• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • Tagged with
  • 10
  • 10
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la quadrangulation infinie uniforme

Ménard, Laurent 04 December 2009 (has links) (PDF)
Les quadrangulations sont des plongements dans la sphère de graphes planaires pour lesquels toutes les faces sont de degré 4. L'objet central de cette thèse est la quadrangulation infinie de loi uniforme. Cette carte a été définie de deux manières indépendantes. La première méthode, naturelle du point de vue des cartes, est de prendre la limite locale de grandes quadrangulations aléatoires de loi uniforme parmi les quadrangulations de même taille. La seconde méthode repose sur une bijection avec les arbres bien étiquetés. On y construit dans un premier temps un arbre infini de loi uniforme, puis on transporte la loi de cet arbre sur l'ensemble des quadrangulations infinies avec la bijection. L'objet du chapitre 2 de ce mémoire est de démontrer que ces deux constructions aboutissent au même objet. Ce fait n'est a priori pas évident car la bijection entre les arbres et les quadrangulations n'est pas continue pour la topologie de la convergence locale. Le résultat s'obtient alors en étudiant des propriétés combinatoires de cette bijection et les sommets ayant de petites étiquettes dans les générations élevées d'un arbre sous la loi uniforme. Le chapitre 3 utilise ensuite cette équivalence des deux points de vue pour calculer les limites d'échelle de certaines fonctionnelles de la quadrangulation infinie uniforme. En effet, des quantités comme le volume des boules autour d'un point distingué de la quadrangulation infinie uniforme peuvent se calculer grâce à une étude de l'arbre infini uniforme. Ce chapitre est articulé autour de la preuve de la convergence des fonctions de contour de l'arbre infini uniforme vers un processus stochastique lié au serpent brownien.
2

Cartes aléatoires hyperboliques / Hyperbolic random maps

Budzinski, Thomas 09 November 2018 (has links)
Cette thèse s'inscrit dans la théorie des cartes planaires aléatoires, active depuis une quizaine d'années, et plus précisément dans l'étude de modèles de nature hyperbolique.Dans un premier temps, nous nous intéressons à un modèle de triangulations aléatoires dynamiques basé sur les flips d'arêtes, et nous montrons une borne inférieure sur le temps de mélange de ce modèle.Dans la suite, l'objet d'étude principal est une famille de triangulations aléatoires hyperboliques, appelées PSHT. Il s'agit de variantes de la triangulation uniforme du plan (UIPT), qui ont été introduites en 2014 par Nicolas Curien. Nous commençons par établir un résultat de limite d'échelle quasi-critique : si on renormalise les distances tout en faisant tendre le paramètre d'hyperbolicité vers sa valeur critique, les triangulations étudiées convergent vers un espace métrique aléatoire appelé plan brownien hyperbolique. Nous étudions également des propriétés métriques fines des PSHT et du plan brownien hyperbolique, et notamment la structure de leurs géodésiques infinies. Nous présentons aussi de nouvelles propriétés de la frontière de Poisson des PSHT.Enfin, nous nous intéressons à un autre modèle naturel de cartes aléatoires hyperboliques : les cartes causales surcritiques, qui sont construites à partir d'arbres de Galton--Watson surcritiques, en ajoutant des arêtes entre sommets de même hauteur. Nous établissons des résultats d'hyperbolicité métrique, ainsi que des propriétés de la marche aléatoire sur ces cartes, dont un résultat de vitesse positive. Certaines des propriétés obtenues sont robustes, et peuvent se généraliser à n'importe quelle carte planaire contenant un arbre de Galton--Watson surcritique. / This thesis falls into the theory of random planar maps, which has been active in the last fifteen years, and more precisely into the study of hyperbolic models.We are first interested in a model of dynamical random triangulations based on edge-flips, where we prove a lower bound on the mixing time.In the rest of this thesis, the main objects that we study are the random hyperbolic triangulations called PSHT. These are hyperbolic variants of the Uniform Infinite Planar Triangulation (UIPT), and were introduced by Nicolas Curien in 2014. We first establish a near-critical scaling limit result: if we let the hyperbolicity parameter go to its critical value at the same time as the distances are renormalized, the PSHT converge to a random metric space that we call the hyperbolic Brownian plane. We also study precise metric properties of the PSHT and of the hyperbolic Brownian plane, such as the structure of their infinite geodesics. We obtain as well new properties of the Poisson boundary of the PSHT.Finally, we are interested in another natural model of hyperbolic random maps: supercritical causal maps, which are obtained from supercritical Galton--Watson trees by adding edges between vertices at the same height. We establish metric hyperbolicity results about these maps, as well as properties of the simple random walk (including a positive speed result). Some of the properties we obtain are robust, and may be generalized to any planar map containing a supercritical Galton--Watson tree.
3

