Spelling suggestions: "subject:"well development"" "subject:"cell development""
71 |
The Justy mutation disrupts the regulation of gene expression and cell cycle progression during B lymphopoiesisBarr, Jennifer Yamaoka 01 May 2015 (has links)
B lymphopoiesis requires a network of transcription factors that orchestrate changes in gene expression amidst immunoglobulin gene rearrangement and periods of cell proliferation. Although proteins required for the function of this network have been identified, the precise mechanisms that coordinate these processes as hematopoietic progenitors differentiate into lineage-committed B cells remain unclear. Justy mice display a profound arrest of B cell development at the time of lineage commitment due to a point mutation that decreases expression of the protein Gon4-like. Previous studies suggested that Gon4-like functions to coordinate gene expression and cell division to determine cell fate, but the role of Gon4-like in B lymphopoiesis is largely unknown. Here we demonstrate that Gon4-like is required to regulate gene expression and cell cycle progression in B cell progenitors. Expression of genes required for B cell development is intact in Justy B cell progenitors, yet these cells fail to repress genes that promote the development of alternative lineages. In addition, Justy B cell progenitors are unable to upregulate genes that instruct cell cycle progression. Consistent with this, B cell progenitors from Justy mice show signs of impaired proliferation and undergo apoptosis despite containing elevated levels of activated STAT5, a transcription factor that promotes cell proliferation and survival. Genetic ablation of p53 or retroviral-mediated overexpression of pro-survival factors failed to rescue these defects. In contrast, overexpression of proteins that promote the G1/S transition of the cell cycle, including D-type cyclins, E2F2 and cyclin E, rescued pro-B cell development from Justy progenitors, an effect that was not observed upon overexpression of proteins that function during the S and G2M phases of the cell cycle. Further, overexpression of cyclin D3 led to partial restoration of gene repression in Justy pro-B cells. Notably, Gon4-like interacted with STAT5 when overexpressed in transformed cells, suggesting Gon4-like and STAT5 function together to activate expression of STAT5 target genes. Collectively, our data indicate that Gon4-like is required to coordinate gene repression and cell cycle progression during B lymphopoiesis.
|
72 |
Determining the Mechanism of Growth Hormone Receptor Dimerization and ActivationRebecca Anne Pelekanos Unknown Date (has links)
No description available.
|
73 |
Epigenetic landscape of normal and malignant lympho-hematopoiesis : interplays between chromatin signature and tissue specific gene expression / Le paysage épigénétique de la lympho-hématopoïèse normale et pathologique : les relations entre la signature chromatinienne et l'expression génique régulée d'une manière tissue spécifiquePekowska, Aleksandra 16 February 2011 (has links)
La régulation transcriptionelle fine assurée par les Eléments Cis Régulateurs (ECR, eg. promoteurs et «enhancers») et les facteurs protéiques associés, est à la base de la mise en place et le maintien de l'identité tissulaire. Les modifications de la chromatine corrèlent avec l’activité d’ECRs et constituent l’épigénome de la cellule. Au cours de ma thèse, je me suis intéressée aux transitions des modifications des histones (H3K4me1/me2/me3, H3K36me3, H3K27me3 and H3K9me2) accompagnant le développement précoce de la cellule T. Pour cela, j’ai utilisé un modèle murin reproduisant une étape cruciale de la thymopoïèse - la sélection β - et la technique d’Immunoprecipitation de la chromatine couplée à des puces à ADN (ChIP-chip). Au sein des enhancer connus, nos analyses ont mis en évidence une nouvelle signature épigénétique liée à leur activité. De plus, nous montrons que l'étendue d'enrichissement d’H3K4me2 au sein des régions géniques des gènes exprimés, constitue une signature épigénétique des gènes tissus spécifiques. Tout ceci a permis de mieux comprendre le rôle de l’épigénétique dans l'établissement et le maintien de l'identité cellulaire.Le traitement anti-cancer moderne est basé sur les analyses de différents marqueurs d'agressivité (MA) et par la suite, de l’établissement de la thérapie personnalisée. Durant la dernière partie de ma thèse, j’ai participé à un projet collaboratif avec le laboratoire de Thérapie Cellulaire de