés.<p>L’objectif général de ce travail était de contribuer à la compréhension des mécanismes d’action de CXCL12a sur les cardiomyocytes néonataux de rat que celui-ci agisse seul ou dans le cadre d’une thérapie hybride.<p>Dans la première partie de ce travail, nous avons étudié les effets non génomiques de CXCL12a en nous focalisant sur l’homéostasie calcique et ses conséquences fonctionnelles. Nous avons investigué la modulation des flux calciques par CXCL12a en chargeant le cytoplasme de cardiomyocytes néonataux de rat en culture avec le Fluo-4 acétoxyméthyl ester, indicateur fluorescent du niveau de calcium. CXCL12a augmente le calcium intracytoplasmique. La réponse calcique dépend de la liaison de CXCL12a à CXCR4 et majoritairement de l’ouverture des canaux calciques dépendants de l’inositol triphosphate (IP3Rs). Le flux calcique induit par la caféine (un agoniste des récepteurs à ryanodine) est diminué lorsque les IP3Rs sont bloqués. Ceci peut s’expliquer par une interaction entre ces 2 canaux. L’incubation avec le CXCL12a augmente in vitro la fréquence de battement des cardiomyocytes et cet effet est additif à celui de la forskoline (un activateur de l’adénylate cyclase). In vivo, l’administration intramyocardique de CXCL12a augmente le dP/dt max (indice de contractilité cardiaque) du ventricule gauche. <p>Dans la deuxième partie de ce travail, nous avons étudié les effets génomiques de CXCL12a; le but de cette étude était double :(1) identifier de nouvelles voies de signalisation contribuant aux effets de CXCL12a sur les cardiomyocytes et (2) comparer les effets de CXCL12a administré seul aux effets du surnageant de CSM surexprimant CXCL12a. Nous avons construit le lentivirus pWXLd-CXCL12a-IRES-GFP pour transduire des CSM en culture. L’expression protéique de CXCL12a dans le surnageant des CSM transduites a été confirmée par ELISA et l’activité du CXCL12a a été vérifiée par le test à l’aequorine. Pour identifier de nouvelles voies de signalisation modulées à l’étage transcriptionnel, nous avons privilégié le microarray, méthodologie qui permet une approche globale sans à priori. Nous avons ensuite confirmé les résultats par une approche ciblée sur certains gènes par la technique de RTQ-PCR. Pour le microarray, les cardiomyocytes ont été incubés pendant 1 heure avec (a) du CXCL12a commercial &61480;&61493;µ&61517;&61481; dilué dans le milieu des cardiomyocytes sans FBS, (b) le milieu des cardiomyocytes sans FBS (échantillon témoin de a), (c) le surnageant de CSM transduites par le virus pWXLd-CXCL12a-IRES-GFP et (d) le surnageant de CSM transduites par le virus pWXLd-GFP (échantillon témoin de c). Un ensemble discret de 218 gènes correspondant à 0,63% du génome du rat étaient régulés. Parmi les 60 gènes communs rapidement modulés dans les deux conditions (a et c), 34 étaient sur-exprimés alors que 26 étaient sous-exprimés. L’analyse avec le logiciel David suggère que le CXCL12a seul à la dose de 5 μM ou présent dans le surnageant de CSM le surexprimant à la concentration d’environ 2 nM module des voies déjà connues comme la voie des MAPkinases et plusieurs voies liées à l’apoptose comme JAK/STAT, p53 et NOD ainsi que 2 nouvelles voies: le voie des adipocytokines et de PPAR. Par RTQ-PCR, nous avons confirmé la modulation positive par CXCL12a de JAK2 et AKT. De plus, CXCL12a réprime l’expression protéique de la LPL, l’expression génique de la FABP et de l’Angptl-4 et l’expression génique et protéique de l’adiponectine, protéines toutes impliquées dans le transfert des acides gras et leur β oxydation. <p>Nous avons ensuite investigué les effets génomiques de CXCL12a dans le cadre d’une thérapie hybride. L’analyse du microarray et l’analyse ciblée de quelques gènes ont permis de conclure que la modulation de l’expression génique dépend non seulement de la concentration en CXCL12a mais également de la présence d’autres facteurs soit issus directement du milieu de culture commercial des CSM soit issus du milieu conditionné des CSM.<p>Ce travail ouvre de nouvelles perspectives pour mieux comprendre le rôle de CXCL12a dans l’homéostasie calcique et le métabolisme des lipides et son impact dans la physiopathologie du cœur. De plus, ce travail appuie le fait que le développement clinique des thérapies hybrides doit être précédé d’une investigation complète des effets génomique et non génomiques de cette thérapie sur les cardiomyocytes. Cependant, il faut rester prudent car, à cause de l’environnement du myocarde sain ou malade, aucune étude fondamentale ne permet de prédire l’ensemble des effets in vivo.<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
184