Cartes aléatoires et serpent brownien / Random maps and Brownian snake

Abraham, Céline 11 December 2015 (has links)
La première partie de cette thèse s’inscrit dans le domaine des cartes aléatoires, qui est un sujet à la frontière des probabilités, de la combinatoire et de la physique statistique. Nos travaux complètent une série de résultats de convergence de différents modèles de cartes aléatoires vers la carte brownienne, qui est un espace métrique compact aléatoire. Plus précisément, on montre que la limite d’échelle d’une carte de loi uniforme sur l’ensemble des cartes biparties enracinées à n arêtes, munie de la distance de graphe renormalisée par (2n)^(−1/4), est, au sens de Gromov–Hausdorff, la carte brownienne. Pour prouver ce résultat, les arguments importants sont d’une part l’utilisation d’une bijection combinatoire entre cartes biparties et arbres multitypes, et d’autre part des théorèmes de convergence pour les arbres de Galton–Watson multitypes étiquetés. Dans un deuxième temps, le but est de présenter une théorie des excursions pour le mouvement brownien indexé par l’arbre brownien. De manière analogue à la théorie d’Itô des excursions pour le mouvement brownien, chaque excursion correspond à une composante connexe du complémentaire des zéros du mouvement brownien indexé par l’arbre, et l’excursion est définie comme un processus indexé par un arbre continu. On explique comment mesurer la longueur de la frontière de ces excursions, de sorte que la famille de ces longueurs coïncide avec les sauts d’un processus de branchement à temps continu de mécanisme de branchement stable d’indice 3/2. De plus, conditionnellement aux longueurs des frontières, les excursions sont indépendantes et leur loi conditionnelle est déterminée à l’aide d’une mesure d’excursion explicite que l’on introduit et décrit. Dans ce travail, le serpent brownien apparaît comme un outil particulièrement important. / The first part of this thesis concerns the area of random maps, which is a topic in between probability theory, combinatorics and statistical physics. Our work complements several results of convergence of various classes of random maps to the Brownian map, which is a random compact metric space. More precisely, we prove that the scaling limit of a map which is uniformly distributed over the class of rooted planar maps with n edges, equipped with the graph distance rescaled by (2n)^(−1/4), is, in the Gromov-Hausdorff sense, the Brownian map. To establish this result, the main arguments are the use of a combinatorial bijection between bipartite maps and multitype trees, together with convergence theorems for Galton-Watson multitype trees. We then aim to develop an excursion theory for Brownian motion indexed by the Brownian tree. Analogous to the Itô excursion theory for Brownian motion, each excursion corresponds to a connected component of the complement of the zero set of the tree-indexed Brownian motion, and the excursion is defined as a process indexed by a continuous tree. We explain how to measure the length of the boundary of these excursions, in a way that the collection of these lengths coincides with the collection of jumps of a continuous-state branching process with a 3/2-stable branching mechanism. Moreover, conditionally on the boundary lengths, the excursions are independent and their conditional distribution is determined in terms of an excursion measure that we introduce and study. In this work, the Brownian snake appears as a particularly important tool.
4

Une promenade aléatoire entre combinatoire et mécanique statistique / A random hike between combinatorics and statistical mechanics

