• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 24
  • 14
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 30
  • 17
  • 16
  • 15
  • 14
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Ligand induzierte Phosphorylierung des Chemokin Rezeptors CCR5: strukturelle Analyse und Funktion / Ligand induced phosphorylation of CC-chemokine receptor CCR5: structural analysis and function

Hüttenrauch, Friederike 03 November 2004 (has links)
No description available.
42

Modulação da severidade da doença periodontal experimental por células CCR5+ / Modulation of experimental periodontal disease severity by CCR5+ cells

Ferreira Junior, Samuel de Barros 25 May 2009 (has links)
As doenças periodontais (DP) afetam os tecidos de suporte dos dentes e são desencadeadas por micro-organismos gram-negativos anaeróbios presentes no biofilme periodontal. A evolução da doença é influenciada pela resposta inflamatória e imunológica do hospedeiro e envolve a participação de diversos tipos celulares, que atuam no micro ambiente local modulando a resposta do hospedeiro em busca do controle da infecção. Acredita-se que citocinas inflamatórias, quimiocinas e seus receptores estão envolvidos na migração celular para os tecidos periodontais, contudo, pouco se sabe sobre os mecanismos de determinação de resistência ou susceptibilidade às DP; ou no desencadeamento do dano tecidual decorrente da resposta. Neste projeto, avaliou-se o papel das células CCR5+ na DP experimental induzida pela inoculação oral de Aggregatibacter actinomycetemcomitans em camundongos C57BL/6 wild type e camundongos CCR5-knockout. Os resultados mostram que a maioria das células CCR5+ possuem fenótipo compatível com células T do subtipo Th1, devido a co-expressão de CD3 e CXCR3; além de co-expressarem RANKL. Na ausência das células CCR5+, houve uma significativa diminuição da migração de células inflamatórias totais e RANKL+ para os tecidos periodontais, diminuição da reabsorção óssea alveolar, diminuição dos níveis de expressão de citocinas pró-inflamatórias TNFα-, IL-1β e IFN-γ, assim como diminuição na expressão de MMP-1, MMP-2 e MMP-13. Sua ausência não interferiu no controle da infecção periodontal apesar da diminuição dos níveis de iNOS. Estes resultados conduzem à conclusão de que a maioria das células CCR5+ são células T do subtipo Th1, que atuam como importantes moduladoras das citocinas TNFα-, IL-1β e IFN-γ, das metaloproteinases de matriz MMP-1, MMP-2 e MMP-13, e que também expressam e modulam a expressão de RANKL, tendo participação importante na imunopatogenese da DP experimental, sem interferir no controle da infecção periodontal. Estes fatos tornam as células CCR5+ potenciais alvos para intervenção terapêutica visando ao controle das doenças periodontais. / The periodontal diseases (PD) affect the supportive tissues of the teeth and are triggered by periodontopathogens present in the dental biofilm. The clinical outcome is highly influenced by the host inflammatory and immune response with participation of many cellular types, that act in the local microenvironment modulating the host response to control the infection. Inflammatory cytokines, chemokines and its receptors are thought to be involved in the cellular migration to the periodontal tissues, but there is little knowledge about the mechanisms of determination of resistance or susceptibility to the PD and in the triggering of tissue damage by immune response components. This study evaluated the role of CCR5+ cells in the experimental PD induced by oral inoculation of Aggregatibacter actinomycetemcomitans in C57BL/6 wild type mice and CCR5-knockout mice. The phenotypic analysis of inflammatory infiltrate demonstrated that the most of CCR5+ cells coexpress CD3 and CXCR3, suggesting a phenotype compatible with Th1-type cells, and also co-express RANKL. In the absence of CCR5+ cells there was a significant overall reduction of inflammatory cells and RANKL+ cells influx to the periodontal tissues, reduction in the alveolar bone resorption, reduction in the levels of pro-inflammatory cytokines TNFα-, IL-1β and IFN-γ expression, as a reduction in the expression of MMP-1, MMP-2 and MMP-13. The absence of CCR5+ cells did not impair the control of periodontal infection, despite the reduction of iNOS levels. In conclusion, these data demonstrate that the most of CCR5+ cells are Th1 cells, which act as important modulators of TNFα-, IL-1β and IFN-γ, MMP-1, MMP- 2 and MMP-13 levels, and which also express and modulate the expression of RANKL, playing an important role in the immunopathogenesis of experimental PD, without impairing the control of periodontal infection. These facts point to CCR5+ cells as potentials targets to therapeutic interventions aimed to control periodontal diseases.
43