The identification of novel regulatory elements in the promoters of heat shock response genes

Ncube, Sifelani January 2010 (has links)
Masters of Science / The main objective of this study was to investigate promoter sequences of putative HSR genes for the presence of unique regulatory elements and modules that might be involved in the regulation of HSR. In order to achieve this objective, an in silico promoter analysis strategy was devised, which focused on the identification of promoter sequences and regulatory elements, and modelling of promoter modules by using Genomatix software tools such as MatInspector and ModelInspector. Results showed that two modules (EGRF_SP1F_01 and SP1F_CEBP_01) were conserved in the promoter sequences of three well-known Hsp-genes (Hsp90, Hsp105β and αβ-crystallin). Screening the 60 target gene promoters for the presence of the two modules revealed that 12 genes (20 %) contained both modules. These included Moesin, Proline-4 hydroxylase, Poly(A) binding protein and Formin-binding protein. None of these genes had been previously associated with heat shock response. / South Africa
185

Metabolismo energético mitocondrial e cardiomiogênese para regeneração cardíaca / Mitochondrial energy metabolism and cardiomyogenesis for cardiac regeneration

Ana Elisa Teófilo Saturi de Carvalho 05 August 2016 (has links)
Apesar dos avanços dos últimos anos, a reposição de cardiomiócitos permanece como um dos maiores desafios da medicina regenerativa. A comprovação da existência de mecanismos endógenos de proliferação cardíaca nos impulsionou a buscar o entendimento dos eventos moleculares envolvidos na proliferação de cardiomiócitos na vida pós-natal. Neste trabalho foi testada a hipótese da influência do metabolismo energético mitocondrial na cardiomiogênese, e seu impacto na regeneração cardíaca. No primeiro momento, foi descrito pela primeira vez o modelo de ressecção apical cardíaca em ratos neonatos. Demonstrou-se que há um período restrito as primeiras 24 horas de vida em que o animal é capaz de regenerar o tecido cardíaco, formando novos cardiomiócitos e permitindo a manutenção da função cardíaca na vida adulta. Esta capacidade é perdida 7 dias após o nascimento, havendo apenas reparo com tecido fibroso e prejuízo à função cardíaca. De maneira interessante, os dados apontaram para hipoperfusão da região apical em ambos os animais ressectados. Isso possivelmente acarretou em dano mitocondrial na vida adulta, sem influenciar a função cardíaca. De maneira a investigar os eventos moleculares da regeneração cardíaca neonatal foi realizado o sequenciamento de RNA dos corações de ratos neonatos de 1 e 7 dias de vida, ressectados e sham, pela técnica de RNASeq, que apontou a relevância da idade nas diferenças de expressão de genes relacionados ao metabolismo, sendo que a intervenção da ressecção pouco influenciou o perfil de expressão gênica. Os resultados mostraram a troca de expressão de isoformas da via glicolítica com a maturação pós-natal, e a hiper-regulação da expressão de genes das vias da ?-oxidação, fosforilação oxidativa e ciclo do ácido tricarboxílico durante o mesmo período. Entretanto, os dados funcionais da atividade metabólica do tecido cardíaco e cultura de cardiomiócitos neonatais mostraram que tanto a glicólise anaeróbia quanto o consumo de oxigênio relacionado à oxidação mitocondrial estiveram elevados no neonato de 1 dia, e foram reduzidos com o desenvolvimento cardíaco. As elevadas taxas de consumo de oxigênio nas culturas de cardiomiócitos de 1 dia de vida foram relacionadas principalmente à produção de ATP. Esses cardiomiócitos foram capazes de proliferar em cultura na presença de soro como estimulador. Assim sendo, as análises de expressão gênica sozinhas pareceram ser indicadores parciais do estado funcional do metabolismo. A inibição não letal da fosforilação oxidativa evidenciou a importância do metabolismo mitocondrial na capacidade proliferativa dos cardiomiócitos na vida pós-natal. Os dados sugerem que o primeiro dia após o nascimento abrange uma alta demanda energética tanto para a diferenciação terminal quanto para a última fase robusta de proliferação de cardiomiócitos na vida pós-natal, e assim evidenciam a importância do metabolismo mitocondrial no processo regenerativo / Despite advances in recent years, the replacement of cardiomyocytes remains one of the biggest challenges in regenerative medicine. The existence of endogenous mechanisms of cardiac proliferation prompted us to seek the understanding of molecular events involved in cardiomyocyte proliferation in postnatal life. In this study, we investigated the influence of mitochondrial energy metabolism in cardiomyogenesis, and its impact on cardiac regeneration. At first, it was described for the first time the model of heart apical resection in neonatal rats, where there is a limited period the first 24 hours of life that animal is able to regenerate cardiac tissue, forming new cardiomyocytes and allowing the maintenance cardiac function in adulthood. This ability is lost seven days after birth, when repair is basically by fibrotic tissue and consequent impairment for heart function. Interestingly, data showed hypoperfusion of the apical region in both resected animals, which possibly resulted in mitochondrial damage in adulthood without affecting heart function. In order to investigate the molecular events of neonatal cardiac regeneration was performed RNA sequencing of hearts from newborn rats with 1 and 7 days of life, resected and sham, which pointed out the importance of age in the different expression of genes related to metabolism, and the intervention of resection had little influence on this. The results showed exchange of expression of enzymes isoforms from glycolytic pathway and hyperregulation of genes from beta-oxidation, oxidative phosphorylation and tricarboxylic acid cycle pathways, during postnatal maturation. However, the functional data of the metabolic activity of cardiac tissue and culture of neonatal cardiomyocytes showed that both anaerobic glycolysis and oxygen consumption related to mitochondrial oxidation were higher in 1-day-old newborns, and were reduced with cardiac development. The high rates of oxygen consumption in 1-day-old cardiomyocytes were related mainly to ATP production. These 1-day-old cardiomyocytes were able to proliferate in culture by serum stimulation. Therefore, the analysis of gene expression alone appeared to be a partial indicator of functional state of metabolism. The non-lethal inhibition of oxidative phosphorylation highlighted the importance of mitochondrial metabolism in the proliferative capacity of cardiomyocytes in postnatal life. Data suggest that the first day after birth covers a high energy demand for both terminal differentiation of cardiac cells and last robust phase of cardiomyocyte proliferation in postnatal life, and show the importance of mitochondrial metabolism in the regenerative process
186

