• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 346
  • 180
  • 53
  • 36
  • 24
  • 19
  • 15
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 1043
  • 1043
  • 188
  • 174
  • 112
  • 109
  • 108
  • 107
  • 100
  • 90
  • 84
  • 83
  • 81
  • 78
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

The effects of vitamin C on the haemostatic system / Deirdré Loots

Loots, Deirdré January 2003 (has links)
Motivation: Cardiovascular disease (CVD) is one of the leading causes of mortality and morbidity in South Africa and worldwide. Dyslipidaemia and an increased coagulation state contribute to the development of CVD. The quality of fibrin network structure (FNS) may also contribute to the risk for CVD and thrombosis. Changes in fibrinogen concentration directly affect FNS. Management of these risk factors is important and dietary intervention forms an essential part of this management program. An increased intake of vitamin C can lead to a decreased susceptibility to infection and subsequently to decreased levels of haemostatic factors (that give rise to an anti-thrombotic state) and thus reduction in CVD and mortality. Furthermore, vitamin C may prove to be beneficial by increasing the pro-fibrinolytx activities of FNS (formation of thick fibrin fibers and more lysable clots) that could result in a reduction in atherosclerosis and subsequent CVD. Obiective: To investigate the effects of FoodState Vitamin C complex supplementation on haemostatic factors, FNS, serum lipids and lipoprotein (a) (Lp(a)) in hyperlipideamic adults. Methods: Thirty free-living hiperlipidaemic volunteers from the Lipid Clinic, Potchefstroom University for Christian Higher Education (CHE), participated in this randomised placebo controlled double blind crossover study. The subjects were randomly divided into two groups (A or B). After a run-in period of 4 weeks during which the subjects excluded all vitamin supplements, Group A received 2 tablets/day of FoodState Vitamin C complex (500mg vitamin C, 600mg magnesium food complex, 900mg vitamin B complex and 160mg bioflavonoids) and Group B received 2 tablets/day of placebo, for at least 8 weeks. A washout period of 8 weeks followed after which the treatments were crossed-over for a further 8 weeks. Fasting blood samples were drawn 8 times (two samples, one week apart at the beginning and end of each treatment). Results: FoodState Vitamin C complex supplementation did not significantly influence the levels of plasma fibrinogen, plasminogen activator inhibitor 1 activity (PAI-I act), tissue plasminogen activator antigen (tPA ag) or d-dimer. Serum lipids and Lp(a) were also not affected. Median plasmin-antiplasmin complex (PAP) and thrombin-antithrombin complex (TAT) levels, which are markers of plasmin (initiate fibrinolysis) and thrombin (initiate coagulation) generation respectively, were both significantly decreased compared to placebo (PAP: 4.05[-23.39, -0.231% vs 1.81[-8.95, 8.091%; TAT: -5.81[-18,47, 0.391% vs 0.12[-8.03, 13.51%). FoodState Vitamin C complex beneficially affected FNS by significantly increasing compaction (49.95[47.55,53.70]% to 51.85[48.55,56.65]%). Conclusion: The decreases in TAT and PAP are possibly an indication that the FoodState Vitamin C complex decreased the initiation of haemostasis, which in turn led to a compensatory reduction in fibrinolysis. FoodState Vitamin C complex may, therefore be protective of cardiovascular disease by causing a new reduced steady state of hemostatic balance and more lysable clots (increased compaction). / Thesis (M.Sc. (Nutrition))--North-West University, Potchefstroom Campus, 2004.
442

The Role of the Glucagon-like Peptide-1 Receptor in Atherosclerosis

Panjwani, Naim 15 November 2013 (has links)
Objective: Glucagon-like peptide-1 receptor (GLP-1R) agonists have been shown to reduce atherosclerosis in non-diabetic mice. We hypothesized that treatment with GLP-1R agonists would reduce the development of atherosclerosis in diabetic Apoe-/- mice. Results: Exendin-4 treatment (10 nmol/kg/day) of high-fat diet-induced glucose-intolerant mice for 22 weeks did not significantly reduce oral glucose tolerance (P=0.62) or HbA1c (P=0.85), and did not reduce plaque size at the aortic sinus (P = 0.35). Taspoglutide treatment for 12 weeks (0.4-mg tablet/month) of diabetic mice reduced body weight (P<0.05), food intake (P<0.05), oral glucose tolerance (P<0.05), intrahepatic triglycerides (P<0.05) and cholesterol (P<0.001), and plasma IL-6 levels (P<0.01); increased insulin:glucose (P<0.05); and unaltered oral lipid tolerance (P=0.21), plasma triglycerides (P=0.45) or cholesterol (P=0.92). Nonetheless, taspoglutide unaltered aortic atherosclerosis (P=0.18, sinus; P=0.19, descending aorta) or macrophage infiltration (P=0.45, sinus; P=0.26, arch). Conclusions: GLP-1R activation in either glucose-intolerant or diabetic mice does not significantly modify the development of atherosclerosis.
443