Infecção pelo vírus GB-C (GBV-C) em recém infectados pelo vírus da imunodeficiência humana tipo 1 (HIV-1): prevalência, incidência e modulação da ativação celular / GB virus C in recently HIV-1 infected subjects: prevalence, incidence and modulation in the cellular activation

Giret, Maria Teresa Maidana [UNIFESP] 29 April 2009 (has links) (PDF)
Made available in DSpace on 2015-07-22T20:50:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-04-29. Added 1 bitstream(s) on 2015-08-11T03:25:40Z : No. of bitstreams: 1 Publico-062a.pdf: 992519 bytes, checksum: 41750ff4e6e38ad6517d6c7541049844 (MD5). Added 1 bitstream(s) on 2015-08-11T03:25:40Z : No. of bitstreams: 2 Publico-062a.pdf: 992519 bytes, checksum: 41750ff4e6e38ad6517d6c7541049844 (MD5) Publico-062b.pdf: 1669897 bytes, checksum: 5ca81b8b1f9a75f45902de9ce4bc36f7 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O GB vírus C (GBV-C) está constituído por uma fita única de RNA de polaridade positiva e pertence à família Flaviviridae. Possui uma seqüência e organização genómica parecida ao vírus da hepatite C, (HCV). A infecção pelo GBV-C não foi associada a nenhuma patologia, embora, na co infecção com o HIV, tenha sido associada a uma sobrevida maior e retardo no desenvolvimento da imunodeficiência. O efeito benéfico do GBV-C parece ser mediado por alterações na resposta imune celular; contudo, os possíveis mecanismos para explicar esse efeito ainda não foram esclarecidos. Neste trabalho investigamos a freqüência e características genotípicas assim como o impacto da infecção pelo GBV-C nos indivíduos infectados pelo HIV-1. No primeiro manuscrito examinamos os conhecimentos descritos na literatura referentes à coinfecção e propusemos algumas hipóteses para explicar esses efeitos. Posteriormente, descrevemos a taxa de infecção, a prevalência, incidência e características genotípicas do GBV-C nesta população. Assim, uma considerável freqüência de infecção pelo GBV-C foi observada e a análise filogenética dos isolados de GBV-C mostraram ser do genótipo 1 e 2. Foi observada também uma correlação inversa entre a carga viral do GBV-C e a carga viral do HIV na inclusão e um ano depois, assim como uma correlação positiva, mas não significativa, entre a carga viral do GBV-C e a contagem de linfócitos T CD4+. Finalmente, avaliamos o efeito da viremia pelo GBV-C na ativação celular em recém infectados pelo HIV-1. Os pacientes foram agrupados em GBV-C viremicos e não virémicos e foram avaliados para a contagem de linfócitos T, marcadores de ativação celular e carga viral do GBV-C e HIV-1. Foram realizadas análises de univariada e multivariada para identificar variáveis associadas com ativação celular. Demonstramos que a viremia pelo GBV-C foi correlacionada com uma diminuição da ativação celular nos indivíduos HIV positivos e este efeito mostrou se independente da carga viral do HIV. Assim, esta associação entre a replicação do GBV-C e menor ativação celular pode explicar, pelo menos em parte, a proteção conferida pelo GBV-C na progressão da doença nos indivíduos infectados pelo HIV-1. / GB virus C (GBV-C) is a single stranded positive sense RNA virus, which is a member of the Flaviviridae. It has a close sequence homology and genomic organization to hepatitis C virus (HCV). No disease has been associated with GBV-C infection but coinfection with human immunodeficiency virus (HIV) leads to improved morbidity and mortality for the HIV infected subjects. The mechanism of the beneficial effect of GBV-C appears to be mediated by alterations in the cellular immune response. In this study we investigated the frequency and genotyping characteristics as well as the impact of the GBV-C infection among recently HIV-1 infected individuals. In the first manuscript we examined the current knowledge concerning this co-infection and developed hypotheses to explain its effects. Subsequently, we described the rate of infection, the prevalence, incidence and genotypic GBV-C characteristics in this population. In that regard, a considerable frequency of GBV-C infection was observed and the phylogenetic analysis of the GBVC isolates revealed the predominance of genotypes 1 and 2. Also, it was observed an inverse correlation between GBV-C load and HIV-1 load at the enrollment and after one year of follow-up, and a positive, but not statistically significant, correlation between GBV-C load and CD4+ T lymphocyte counts. Finally, we have investigated the effect of GBV-C viremia on T cell activation in early HIV-1-infection. The volunteers were enrolled into two groups: GBV-C viremic and non viremic, all co-infected with HIV-1. They were evaluated for T cell counts, cellular activation markers, GBV-C RNA detection, and HIV-1 viral load. Non-parametric univariate and multivariate analyses were carried out to identify the variables associated with cellular activation. We demonstrated that the GBV-C viremia is correlated with a lower T cell activation in HIV-1-infected individuals and this effect was independent of HIV-1 viral load. The association between GBV-C replication and lower T-cell activation may explain, at least in part, the protection conferred by this virus against disease progression to immunodeficiency in HIV-1-infected patients. / TEDE / BV UNIFESP: Teses e dissertações
44