Impact of Structure Modification on Cardiomyocyte Functionality

Cosi, Filippo Giovanni 27 February 2020 (has links)
No description available.
187

Der Einfluss adulter Stammzellen auf die Aktivierung von Kardiomyozyten im in-vitro Modell: Der Einfluss adulter Stammzellen auf die Aktivierung von Kardiomyozyten im in-vitro Modell

Röske, Fabian 30 September 2014 (has links)
Während der letzten Jahre zeigten einige Studien, dass die Behandlung mit Knochenmark- Stammzellen (KMSZ) eine vielversprechende neue Therapieoption für den geschädigten Herzmuskel darstellen könnte. In dieser Arbeit wurde untersucht, ob es unter Behandlung mit Stammzellen zu einer zellulären Antwort in angezüchteten Kardiomyozyten (KMZ) kommt. Dafür wurden subkonfluente Kulturen aus Herzmuskelzellen von neonatalen Ratten für drei Tage mit Vybrant CM-DiI-markierten, sternalen humanen Knochenmarkstammzellen co-kultiviert. Im Anschluss wurden immunohistochemische Färbungen sowie eine quantitative Analyse mittels Western Blot für das Protoonkogen c-Myc durchgeführt. Des Weiteren wurde die Dichte der Beta-Adrenozeptoren unter Anwendung einer Histoautoradiographie mittels [125I]- iodocyanopindolol-Bindung analysiert. Die Auswertung der Immunohistochemie und der Western Blots zeigte eine signifikante Erhöhung der Expression von c-Myc in den Kardiomyozyten, welche in naher Umgebung der Stammzellen lagen. Dieser Effekt war direkt abhängig von der Entfernung der KMZ zur SZ. Die Histoautoradiographie zeigte eine signifikant höhere Beta-Rezeptor-Dichte in Kardiomyozyten in direkter Nähe zur Stammzelle. Mit steigender Entfernung von der Stammzelle verringerte sich die Rezeptordichte. Somit konnte gezeigt werden, dass eine kleine Anzahl von Knochenmark-Stammzellen ausreicht, um eine große Zahl von Kardiomyozyten zu beeinflussen, indem eine intrazelluläre Signalkaskade über c-Myc aktiviert und die Anzahl der Beta-Adrenozeptoren erhöht wird.
188