l’Institut Paoli Calmettes à Marseille, qui visait l’isolation des MA des Leucémies Aiguës Myéloïdes à caryotype normal (LMAcn) grâce aux études de profilage épigénétique (H3K27me3) des blastes des patients atteints de LMAcn. / Precise transcriptional regulation underlies the establishment and maintenance of cell type specific identity and is governed by dedicated DNA sequences (i.e., cis regulatory elements (CREs): eg.: promoters, enhancers) and transcription factors. Chromatin modifications (eg.: histone modifications, DNA methylation) impinge on CREs activity and constitute the epigenome of the cell.During my PhD, I was interested in the transitions of a set of histone modifications (H3K4me1/me2/me3, H3K36me3, H3K27me3 and H3K9me2), during one of the major checkpoints of thymopoiesis - the β-selection. I used a dedicated mouse model and Chromatin Immunoprecipitation coupled with microarrays (ChIP-chip) technique. Our data evidenced a previously unappreciated epigenetic signature linked to enhancer activity. In parallel, computational analyses of the patterns of gene body enrichment of H3K4me2 highlighted an epigenetic signature linked to the regulation of the tissue specific gene expression. Altogether, this enabled to deepen the relationship between chromatin states and regulation of cell type specific identity.Modern anticancer treatment is based on the analyses of a number of cancer aggressiveness markers (CAM) and results in a highly personalized therapy. Epigenetic profiling can constitute a powerful tool for CAM’s isolation. In the second part of the presented work, I participate in a collaborative project (with Cellular Therapy Centre at the Paoli Calmettes Institut, Marseille) aiming to isolate new CAM for Acute Myeloid Leukemia with normal karyotype (AMLnc) patients. For this purpose I performed epigenetic (H3K27me3) profiling of blasts of AMLnc.
|
74 |
Molecular mechanisms leading to the emergence of mouse regulatory T lymphocytes specific to non-inherited maternal antigensLi, Shuang 08 June 2021 (has links) (PDF)
[EN]It is well illustrated that the generation of Tregs is the main mechanism responsible for maintaining immune tolerance during developmental exposure to non-inherited maternal antigen (NIMA). Moreover, the presence of NIMA-specific Tregs in the uterus of pregnant mice promote reproductive fitness by enforcing maternal tolerance to overlapping paternal antigens expressed by the fetus during next-generation pregnancies. However, the reason why perinatal T cell lineage is biased towards immune tolerance is poorly understood. Due to the fact that terminal deoxynucleotidyl transferase (TdT) is not expressed in neonatal T cells in the mouse, neonatal T cells have a less diverse TCR repertoire. This is known to limit their specificity and to increase their affinity for MHC/peptide complexes. At the start of the present work, we postulated that expressing high affinity TCR might be the reason that forces the development of antigen-specific Tregs in neonates. We undertook our study with the aim to investigate the mechanisms underlying mouse NIMA-specific Treg development in the perinatal period. Using 2W1S-OVA+ heterozygous mouse model in which 2W1S antigen was transformed into surrogate NIMA for half of the offspring, we observed an increased frequency of 2W1S-specific Tregs in NIMA-2W1S-exposed animals. Moreover, we also observed that periphery-derived NIMA-2W1S Tregs had a less diverse TCR repertoire and were phenotypically distinct from thymus-derived SELF-2W1S-specific Tregs. In order to investigate whether the lack of diversity was responsible for the development of neonatal NIMA-specific Tregs, we generated transgenic mice where TdT expression was enforced in T cells before birth. We found that transgenic TdT added clonal TCR diversity but did not prevent the development of T cell clones with neonatal type TCR repertoire and did not modify the frequency of neonatal NIMA-specific Tregs. On the contrary, TdT expression increased significantly generation of SELF-specific Tregs to levels similar to that of NIMA-specific Tregs. Taken together, our data indicate that the developmental pathways of NIMA- and SELF-specific Treg repertoire are different in terms of inducing and maintaining neonatal tolerance. / [FR]Il est bien illustré que la génération périnatal de Treg est le principal mécanisme responsable du maintien de la tolérance immunitaire fœtale qui se développe suite à l'exposition aux antigènes maternels non-hérités (NIMA). De plus, la présence de Tregs spécifiques des NIMA dans l'utérus des femmes enceintes favorise la capacité de reproduction en renforçant la tolérance maternelle aux mêmes antigènes paternels exprimés par le fœtus pendant les grossesses de prochaine génération. Cependant, la raison pour laquelle la lignée des cellules T fœtales est biaisée en faveur de la tolérance immunitaire est mal comprise. Chez la souris, en raison du manque d'expression de la désoxynucléotidyl transférase terminale (TdT), les cellules T néonatales ont un répertoire de TCR moins diversifié. Ceci est connu pour limiter leur spécificité et augmenter leur affinité pour les complexes CMH / peptide. Au début du présent travail, nous avons émis l'hypothèse que l'expression de TCRs de haute affinité pourrait être la raison qui force le développement de Treg spécifiques chez les nouveau-nés. Nous avons plus particulièrement entrepris notre étude dans le but d'étudier les mécanismes sous-jacents au développement de Tregs spécifiques des NIMA chez la souris pendant la période périnatale. En utilisant le modèle de souris hétérozygotes pour 2W1S-OVA+ dans lequel l'antigène 2W1S a été transformé en NIMA pour la moitié de la progéniture, nous avons observé une fréquence accrue de Tregs spécifiques de 2W1S chez les animaux exposés au NIMA. De plus, nous avons également observé que les Treg NIMA-2W1S dérivés de la périphérie avaient un répertoire de TCRs moins diversifié et étaient phénotypiquement distincts des Tregs spécifiques de SELF-2W1S dérivés du thymus. Afin de déterminer si le manque de diversité était responsable du développement de Tregs néonataux spécifiques de NIMA, nous avons généré des souris transgéniques où l'expression de TdT était appliquée dans les cellules T avant la naissance. Nous avons constaté que le TdT transgénique ajoutait une diversité de TCR clonale, mais n'empêchait pas le développement de clones de cellules T avec un répertoire TCR de type néonatal et ne modifiait pas la fréquence des Treg néonataux spécifiques du NIMA. Au contraire, l'expression de TdT a augmenté de manière significative la génération de Tregs spécifiques de SELF-2W1S à des niveaux similaires à ceux des Treg spécifiques de NIMA-2W1S. Prises ensembles, nos données indiquent que les voies de développement du répertoire des Tregs néonataux spécifiques de NIMA et SELF sont différentes en termes d'induction et de maintien de la tolérance néonatale. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
|
75 |
Sex Differences In the Enduring Neuroinflammatory and Behavioural Sequelae of Systemic Immune Challenge During PubertyKolmogorova, Daria 19 May 2021 (has links)
Puberty is a critical period for sexual maturation during which the sex-specific reorganization and remodelling of the pubertal brain facilitate sex biases in stress sensitivity. Pubertal (i.e., six-week-old) CD-1 mice treated with the bacterial endotoxin lipopolysaccharide (LPS; 1.5 mg/kg body weight, ip) show several sex-specific changes to the neuroendocrine and behavioural systems of several reproductive and non-reproductive functions. One promising explanation for the elusive mechanisms driving the sex-specific outcomes of pubertal immune challenge may lie in the cascade of neuroimmune events induced by this systemic immune stressor. This doctoral thesis tested the hypothesis that sex-specific responses of the pubertal neuroimmune network contribute to sex differences in the enduring outcomes of pubertal immune challenge on hippocampus-dependent cognitive processes. Male and female CD-1 mice are equally vulnerable to enduring impairments in spatial memory following pubertal LPS exposure. Across brain regions for cognition and stress regulation, pubertal LPS treatment alters baseline sex differences in microglial expression and morphology in a sex-dependent manner. The temporary female-specific increase in whole-brain blood-brain barrier permeability during LPS-induced sickness may have facilitated the apparent female bias in LPS-induced changes to pubertal microglia. In the context of sex- and region-specific residual effects of pubertal LPS-induced sickness on microglial expression and morphology, pubertal LPS treatment may accelerate certain neurodevelopmental processes in males but not females. The innate sex differences in the pubertal neuroimmune network highlighted by these studies underscore how a systemic immune challenge precipitates sex biases in immune-mediated disorders of brain and behaviour during adulthood.