Modulação da severidade da doença periodontal experimental por células CCR5+ / Modulation of experimental periodontal disease severity by CCR5+ cells

Samuel de Barros Ferreira Junior 25 May 2009 (has links)
As doenças periodontais (DP) afetam os tecidos de suporte dos dentes e são desencadeadas por micro-organismos gram-negativos anaeróbios presentes no biofilme periodontal. A evolução da doença é influenciada pela resposta inflamatória e imunológica do hospedeiro e envolve a participação de diversos tipos celulares, que atuam no micro ambiente local modulando a resposta do hospedeiro em busca do controle da infecção. Acredita-se que citocinas inflamatórias, quimiocinas e seus receptores estão envolvidos na migração celular para os tecidos periodontais, contudo, pouco se sabe sobre os mecanismos de determinação de resistência ou susceptibilidade às DP; ou no desencadeamento do dano tecidual decorrente da resposta. Neste projeto, avaliou-se o papel das células CCR5+ na DP experimental induzida pela inoculação oral de Aggregatibacter actinomycetemcomitans em camundongos C57BL/6 wild type e camundongos CCR5-knockout. Os resultados mostram que a maioria das células CCR5+ possuem fenótipo compatível com células T do subtipo Th1, devido a co-expressão de CD3 e CXCR3; além de co-expressarem RANKL. Na ausência das células CCR5+, houve uma significativa diminuição da migração de células inflamatórias totais e RANKL+ para os tecidos periodontais, diminuição da reabsorção óssea alveolar, diminuição dos níveis de expressão de citocinas pró-inflamatórias TNFα-, IL-1β e IFN-γ, assim como diminuição na expressão de MMP-1, MMP-2 e MMP-13. Sua ausência não interferiu no controle da infecção periodontal apesar da diminuição dos níveis de iNOS. Estes resultados conduzem à conclusão de que a maioria das células CCR5+ são células T do subtipo Th1, que atuam como importantes moduladoras das citocinas TNFα-, IL-1β e IFN-γ, das metaloproteinases de matriz MMP-1, MMP-2 e MMP-13, e que também expressam e modulam a expressão de RANKL, tendo participação importante na imunopatogenese da DP experimental, sem interferir no controle da infecção periodontal. Estes fatos tornam as células CCR5+ potenciais alvos para intervenção terapêutica visando ao controle das doenças periodontais. / The periodontal diseases (PD) affect the supportive tissues of the teeth and are triggered by periodontopathogens present in the dental biofilm. The clinical outcome is highly influenced by the host inflammatory and immune response with participation of many cellular types, that act in the local microenvironment modulating the host response to control the infection. Inflammatory cytokines, chemokines and its receptors are thought to be involved in the cellular migration to the periodontal tissues, but there is little knowledge about the mechanisms of determination of resistance or susceptibility to the PD and in the triggering of tissue damage by immune response components. This study evaluated the role of CCR5+ cells in the experimental PD induced by oral inoculation of Aggregatibacter actinomycetemcomitans in C57BL/6 wild type mice and CCR5-knockout mice. The phenotypic analysis of inflammatory infiltrate demonstrated that the most of CCR5+ cells coexpress CD3 and CXCR3, suggesting a phenotype compatible with Th1-type cells, and also co-express RANKL. In the absence of CCR5+ cells there was a significant overall reduction of inflammatory cells and RANKL+ cells influx to the periodontal tissues, reduction in the alveolar bone resorption, reduction in the levels of pro-inflammatory cytokines TNFα-, IL-1β and IFN-γ expression, as a reduction in the expression of MMP-1, MMP-2 and MMP-13. The absence of CCR5+ cells did not impair the control of periodontal infection, despite the reduction of iNOS levels. In conclusion, these data demonstrate that the most of CCR5+ cells are Th1 cells, which act as important modulators of TNFα-, IL-1β and IFN-γ, MMP-1, MMP- 2 and MMP-13 levels, and which also express and modulate the expression of RANKL, playing an important role in the immunopathogenesis of experimental PD, without impairing the control of periodontal infection. These facts point to CCR5+ cells as potentials targets to therapeutic interventions aimed to control periodontal diseases.
45