Repopulation and Stimulation of Porcine Cardiac Extracellular Matrix to Create Engineered Heart Patches

Moncada Diaz, Silvia Juliana 01 December 2018 (has links)
Heart failure is the main cause of death for both men and women in the United States. The only proven treatment for patients with heart failure is heart transplantation. The goal of this research is to create patches of tissue that could mimic the function of the native heart to repair the damaged portions of the heart. In this study, whole porcine hearts were decellularized to create a 3D construct that was recellularized with cardiomyocytes (CM) differentiated from human induced pluripotent stem (IPS) cells. At day 4 of differentiation, IPS-derived CMs were implanted onto cardiac extracellular matrix (cECM) and ten days after recellularization, the cells started to beat spontaneously. After implantation, the progenitor CMs continued to proliferate and populate the cECM. A live/dead assay showed the potential of the cECM as a scaffold suitable for recellularization. Confocal microscopy images were taken to evaluate the organization of the cells within the matrix and the impact of the cECM on the growth and maturation of the CMs. Representative cardiac Troponin T (cTNT) and vimentin immunostaining images of CMs derived from iPSCs, on cECM and on standard cell culture plates showed that the cECM allowed the cells to organize and form fibrils with the fibroblasts, compared with CMs cultured in regular culture plates. The timeline of implantation of the cells was a key factor for the development of the heart tissue constructs. Progenitor CMs seeded onto cECM showed better organization and the ability to penetrate 96 µm deep within the collagen fibers and align to them. However, mature CMs seeded onto the matrix showed a disorganized network with very reduced interaction of CMs with fibroblasts, forming two different layers of cells; CMs on top of fibroblasts. In addition, the depth of penetration of the mature CMs within the matrix was only 20 µm. To evaluate the impact of the addition of support cells to the CM monolayer cultures, CMs were co-cultured with human umbilical vein endothelial cells (HUVEC) and it was demonstrated that at ratios of 2:1 HUVEC:CM the beating rate of the CMs was improved from 20 to 112 bpm, additionally, the CM monolayer cultures showed a more synchronized beating pace after the addition of HUVECs. Pharmacological stimulation was performed on CM monolayer cultures using norepinephrine as a stimulator and the results showed that the beating pace of the CMs was improved to 116 bpm after 5 minutes of drug exposure. For future studies, inosculation of the tissue constructs could be performed with the incorporation of membrane proteins to understand the mechanotransduction of the cells. As a preliminary study, the action of dual claudins was evaluated with HUVEC cultures and the results showed the potential of these membrane proteins in the healing of the damaged cell membrane.
189