Huynh, Cong Bang 27 June 2019 (has links)
Cette thèse se situe à l'interface entre combinatoire et probabilités,et contribue à l'étude de différents modèles issus de la mécanique statistique : polymères, marches aléatoires inter-agissantes ou en milieu aléatoire, cartes aléatoires. Le premier modèle que nous étudions est une famille de mesures de probabilités sur les chemins auto-évitants de longueur infinie sur un réseau régulier, construites à partir de marches aléatoires biaisées sur l'arbre des chemins auto-évitants finis. Ces mesures, introduites par Beretti et Sokal, existent pour tout biais strictement supérieur à l'inverse de la constante de connectivité, et leur limite en ce biais critique serait l'un des définitions naturelles de la marche aléatoire uniforme en longueur infinie. Le but de ce travail, en collaboration avec Vincent Beffara, est de comprendre le lien entre cette limite, si elle existe, et d'autres chemins aléatoires notamment la mesure de Kesten (qui est la limite faible de la marche auto-évitante uniforme dans le demi-plan) et les interfaces de percolation de Bernoulli critique; d'une certaine façon le modèle constitue une interpolation entre les deux. Dans une deuxième partie, nous considérons des marches aléatoires en conductances aléatoires sur un arbre quelconque, dans le cas où la loi des conductances est à queue lourde. L’objectif de notre travail, en collaboration avec Andrea Collevecchio et Daniel Kious, est de montrer une transition de phase par rapport au paramètre de la queue; on exprime le paramètre critique comme une fonction explicite de l'arbre sous-jacent. Parallèlement, nous étudions des modèles de marches aléatoires excitées sur des arbres et leurs transitions de phase. En particulier, nous étendons une conjecture de Volkov et généralisons des résultats de Bas devant et Singh. Enfin, une troisième partie en collaboration avec Vincent Beffara et Benjamin Lévêque porte sur les cartes aléatoires en genre supérieur : nous montrons l'existence de limites d'échelle, le long de sous-suites, pour les triangulations simples uniformes sur le tore, étendant à ce cas les résultats d'Adario-Berri et Albenque (sur les triangulations simples de la sphère) et de Bettinelli (sur les quadrangulations du tore). La question de l'unicité de la limite et de son universalité restent ouvertes, mais nous obtenons des résultats partiels dans ce sens. / This thesis is at the interface between combinatorics and probability,and contributes to the study of a few models stemming from statisticalmechanics: polymers, self-interacting random walks and random walks inrandom environment, random maps.bigskipThe first model that we investigate is a one-parameter family ofprobability measures on self-avoiding paths of infinite length on aregular lattice, constructed from biased random walks on the tree offinite self-avoiding paths. These measures, initially introduced byBeretti and Sokal, exist for every bias larger than the inverseconnectivity constant, and their limit at the critical bias would beaamong the natural definitions of the uniform self-avoiding walk ofinfinite length. The aim of our work, in collaboration with VincentBeffara, is to understand the link between this limit, if it indeedexists, and other random infinite paths such as Kesten's measure(which is the weak limit of uniformly random finite self-avoidingwalks in the half-plane) and critical Bernoulli percolationinterfaces; the model can be seen as an interpolation between thesetwo.In a second part, we consider random walks with random conductances ona tree, in the case when the law of the conductances has heavy tail.Our aim, in collabration with Andrea Collevecchio and Daniel Kious, isto show a phase transition in the tail parameter; we express thecritical point as an explicit function of the underlying tree.In parallel, we study excited random walks on trees and their phasetransitions: we extend a conjecture of Volkov's and generalize resultsby Basdevant and Singh.Finally, a third part in collaboration with Vincent Beffara andBenjamin Lévêque contributes to the study of random maps of highergenus: we show the existence of subsequential scaling limits foruniformly random simple triangulations of the torus, extending to thatsetup fromer results by Adario-Berri and Albenque (on simpletriangulations of the sphere) and by Bettinelli (on quadrangulationsof the torus). The question of uniqueness and universality of thelimit remain open, but we obtain partial results in that direction.
5