Modulation des récepteurs de l'adénosine par anticorps monoclonaux et ligands synthétiques. : application en physiopathologie humaine / Modulation of adenosine receptors by monoclonal antibody and synthetized ligands : application in human physiopatology

By, Youlet 12 November 2010 (has links)
L’adénosine est un nucléoside ubiquitaire qui exerce un contrôle puissant sur les systèmes nerveux,immunitaire et cardiovasculaire par l’intermédiaire de quatre récepteurs membranaires : A1R, A2AR, A2BR etA3R. L’étude des récepteurs de l’adénosine est nécessaire à la compréhension de physio‐pathologieshumaines non encore élucidées. Pour étudier l’expression des A2AR, nous avons, dans une première étude,produit un anticorps monoclonal, appelé Adonis, d’isotype IgM, . Adonis reconnait un épitope linéaire desept acides aminés sur la partie C‐terminale de la seconde boucle extra‐cellulaire de l’A2AR humain. Adonisrévèle, par Western blotting sur lysats cellulaires, une bande de 45 KDa, correspondant à l’A2AR. Adonis secomporte comme un « agonist‐like » en augmentant la production d’AMPc et en inhibant la proliférationcellulaire via la stimulation des A2AR. Dans une deuxième étude, nous avons utilisé Adonis pour montrerque l’expression des A2AR de cellules mononucléées, qui mime celle des tissus cardiaques, permet dedifférencier certains patients souffrant de syncope neurocardiogénique. Nous avons monté dans unetroisième étude, qu’Adonis induit une « down‐régulation » de l’expression des co‐récepteurs CXCR4 etCCR5 des cellules T via la stimulation des A2AR, et qu’à ce titre il pouvait être un outil thérapeutique dans lesinfections par HIV. Dans une quatrième étude, nous avons évalué les effets anti‐nociceptifs d’Adonis qui,administré par voie intra‐cérébro‐ventriculaire, augmente de manière dose‐dépendante les latencesobtenues avec le test du Hot‐plate et du Tail‐flick chez la souris. Ces effets sont renversés par deuxantagonistes des A2AR mais aussi par un antagoniste des récepteurs aux opioïdes. Ceci suggère que leseffets anti‐nociceptifs d’Adonis sont médiés par la libération d’opioïdes endogènes. En marge de sesétudes, nous avons également testé les propriétés biologiques de nouveaux ligands des A1R dans le cadred’une collaboration entre chimistes et biologistes. Ainsi, nous montrons, dans une cinquième étude, queparmi la trentaine de molécules synthétisées, quatre sont des antagonistes et deux autres des agonistesavec un EC50 de l’ordre du micromolaire pour la production d’AMPc. De tels agonistes des A1R pourraientêtre utiles dans le traitement des douleurs neuropathiques, tandis que les antagonistes le seraient dansl’insuffisance cardiaque ou utilisés comme diurétique. Enfin dans une sixième étude, nous avons testé unemolécule originale, puisque bivalente, possédant un pôle d’activité pour les récepteurs aux opioïdes μ et unautre pour les A1R. Cette molécule est un antagoniste pour les deux récepteurs. Elle pourrait avoir desapplications cliniques dans certaines pathologies comme le choc hypovolémique ou le sevrage aux opiacés. / Adenosine interacts on its cell surface receptors, namely A1R, A2AR, A2BR and A3R, to exertphysiological effects on target tissues. Modulation of these adenosine receptors appears to be a currenttopic of research which may bring more comprehensions on human pathophysiology yet to be elucidated.In order to study A2AR expression, we produced, in study 1, a monoclonal antibody anti‐human A2AR, calledAdonis being of IgM, isotype. Adonis recognized a linear epitope of seven amino acids on the C‐terminalpart of the A2AR second extra‐cellular loop. By Western blotting, Adonis reveals a 45 KDa band of A2AR incell lysates. Adonis behaves as an agonist‐like which increases the cAMP production and inhibits cellproliferation through A2AR stimulation. In study 2, we showed that using Adonis, to measure the A2ARexpression of peripheral blood mononuclear cells which mimic those of the cardiac tissue, was able todifferentiate some patients with suspected neurally mediated syncope. We showed, in study 3, that A2ARstimulation by Adonis leads to a down‐regulation of CXCR4 and CCR5 expression on T‐cells, suggesting thatAdonis would be a potential drug to treat HIV infections. In study 4, we showed that intracereboventricularinjection of Adonis increased the Hot‐plate and Tail‐flick test latencies in mice in a dose‐dependent manner.Such increases were prevented by two A2AR antagonists and by an opiate receptor antagonist, suggestingthat the anti‐nociceptive effects of Adonis were mediated, at least in part, by endogenous opioid liberation.The last section focused on biological evaluation of new A1R ligands in collaborative studies betweenchemists and biologists. Indeed we showed, in study 5, that among thirty synthesized molecules, four act asA1R antagonists and two turn out to be A1R agonists with a micromolar EC50 on cAMP production. ThoseA1R agonists would be used in neuropathic pains, whereas other antagonists could be used in cardiacfailure or as diuretic. Finally, in study 6, we tested an original hybrid molecule which was revealed to be abivalent antagonist to μ opiate receptors and A1R. This hybrid compound may have applications in somepathologies such as hypovolemic shock and opiate addiction.
46

Differenzielle Expression proatherogener Zellmarker auf Monozytensubpopulationen bei Patienten mit stabiler koronarer Herzkrankheit / Differential expression of proatherogenic cell markers on monocyte subpopulations of patients with stable coronary artery disease

Kuschicke, Hendrik 30 March 2017 (has links)
No description available.
47

DEVELOPMENT OF ANTAGONISTS TARGETING CHEMOKINE RECEPTOR CCR5 AND THE CHEMOKINE RECEPTOR CCR5 – MU OPIOID RECEPTOR HETERODIMER