MECHANISMS OF HEME-OXYGENASE-1 CYTOPROTECTION FOR GENE AND CELL BASED THERAPIES AGAINST CARDIOVASCULAR DISEASE

Brunt, KEITH 23 April 2009 (has links)
Establishing the cellular and molecular basis for cardiovascular disease and the application of tools to manipulate the cardiovascular system genetically provide potential for new forms of treatment against cardiovascular disease, including: atherosclerosis, myocardial ischemia, cardiac hypertrophy and heart failure. Heme oxygenase-1 (HO-1) is an enzyme that has potential for the treatment of cardiovascular diseases (CVD). Atherosclerotic plaques express high levels of HO-1. Advanced plaques are stabilized in part through the separation of plaque constituents from the blood by the fibrous cap made up of smooth muscle cells. Protection of smooth muscle cells from apoptosis in the fibrous cap may be a means of promoting plaque stability in patients. Here we show that expression of HO-1 in human vascular smooth muscle cells renders them resistant to apoptosis mediated by oxidative stress. The cytoprotective mechanism mediated by HO-1 is mediated in part through protein kinase B (Akt). Plaque rupture may lead to myocardial infarction. Tissue recovery after mycocardial infarction requires neovascularization for improved tissue perfusion. A novel cell type recently discovered in the circulation has been characterized as an endothelial progenitor cell (EPC) and appears capable of promoting neovascularization of post-infarct tissue, thereby enhancing tissue recovery and perfusion. Most EPCs transplanted into the infarct environment do not survive or are not retained to function in neovascularization. Here we show that expression of HO-1 and its cytoprotective partner Akt protect EPCs in an infarct environment and promote EPC function in an infarct environment. Oxidative stress can result in maladaptive cardiomyocyte hypertrophy. In a model of oxidative stress-induced myocyte hyperterophy we demonstrate the expression of HO-1 prevents cellular hypertrophy through antioxidant mechanisms and regulation of the transcription nuclear factor kappa B (NF-κB). Atherosclerotic plaque vulnerability is determined by the composition of the lesion. We demonstrate that HO-1 deficient mice have more calcified and fibrotic lesions. This may have implications in the management of late stage atherosclerosis. Collectively, this work demonstrates new insights into the molecular mechanisms of cardiovascular cells under stress that may have implications for strategies aimed at treating CVD using HO-1. / Thesis (Ph.D, Physiology) -- Queen's University, 2009-04-21 15:31:14.05
444

Size Matters: The Influence of Isoform Size on the Intracellular Processing of Apolipoprotein(a)