Triangulations colorées aléatoires / Random colored triangulations

Carrance, Ariane 20 September 2019 (has links)
L'unification de la mécanique quantique et de la relativité générale est un des grands problèmes ouverts en physique théorique. Une des approches possibles est de définir des espaces géométriques aléatoires avec des bonnes propriétés, qui peuvent être interprétés comme des espaces-temps quantiques. Cette thèse aborde des aspects mathématiques des modèles de tenseurs colorés, un type de modèle de physique théorique qui s'inscrit dans cette approche. Ces modèles décrivent des espaces linéaires par morceaux appelés trisps colorés, en toute dimension.Au cours de cette thèse, nous avons tout d'abord étudié des modèles aléatoires uniformes sur les trisps colorés, en toute dimension. Nous prouvons que ces modèles ont une limite singulière, ce qui a aussi donné lieu à un théorème central limite sur le genre d'une grande carte aléatoire uniforme.Nous avons ensuite étudié le cas particulier de la dimension 2, où les trisps colorés sont un type particulier de cartes, les triangulations eulériennes. Nous montrons que les triangulations eulériennes planaires convergent vers la carte brownienne, qui est un objet aléatoire continu universel en dimension 2. Ce résultat est particulièrement remarquable étant donnée la complexité de la structure des triangulations eulériennes, en comparaison avec les autres familles de cartes qui convergent vers la carte brownienne / The unification of quantum mechanics and general relativity is one the great open problems of theoretical physics. A possible approach is to define random geometric spaces with nice properties, that can be interpreted as quantum spacetimes.This thesis tackles mathematical aspects of colored tensor models, a type of theoretical physics model that is inscribed in this approach. These models describe piecewise-linear spaces called colored trisps, in any dimension.In this thesis, we first studied random uniform models of colored trisps, in any dimension. We prove that these models have a singular limit, which also entails a central limit theorem for the genus of a large uniform map. We then studied the particular case of dimension 2, where colored trisps are a particular case of maps, Eulerian triangulations. We show that planar Eulerian triangulations converge to the Brownian map, which is a universal continuum object in dimension 2. This result is of particular interest, as Eulerian triangulations have a much more complex structure than the other families that are known to converge to the Brownian map
6

Géométrie et percolation sur des cartes à bord aléatoires / Geometry and percolation on random maps with a boundary

Richier, Loïc 30 June 2017 (has links)
Cette thèse porte sur des limites de grandes cartes à bord aléatoires. Dans un premier temps, nous nous intéressons aux propriétés géométriques de telles cartes. Nous montrons d'abord des résultats concernant les limites d'échelle et les limites locales du bord de cartes de Boltzmann dont le périmètre tend vers l'infini, que nous appliquons à l'étude du modèle O(n) rigide sur les quadrangulations. Ensuite, nous introduisons une famille de quadrangulations du demi-plan aléatoires avec un paramètre de torsion, dont on étudie les limites d'échelle et la structure de branchement. Enfin, nous établissons une propriété de confluence des géodésiques dans les cartes uniformes infinies du demi-plan, qui sont des limites locales de triangulations et quadrangulations à bord uniformes.Dans un second temps, nous considérons des modèles de percolation de Bernoulli sur les cartes uniformes infinies du demi-plan. Nous calculons le seuil de percolation par site critique pour les quadrangulations, et établissons une propriété d'universalité de ces modèles de percolation au point critique à partir des probabilités de croisement. Pour finir, nous étudions la limite locale de grands amas de percolation critiques en construisant l'amas critique émergent, une triangulation uniforme infinie du demi-plan munie d'un amas de percolation critique infini. / This thesis deals with limits of large random planar maps with a boundary. First, we are interested in geometric properties of such maps. We prove scaling and local limit results for the boundary of Boltzmann maps whose perimeter goes to infinity, which we apply to the study of the rigid O(n) loop model on quadrangulations. Next, we introduce a family of random half-planar quadrangulations with a skewness parameter, and study their scaling limits and branching structure. Finally, we establish a confluence property of geodesics in uniform infinite half-planar maps, which are local limits of uniform triangulations and quadrangulations with a boundary.Second, we consider Bernoulli percolation models on uniform infinite half-planar maps. We compute the critical site percolation threshold for quadrangulations, and prove a universality property of these percolation models at criticality involving crossing probabilities. To conclude, we study the local limit of large critical percolation clusters by defining the incipient infinite cluster, a uniform infinite half-planar triangulation equipped with an infinite critical percolation cluster.
7

Limite d'échelle de cartes aléatoires en genre quelconque

Bettinelli, Jérémie 26 October 2011 (has links) (PDF)
Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties de genre strictement positif g fixé et, dans un second temps, les quadrangulations planaires à bord dont la longueur du bord est de l'ordre de la racine carrée du nombre de faces. Nous voyons ces objets comme des espaces métriques, en munissant leurs ensembles de sommets de la distance de graphe, convenablement renormalisée. Nous montrons qu'une carte prise uniformément parmi les cartes ayant n faces dans l'une de ces deux classes tend en loi, au moins à extraction près, vers un espace métrique limite aléatoire lorsque n tend vers l'infini. Cette convergence s'entend au sens de la topologie de Gromov--Hausdorff. On dispose de plus des informations suivantes sur l'espace limite que l'on obtient. Dans le premier cas, c'est presque sûrement un espace de dimension de Hausdorff 4 homéomorphe à la surface de genre g. Dans le second cas, c'est presque sûrement un espace de dimension 4 avec une frontière de dimension 2, homéomorphe au disque unité de R^2. Nous montrons en outre que, dans le second cas, si la longueur du bord est un petit~o de la racine carrée du nombre de faces, on obtient la même limite que pour les quadrangulations sans bord, c'est-à-dire la carte brownienne, et l'extraction n'est plus requise.
8