Arnatt, Christopher Kent 12 April 2013 (has links)
The chemokine receptor CCR5 (CCR5) plays an integral role within the inflammatory network of cells. Importantly, CCR5 is a mediator in several disease states and can be targeted using small molecule antagonists. Within this work, CCR5’s role in prostate cancer and HIV/AIDS has been exploited in order to develop potential therapeutics and probes. First, a series of novel compounds was designed by using pharmacophore-based drug design based upon known CCR5 antagonists and molecular modeling studies of the CCR5 receptor’s three-dimensional conformation. Once synthesized, these compounds were tested for their CCR5 antagonism and their anti-proliferative effects in several prostate cancer cell lines. The data from both the calcium mobilization studies and the anti-proliferation studies suggests that the compounds synthesized have activity as CCR5 antagonists and as anti-proliferative agents in certain prostate cancer cell lines. In addition, a bivalent ligand containing both a mu opioid receptor (MOR) and a CCR5 antagonist pharmacophore was designed and synthesized in order to study the pharmacological profile of the putative CCR5-MOR heterodimer and its relation with NeuroAIDS. The structural-activity relationship between the bivalent ligand and the heterodimer was studied with radio-ligand binding assays, functional assays, HIV-1 fusion assays, cell fusion assays, and in silico molecular dynamics. The subsequent bivalent ligand was proven to be a potent inhibitor in both an artificial cell fusion assay mimicking HIV invasion and a native HIV-1 invasion assay using live virus. In all, two novel sets of compounds were synthesized that targeted either CCR5 or the CCR5-MOR heterodimer. For the CCR5 antagonists, as leads for prostate cancer therapeutics, further work needs to be done to ascertain and develop their structure-activity-relationship. This library of novel compounds was shown as promising leads as CCR5 and anti-prostate cancer agents. The bivalent ligand targeting the CCR5-MOR heterodimer proved to be a potent and tissue-specific inhibitor for neuroAIDS where the known treatment, maraviroc, is less efficacious and fails to inhibit virus entry in the presence of morphine. Both projects illustrate the roles that CCR5 plays in these two unique diseases.
48

Entrée des rétrovirus humains : caractérisation moléculaire de la neuropiline-1, co-facteur à l'entrée de HTLV-1, et inhibition d'entrée du VIH-1 par CCR5

Janvier, Sébastien January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
49