Han, KRISTINA 23 September 2009 (has links)
High plasma concentrations of Lipoprotein(a) (Lp(a)) have been identified as a risk factor for a variety of atherogenic disorders such as cerebrovascular disease, peripheral vascular disease, and coronary heart disease. Lp(a) consists of a lipoprotein moiety containing apolipoproteinB-100 (apoB-100), as well as apolipoprotein(a) (apo(a)), a unique glycoprotein to which the majority of Lp(a) functions are attributed. Variation in the number of identically repeated kringle IV type 2 (KIV2) motifs of apo(a) forms the molecular basis of Lp(a) isoform size heterogeneity, which is a hallmark of this lipoprotein. There is a general inverse correlation between apo(a) size and plasma Lp(a) concentrations, attributed in part to less efficient secretion of larger apo(a) isoforms from hepatic cells. The present study provides a preliminary investigation into processes involved in apo(a) secretion, with respect to isoform size, to understand this inverse correlation at a molecular level. Pulse-chase experiments were performed in human embryonic kidney (HEK 293) cells and human hepatoma (HepG2) cells, both stably expressing differently-sized recombinant apo(a) isoforms representing the range of apo(a) sizes observed in the population. The folding kinetics for the different apo(a) isoforms were determined by changes in the mobility of the non-reduced radiolabelled species on SDS-PAGE gels. In HEK 293 cells, the rate at which apo(a) is folded correlated well with isoform size. In HepG2 cells, however, folding times were comparable regardless of isoform size. Apo(a) secretion from both cell lines exhibited size-dependency. Preliminary experimentation on endoplasmic reticulum (ER)-resident protein modifications of apo(a) was performed, resulting in the identification of apo(a) interactions with PDI, Erp57, Calnexin, Grp78, Grp94, and EDEM. Preliminary experiments indicate a role for intracellular apo(a) degradation in the amount of apo(a) that is secreted from HepG2 cells, although an isoform size dependency of this degradation process cannot be established with current experimental data. Further experimentation is required to confirm enzyme interactions with differently-sized apo(a) isoforms, to identify other chaperones involved in apo(a) secretion, and to confirm the role of proteasomes in intracellular apo(a) degradation. This may, in turn, provide information regarding the mechanism of how apo(a) secretion from hepatic cells is regulated. / Thesis (Master, Biochemistry) -- Queen's University, 2009-09-20 19:10:09.497
445

Mental health and chronic medical conditions: schizophrenia, its treatment, risk of metabolic complications, and health care utilization

Bresee, Lauren Unknown Date
No description available.
446

Characterization of a novel model of intestinal lipoprotein overproduction and the impact of N-3 PUFA supplementation

Hassanali, Zahra Unknown Date
No description available.
447

The role of ezetimibe and simvastatin in modulating intestinal cholesterol transport, chylomicron profile and chylomicron-remnant uptake by the arterial wall in a rodent model of the metabolic syndrome

Warnakula, Samantha Unknown Date
No description available.
448

Regulation of Cholesterol Biosynthesis in Hepatocytes

Enns, Jennifer Emily 23 August 2010 (has links)
Hypercholesterolemia, a condition of high cholesterol levels in the circulation, poses a major risk for developing cardiovascular disease, such as atherosclerosis. A common method of reducing plasma cholesterol levels relies on the administration of drugs that limit cholesterol synthesis or uptake, many of which have undesirable side effects. Thus, some patients are turning to an alternative treatment, namely natural health products. Natural health products are often equally or even more effective at treating illness than synthetic drugs and may produce fewer side effects. The goal of this study was to identify a natural health product that regulates hepatic cholesterol synthesis by inhibiting HMG-CoA reductase, the enzyme which catalyzes the rate-limiting step of the cholesterol synthesis pathway. Several natural compounds were screened using the human hepatoma cell line HepG2. One compound, berberine, showed great potential as a regulator of cholesterol synthesis and so became the subject of this investigation. Berberine inhibited HMG-CoA reductase activity and decreased cellular accumulation of cholesterol. Berberine was shown to regulate HMG-CoA reductase through activation of metabolic regulator AMP-activated protein kinase, which modifies HMG-CoA reductase post-translationally and thereby decreases its activity. In conclusion, this study demonstrates that the natural health product berberine decreases cholesterol synthesis by activating a cellular signalling pathway to bring about post-translational modification of HMG-CoA reductase, and in doing so, inhibits this enzyme. This novel mechanism supports berberine’s potential for a cholesterol-lowering therapy and its role in reducing the risk for cardiovascular disease.
449

The Role of the Glucagon-like Peptide-1 Receptor in Atherosclerosis

Panjwani, Naim 15 November 2013 (has links)
Objective: Glucagon-like peptide-1 receptor (GLP-1R) agonists have been shown to reduce atherosclerosis in non-diabetic mice. We hypothesized that treatment with GLP-1R agonists would reduce the development of atherosclerosis in diabetic Apoe-/- mice. Results: Exendin-4 treatment (10 nmol/kg/day) of high-fat diet-induced glucose-intolerant mice for 22 weeks did not significantly reduce oral glucose tolerance (P=0.62) or HbA1c (P=0.85), and did not reduce plaque size at the aortic sinus (P = 0.35). Taspoglutide treatment for 12 weeks (0.4-mg tablet/month) of diabetic mice reduced body weight (P<0.05), food intake (P<0.05), oral glucose tolerance (P<0.05), intrahepatic triglycerides (P<0.05) and cholesterol (P<0.001), and plasma IL-6 levels (P<0.01); increased insulin:glucose (P<0.05); and unaltered oral lipid tolerance (P=0.21), plasma triglycerides (P=0.45) or cholesterol (P=0.92). Nonetheless, taspoglutide unaltered aortic atherosclerosis (P=0.18, sinus; P=0.19, descending aorta) or macrophage infiltration (P=0.45, sinus; P=0.26, arch). Conclusions: GLP-1R activation in either glucose-intolerant or diabetic mice does not significantly modify the development of atherosclerosis.
450