Liouville theory and random maps / Théorie de Liouville et cartes aléatoires

Charbonnier, Séverin 10 September 2018 (has links)
Cette thèse explore divers aspects des cartes aléatoires par l'étude de trois modèles. Dans un premier temps, nous examinons les propriétés d’une mesure définie sur l’ensemble des triangulations de Delaunay planaires comportant n sommets, qui est un modèle de cartes où les arêtes sont décorées par des angles. Nous montrons ainsi que la mesure est égale à la mesure de Weil-Petersson sur l’espace des modules des surfaces de Riemann planaires marquées. Sont aussi montrées deux propriétés de la mesures, premiers pas d'une étude de la limite continue de ce modèle. Dans un deuxième temps, nous définissons des fonctions de corrélations sur les graphes de Strebel planaires isopérimétriques à n faces, qui sont des cartes métriques trivalentes. Les périmètres des faces sont fixés. Nous recourons au théorème de Kontsevich pour calculer les fonctions de corrélations en termes de nombres d’intersection de classes de Chern sur l’espace des modules des surfaces de Riemann. Pour la fonction à une face marquée, la limite des grandes cartes est examinée via l’approximation du point-selle, pour différents régimes du périmètre de la face marquée, et nous déduisons le régime où le comportement de la fonction de corrélation n’est pas trivial. Les fonctions de corrélations peuvent être calculées de manière systématique par la récurrence topologique. Partant, nous calculons la courbe spectrale de notre modèle, ce qui nous permet de montrer qu’il existe une courbe spectrale critique. Nous déduisons de cette courbe critique que la limite continue des graphes de Strebel isopérimétriques est un modèle minimal de type (3,2), habillé par la théorie de Liouville. Cela correspond bien à la gravité pure. Enfin, nous abordons la question des symétries dans le modèle d’Ising sur cartes aléatoires. Certaines fonctions de corrélations de ce modèle comptent le nombre de cartes bicolores avec des faces marquées, les bords, ayant des conditions aux bords mixtes, calculées par récurrence à partir de la courbe spectrale du modèle. Nous prouvons ici que, pour des courbes spectrales génériques, les fonctions de corrélations des cartes à un bord mixte sont symétriques par rotation et par inversion du bord mixte. Nous décrivons ensuite les conséquences de telles symétries, suggérant une possible reformulation du modèle en termes de chaînes de spins. / This thesis explore several aspects of random maps through the study of three models. First, we examine the properties of a measure defined on the set of planar Delaunay triangulations with n vertices, a model in which the edges of the maps are decorated with angles. We show that the measure is the Weil-Petersson volume form on the moduli space of planar Riemann surfaces having n marked points. Two other properties, first steps toward the continuous limit study of the model, are also shown. Second, we define correlation functions on isoperimetric planar Strebel graphs with n faces, which are trivalent maps whose edges are decorated by positive lengths, and whose faces have a fixed perimeter. Kontsevich's theorem allows us to compute the correlation functions in terms of the intersection numbers of Chern classes of moduli space of Riemann surfaces. The continuous limit of the one-point function is computed in different regimes for the perimeter of the marked face via the saddle-point approximation. We identify the regime in which the behaviour of the one-point function is not trivial. The correlation functions can be computed in a systematic way by the Topological Recursion. To do so, we compute the spectral curve of the model, and show that there exists a critical spectral curve. We deduce from the latter that the continuous limit of isoperimetric Strebel graphs is a (3,2) minimal model dressed by Liouville theory: it corresponds to pure gravity. Last, we address the problem of symmetries in the Ising model on random maps. Some correlation functions of this model count the bi-colored maps with marked faces having mixed boundary conditions. They are computed via a recursive formula and the spectral curve of the model. We prove here that the correlation functions of maps with one mixed boundary, computed from the recursive relation with generic spectral curve, are invariant under rotation and inversion of the mixed boundary. We describe the consequences of such symmetries, suggesting a possible reformulation of the model in terms of spin chains.
9

Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires / Separating cycles, isoperimetry and modifications of distances in large random planar maps

Lehéricy, Thomas 04 December 2019 (has links)
Les cartes planaires sont des graphes planaires dessinés sur la sphère et vus à déformation près. De nombreuses propriétés des cartes sont supposées universelles, dans le sens où elles ne dépendent pas des détails du modèle choisi. Nous commençons par établir une inégalité isopérimétrique dans la quadrangulation infinie du plan. Nous confirmons également une conjecture de Krikun portant sur la longueur des cycles les plus courts séparant la boule de rayon $r$ de l'infini. Dans un deuxième temps, nous nous intéressons à l'effet de modifications de distances sur la géométrie à grande échelle des quadrangulations uniformes, élargissant la classe d'universalité de la carte brownienne. Nous montrons également que la bijection de Tutte, entre quadrangulations et cartes planaires, est asymptotiquement une isométrie. Enfin, nous établissons une borne supérieure sur le temps de mélange de la marche aléatoire dans les cartes aléatoires. / Planar maps are planar graphs drawn on the sphere and seen up to deformation. Many properties of maps are conjectured to be universal, in the sense that they do not depend on the details of the model.We begin by establishing an isoperimetric inequality in the infinite quadrangulation of the plane. We also confirm a conjecture by Krikun concerning the length of the shortest cycles separating the ball of radius $r$ from infinity. We then consider the effect of modifications of distances on the large-scale geometry of uniform quadrangulations, extending the universality class of the Brownian map. We also show that the Tutte bijection, between quadrangulations and planar maps, is asymptotically an isometry. Finally, we establish an upper bound on the mixing time of the random walk in random maps.
10

Limite d'échelle de cartes aléatoires en genre quelconque / Scaling Limit of Arbitrary Genus Random Maps

Bettinelli, Jérémie 26 October 2011 (has links)
Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties de genre strictement positif g fixé et, dans un second temps, les quadrangulations planaires à bord dont la longueur du bord est de l'ordre de la racine carrée du nombre de faces. Nous voyons ces objets comme des espaces métriques, en munissant leurs ensembles de sommets de la distance de graphe, convenablement renormalisée. Nous montrons qu'une carte prise uniformément parmi les cartes ayant n faces dans l'une de ces deux classes tend en loi, au moins à extraction près, vers un espace métrique limite aléatoire lorsque n tend vers l'infini. Cette convergence s'entend au sens de la topologie de Gromov--Hausdorff. On dispose de plus des informations suivantes sur l'espace limite que l'on obtient. Dans le premier cas, c'est presque sûrement un espace de dimension de Hausdorff 4 homéomorphe à la surface de genre g. Dans le second cas, c'est presque sûrement un espace de dimension 4 avec une frontière de dimension 2, homéomorphe au disque unité de R^2. Nous montrons en outre que, dans le second cas, si la longueur du bord est un petit~o de la racine carrée du nombre de faces, on obtient la même limite que pour les quadrangulations sans bord, c'est-à-dire la carte brownienne, et l'extraction n'est plus requise. / In this work, we discuss the scaling limits of two particular classes of maps. In a first time, we address bipartite quadrangulations of fixed positive genus g and, in a second time, planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We view these objects as metric spaces by endowing their sets of vertices with the graph metric, suitably rescaled.We show that a map uniformly chosen among the maps having n faces in one of these two classes converges in distribution, at least along some subsequence, toward a limiting random metric space as n tends to infinity. This convergence holds in the sense of the Gromov--Hausdorff topology on compact metric spaces. We moreover have the following information on the limiting space. In the first case, it is almost surely a space of Hausdorff dimension 4 that is homeomorphic to the genus g surface. In the second case, it is almost surely a space of Hausdorff dimension 4 with a boundary of Hausdorff dimension 2 that is homeomorphic to the unit disc of R^2. We also show that in the second case, if the length of the boundary is little-o of the square root of the number of faces, the same convergence holds without extraction and the limit is the same as for quadrangulations without boundary, that is the Brownian map.

Page generated in 0.1026 seconds