Genetics of the immune cell receptors TCRB and CCR5 in human disease

Buhler, Marc McWilliams January 2003 (has links)
Abstract Early in the evolution of the vertebrates it is thought that two genomic duplications occurred, providing a basis for the evolution in body plan and neural crest of very early vertebrates and substantive material for further evolution of various gene families such as those making up a number of components of the adaptive vertebrate immune system. While the bony fish possibly had another, genome duplications are not generally a feature of vertebrate evolution and indeed the appearance of an antigen-adaptive immune recognition system may have served to limit the size that various vertebrate genomes, including that of the human, can in fact achieve. This initial step in vertebrate immune evolution, the establishment of recognition of non-self against the unique set of 'self' epitopes for an individual, provided an immensely powerful weapon in immune function with the ability to tailor a defense against as-yet-unseen dangers at any time albeit with the pitfall of autoimmune disease. As the recognition sites of the antigen receptor molecules such as TcR are produced by clonal modification of the segments provided in the germline and are thus not in the genome itself, pathogens have not been able to hijack this one component of the immune system in the way so many other components have been put to use throughout evolution, nor do these components necessarily reveal themselves as associated with disease through genome screens. Importantly, overall immune function is determined not just by the potential repertoire of recognition receptors but also by the ability of immunocompetent cells to migrate in a tissue specific fashion through the use of various chemokines and their receptors. Typical of the hijacking of an immune system component by a pathogen is the use of a chemokine ligand gene in the viral ancestor to SIV and HIV, allowing for virus binding to immunocompetent cells as is seen in the use of the CCR5 chemokine receptor by macrophage-tropic HIV strains. This thesis describes the allele and genotype frequencies for several TcR beta-chain variable segment polymorphisms in a population of MS patients compared with controls before and after stratification for HLA-DR15, polymorphism in the Apo-1 / Fas promoter, the DRB1 Val86/Val86 genotype, CCR5-delta32 and the HLA-DRA promoter. The thesis continues with CCR5-delta32 genotyping in IDDM, MS and SLE cohorts and then examines the question of the population of origin of the delta-32 allele of the CCR5 receptor for chemokine. Here, a case / control comparison of 122 RR-MS patients with 96 normal individuals was made for allele and genotype frequencies and for haplotypes formed by pairs of TCRB markers. Further analysis was made after HLA-DR15 stratification. Linkage disequilibrium was found between pairs of alleles of bv8s1, bv10s1, bv15s1 and bv3s1 loci in both patients and controls. In the RR-MS cohort, an increase in the allele frequency of bv8s1*2 was seen (p = 0.03) and the haplotype bv8s1*2 / bv3s1*1 was increased (p = 0.006), and both were found to be statistically significant. In the DR15-positive group, association between MS and TCRB was seen with the bv8s1*2 allele (p = 0.05) and the bv8s1*2 / bv10s1 haplotypes (p = 0.048), while the haplotype associations seen among the DR15-negative patients included the bv3s1*1 allele (bv10s1*1 / bv3s1*1, p = 0.022; bv8s1*2 / bv3s1*1, p = 0.048). While no associations were found after stratification for SDF1-3'A, Apo-1 / Fas or DRB1 there were modest interactions between bv3s1, bv10s1 and bv15s1 and the HLA-DRA promoter. These results support the involvement of the TCRB region in MS susceptibility. The further study of autoimmune disease here includes genotype analysis of CCR5-delta32 in type 1 diabetes (IDDM) and SLE. CCR5 is the major co-receptor for viral entry used by macrophage-tropic HIV strains and protection from infection is seen in homozygotes for CCR5-delta32. In diabetes, infiltration