Gene-Environment Interactions in Cardiovascular Disease

Ward-Caviness, Cavin Keith January 2014 (has links)
<p>In this manuscript I seek to demonstrate the importance of gene-environment interactions in cardiovascular disease. This manuscript contains five studies each of which contributes to our understanding of the joint impact of genetic variation and environmental exposures to cardiovascular disease: a candidate gene study for gene-smoking interactions associated with early-onset coronary artery disease, an epidemiology study of the association between traffic-related air pollution and cardiovascular disease, a Genome-Wide Interaction Study for gene-by-traffic related air pollution interactions associated with peripheral arterial disease, a Genome-Wide Interaction Study for gene-by-traffic related air pollution interactions on coronary atherosclerosis burden, and a method for analyzing associations between high-dimensional genomics datasets.</p><p> Smoking is a strong risk factors for coronary artery disease, and may play a causative role in the incidence of coronary artery disease. Smoking had been implicated as a reason for heterogeneity observed in associations between genetic variants on chromosome three and coronary artery disease. I used a family-based early-onset coronary artery disease cohort (GENECARD) to study gene-smoking interactions. I also used data from the three independent cohorts to perform a meta-analysis of gene-smoking interactions focusing on the KALRN gene and Rho-GTPase pathway. I found significant evidence for gene-smoking interactions associations involving variants in KALRN and other Rho-GTPase pathway genes on chromosome 3. </p><p> Though the estimated increase in incident cardiovascular disease or cardiovascular events due to air pollution exposure is modest at 3-5%, the ubiquitous nature of air pollution exposures means it has a substantial population-level impact on cardiovascular disease. Historically genome-wide interaction studies with air pollution have not yielded genome-wide significant interactions, however by implementing statistical tools novel to this field I have discovered significant interactions between genetic variants and traffic-related air pollution that are associated with cardiovascular diseases. </p><p> I studied interactions associated with peripheral arterial disease and the number of diseased coronary vessels (an indicator for coronary artery disease burden) using race-stratified cohort study designs. With peripheral arterial disease I observed that variants in both BMP8A and BMP2 showed evidence for interactions in both European-American and African-American cohorts. In BMP8A I uncovered the first genome-wide significant interaction with air pollution associated with cardiovascular disease. BMP2 gene expression is upregulated after exposure to black carbon, a major component of diesel exhaust, and coding variants within this gene showed evidence for interaction. With the number of diseased coronary vessels I observed that variants in PIGR showed significant evidence for involvement in gene-traffic related air pollution interactions. I observed that coding variation within PIGR was associated with coronary artery disease burden in a gene-by-traffic related air pollution interaction model. As PIGR is involved in the immune response it represents a strong candidate gene discovered via an unbiased genome-wide scan.</p><p> The use of high dimensional data to study chronic disease is becoming commonplace. In order to properly analyze high-dimensional data without suffering from high false-discovery rate penalties, the data is often summarized in a way that takes advantage of the correlation structure. Two common approaches for this are principal components analysis and canonical correlation analysis. However neither of these approaches are appropriate when one preferentially desires to preserve structure within the data. To address this shortcoming I developed constrained canonical correlation analysis (cCCA). With cCCA one can evaluate the correlation between two high dimensional datasets while preferentially preserving structure in one of the datasets. This has uses when studying multi-variate outcomes such as cardiovascular disease using multi-variate predictors such as air pollution. Additionally cCCA can be used to create endophenotype factors that specifically explain the variation within a high-dimensional set of predictors (such as gene expression or metabolomics data) with respect to potential endophenotypes for cardiovascular disease, such as cholesterol measures.</p> / Dissertation

Page generated in 0.1523 seconds