Subcellular effects of pavetamine on rat cardiomyocytes

Ellis, Charlotte Elizabeth 05 January 2011 (has links)
The aim of this study was to investigate the mode of action of pavetamine on rat cardiomyocytes. Pavetamine is the causative agent of gousiekte (“quick-disease”), a disease of ruminants characterized by acute heart failure following ingestion of certain rubiaceous plants. Two in vitro rat cardiomyocyte models were utilized in this study, namely the rat embryonic cardiac cell line, H9c2, and primary neonatal rat cardiomyocytes. Cytotoxicity of pavetamine was evaluated in H9c2 cells using the MTT and LDH release assays. The eventual cell death of H9c2 cells was due to necrosis, with LDH release into the culture medium after exposure to pavetamine for 72 h. Pavetamine did not induce apoptosis, as the typical features of apoptosis were not observed. Electron microscopy was employed to study ultrastructural alterations caused by pavetamine in H9c2 cells. The mitochondria and sarcoplasmic reticula showed abnormalities after 48 h exposure of the cells to pavetamine. Abundant secondary lysosomes with electron dense material were present in treated cells. Numerous vacuoles were also present in treated cells, indicative of autophagy. During this exposure time, the nuclei appeared normal, with no chromatin condensation as would be expected for apoptosis. Abnormalities in the morphology of the nuclei were only evident after 72 h exposure. The nuclei became fragmented and plasma membrane blebbing occurred. The mitochondrial membrane potential was investigated with a fluorescent probe, which demonstrated that pavetamine caused significant hyperpolarization of the mitochondrial membrane, in contrast to the depolarization caused by apoptotic inducers. Pavetamine did not cause opening of the mitochondrial permeability transition pore, because cyclosporine A, which is an inhibitor of the mitochondrial permeability transition pore, did not reduce the cytotoxicity of pavetamine significantly. Fluorescent probes were used to investigate subcellular changes induced by pavetamine in H9c2 cells. The mitochondria and sarcoplasmic reticula showed abnormal features compared to the control cells, which is consistent with the electron microscopy studies. The lysosomes of treated cells were more abundant and enlarged. The activity of cytosolic hexosaminidase was nearly three times higher in the treated cells than in the control cells, which suggested increased lysosomal membrane permeability. The activity of acid phosphatase was also increased in comparison to the control cells. In addition, the organization of the cytoskeletal F-actin of treated cells was severely affected by pavetamine. Rat neonatal cardiomyocytes were labelled with antibodies to detect the three major contractile proteins (titin, actin and myosin) and cytoskeletal proteins (F-actin, desmin and β-tubulin). Cells treated with pavetamine had degraded myosin and titin, with altered morphology of sarcomeric actin. Vacuoles appeared in the β-tubulin network, but the appearance of desmin was normal. F-actin was severely disrupted in cardiomyocytes treated with pavetamine and was degraded or even absent in treated cells. Ultrastructurally, the sarcomeres of rat neonatal cardiomyocytes exposed to pavetamine were disorganized and disengaged from the Z-lines, which can also be observed in the hearts of ruminants that have died of gousiekte. It is concluded that the pathological alteration to the major contractile and cytoskeleton proteins caused by pavetamine could explain the cardiac dysfunction that characterizes gousiekte. F-actin is involved in protein synthesis and therefore can play a role in the inhibition of protein synthesis in the myocardium of ruminants suffering from gousiekte. Apart from inhibition of protein synthesis in the heart, there is also increased degradation of cardiac proteins in an animal with gousiekte. The mitochondrial damage will lead to an energy deficiency and possibly to generation of reactive oxygen species. The sarcoplasmic reticula are involved in protein synthesis and any damage to them will affect protein synthesis, folding and post-translational modifications. This will activate the unfolded protein response (UPR) and sarcoplasmic reticula-associated protein degradation (ERAD). If the oxidizing environment of the sarcoplasmic reticula is disturbed, it will activate the ubiquitin-proteasome pathway (UPP) to clear aggregated and misfolded proteins. Lastly, the mitochondria, sarcoplasmic reticula and F-actin are involved in calcium homeostasis. Any damage to these organelles will have a profound influence on calcium flux in the heart and will further contribute to the contractile dysfunction that characterizes gousiekte. / Thesis (PhD)--University of Pretoria, 2010. / Paraclinical Sciences / unrestricted
190

NON-CODING RNA REGULATORS INDUCE HUMAN CARDIOMYOCYTE PROLIFERATION

Yibo Xu (8520990) 21 June 2022 (has links)
Adult mammalian <a></a><a>cardiomyocytes </a>(CMs, or heart muscle cells) have little, if any, ability to proliferate in response to injury, and after myocardial infarction this defect underlies the poor regenerative ability of human hearts. In contrast, early stage of CMs (such as fetal CMs) still have some ability to proliferate, and we seek to identify novel gene regulators as potential therapeutic targets for heart regeneration. Here we use human pluripotent stem cells (hPSCs) as an in vitro human model to investigate the roles of emerging long non-coding RNAs (lncRNAs), with the lengths of over 200 nucleotides are able to be transcribed but not translated into protein, for heart regeneration. With public available RNA-sequencing data, we identified several human genes, including lncRNAs, that are highly enriched in fetal CMs. We generated targeted gene knockout hPSC lines using CRISPR/Cas9-mediated genome editing and will use them to study the roles of selected genes in regulating CM proliferation. To identify more therapeutic targets, we also generated a fluorescence ubiquitination cell cycle indicator (FUCCI) reporter cell line that express either green (indicating dividing cells) or red fluorescence (indicating non-dividing cells), on which we’ll perform unbiased genome-wide screening to identity genes that regulate CM proliferation. High-throughput chemical screening will also be performed on FUCCI reporter lines to identify potential therapeutic drugs for heart regeneration.

Page generated in 0.0385 seconds