of pancreatic tissue by autoreactive T-cells involves secretion of multiple cytokines and chemokine receptor expression. Variation in the chemokine receptor CCR5 may result in differences in inflammatory cell migration in response to relevant chemokines. Adolescents with type 1 diabetes were genotyped for CCR5-delta32 (n = 626). The allele frequency was compared with that of 253 non-diabetic adolescents and with that of 92 adults with SLE. A reduced allele frequency was seen in type 1 diabetes compared with controls (0.092 vs 0.123, p = 0.05). This difference was not seen for the cohort of patients with SLE (freq = 0.114). A reduction in the number of CCR5-delta32/delta32 homozygotes, who lack CCR5, in the type 1 diabetes cohort was also seen and while not statistically significant (2 observed compared to 5.25 expected; p = 0.12) is interesting. These results suggest a partial protection from type 1 diabetes for CCR5-delta32 homozygous individuals is possible and that CCR5 has a potential role in the pathogenesis of type 1 diabetes. Global surveys of the CCR5-delta32 allele have confirmed a single mutation event in a Northeastern European population as the source of this allele. Here, Australian Ashkenazi Jews (n = 807) were found to have a CCR5-delta32 allele frequency of 14.6% while Australian Sephardic Jews (n = 35) had a frequency of 5.7% and non-Jewish Australian controls (n = 311) had an allele frequency of 11.25%. Data on birthplace of grandparents showed a gradient with highest CCR5-delta32 frequencies from Eastern European Ashkenazim (~19.5% for those whose four grandparents come only from Russia, Poland, Hungary, Austria and Czechoslovakia; n = 197) which differs significantly from the frequency seen in Ashkenazi Jews from Western Europe (n = 101, p = 0.001). Homozygotes for CCR5-delta32 were genotyped with 3p21 region microsatellites. This has defined an ancestral haplotype on which the mutation first occurred and helped to date this event to between 40 and 50 generations ago or just over a thousand years ago. The population gradient, combined with the dating of the mutation by microsatellite allele frequencies, suggests an origin for the CCR5-delta32 allele in a population ancestral to the Ashkenazim. The distribution in non-Jewish populations in northern Europe has led others to postulate spread of the mutation by Vikings. It is hypothesised here that the link between the two populations could be the kingdom of Khazaria with subsequent admixture into both Swedish Vikings and Ashkenazi Jews. The basic driving force of evolution is through selection and the immune system has a role which, through the survival pressure exerted by viruses and other pathogens, has the potential to exert a great deal of selective force on the various components of this system. The effects of this pronounced selection on an immune system component can be seen for example in the increase of the CCR5-delta32 allele over the last thousand years to the current frequency. As mentioned, some immune system components are not affected by such straightforward selection. In the case of the TCRBV segments, effects on the immune repertoire can occur through MHC interaction at the point of thymic entry and in the effects of various superantigens, but the actual binding pockets that recognise antigen are themselves unable to be selected for (or against). The findings presented in this thesis provide support for the association of TCRBV gene segments with multiple sclerosis and also provide support for the further study of the role of the CCR5-delta32 allele in type 1 diabetes. Furthermore, data presented here suggests that the CCR5-delta32 allele had an origin in the Khazar Kingdom just over a thousand years ago, accounting for the allele frequencies in both the Ashkenazi Jews and in lands frequented by the Vikings. The definition of an extended ancestral haplotype for the CCR5-delta32 allele shows how the effect of selection of an allele of one gene can carry with it specific alleles of a large number of other genes as well.
50

Structural and Functional Studies of the Receptor-binding and Glycosaminogly-canbinding Mechanisms of a Viral Chemokine Analog vMIP-II and Rational Design of Chemokine-based Highly Potent HIV-1 Entry Inhibitors

Zhao, Bo 2011 May 1900 (has links)
Chemokines are small immune system proteins mediating leukocyte migration and activation, and are important in many aspects of health and diseases. Some chemokines also have the ability to block HIV-1 infection by binding to the HIV-1 co-receptors CCR5 (CC chemokine receptor 5) and CXCR4 (CXC chemokine receptor 4). The first part of this work is to determine the mechanism of action of a human herpesvirus-8 encoded viral chemokine analog vMIP-II (viral macrophage inflammatory protein-II) by characterizing its interactions with endothelial surface glycosaminoglycans (GAGs) and cell surface receptors. Nuclear magnetic resonance (NMR), mutagenesis and molecular-docking were conducted and results show that vMIP-II tightly binds glycosaminoglycans using residues distributed along one face of the protein, such as R18, R46 and R48, and that there is a shift in the GAG binding site between the monomer and dimer form of vMIP-II where the N-terminus is involved in GAG binding for the dimer. This study, for the first time, provides a model that explains the mechanism of how quaternary structure affects chemokine-GAG binding. Mutagenesis and competition binding assays were conducted to study the receptor-binding mechanism of vMIP-II. Preliminary results suggest that vMIP-II uses the same positively charged binding surface comprising R18, K45, R46 and R48 to interact with the negatively charged N-termini of CCR5 and CXCR4. NMR studies on how vMIP-II interacts with N-terminal peptides of CCR5 and CXCR4 is on-going. The second part of this work was to rationally design HIV-1 entry inhibitors based on our knowledge of the mechanisms of chemokine-receptor binding and HIV-1 cell entry. We successfully designed two chimeric HIV entry inhibitors composed of CCR5-targeting RANTES variants (5P12-RANTES and 5P14-RANTES) linked to a gp41 targeting C-peptide, C37. In in vitro assays, chimeric inhibitors 5P12-linker-C37 and 5P14-linker-C37 showed the highest anti-viral potency yet published with IC50 values as low as 0.001 nM against certain virus strains. On human peripheral blood mononuclear cells, the chimeric inhibitors also exhibited very strong inhibition against R5-tropic and X4-tropic viruses, with IC50 values as low as 0.015 nM and 0.44 nM, respectively. A clear delivery mechanism was observed and characterized. These fully recombinant inhibitors can be easily produced at low cost and are excellent candidates for HIV microbicides.

Page generated in 0.0444 seconds