|
76 |
The Molecular Function of the RNA Binding Protein DAZL in Male Germ Cell SurvivalZagore, Leah Louise 24 January 2020 (has links)
No description available.
|
77 |
IN VIVO VALIDATION OF THE PRL PHOSPHATASES AS THERAPEUTIC TARGETS IN CANCER USING NOVEL ANIMAL MODEL SYSTEMSColin I Carlock (16679862) 28 July 2023 (has links)
<p>The PRLs are a subfamily of dual specificity phosphatases that appear to play important roles in oncogenesis. Much of the current understanding of PRL function has been either correlative, and deduced from observed PRL overexpression in pathological conditions, or from in vitro analysis of signaling pathways following PRL deletion or overexpression. Such studies, necessitated by the general lack of synthetic inhibitors or compounds to probe the substrate specificity and biological interactions of the PRLs, are nonetheless now providing critical insight into potential biological substrates and roles of the PRL phosphatases. The recent identification of PTEN as a substrate for PRL2 provided the foundation for studies to further define the role of PRL2 in oncogenesis and, by analogy, the normal physiological function of PRL2. In the studies described herein, a novel PRL2 conditional knock-out animal was generated and used to validate the PRL2/PTEN interaction in a leukemic phenotype, and further demonstrated that PRL2 inhibition can restore dysregulated PTEN/AKT pathways to significantly attenuate disease progression. Inhibition of PRL2 therefore represents a novel potential therapeutic strategy in the management and treatment of AML. This thesis project also sought to further examine the role of the PRLs in oncogenesis through their regulation and interaction of targets within the TME. Functional analyses revealed that PRL3 was the only PRL to have a prominent role in host response to TME development, and that previously proposed roles for PRL3 in angiogenesis and immune cell recruitment is dependent upon PRL3 expression and activity in cells external to the TME. The study also revealed a previously unrecognized synergism between VEGF and PRL3 in the host in promoting TME angiogenesis. The studies of PRL3 in the TME suggest the potential physiological role of PRL3 in wound healing.</p>
|
78 |
CIS REGULATORY MODULE DISCOVERY IN TH1 CELL DEVELOPMENTGanakammal, Satishkumar Ranganathan January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Immune response enables the body to resist foreign invasions. The Inflammatory response is an important aspect in the immune response which is articulated by elements such as cytokines, APC, T-cell and B-cell, effector cell or natural killer. Of these elements, T-cells especially T-helper cells; a sub class of T-cells plays a pivotal role in stimulating the immune response by participating in various biological reactions such as, the transcription regulatory network. Transcriptional regulatory mechanisms are mediated by a set of transcription factors (TFs), that bind to a specific region (motifs or transcription factor binding sites, TFBS), on the target gene(s) controlling the expression of genes that are involved in T-helper cell mediated immune response. Eukaryotic regulatory motifs, referred to as cis regulatory modules (CRMs) or cistrome, co-occur with the regulated gene’s transcription start site (TSS) thus, providing all the essential components for building the transcriptional regulatory networks that depends on the relevant TF-TFBS interactions. Here, we study IL-12 stimulated transcriptional regulators in STAT4 mediated T helper 1 (Th1) cell development by focusing on the identification of TFBS and CRMs using a set of Stat4 ChIP-on-chip target genes. A region containing 2000 bases of Mus musculus sequences with the Stat4 binding site, derived from the ChIP-on-chip data, has been characterized for enrichment of other motifs and, thus CRMs. Our experiments identify some potential motifs, (such as NF-κB and PPARγ/RXR) being enriched in the Stat4 binding sequences compared to neighboring background sequences. Furthermore, these predicted CRMs were observed to be associated with biologically relevant target genes in the ChIP-on-chip data set by meaningful gene ontology annotations. These analyses will enable us to comprehend the complicated transcription regulatory network and at the same time categorically analyze the IL-12 stimulated Stat4 mediated Th1 cell differentiation.
|
79 |
Understanding the Role of Hypusine Biosynthesis in Exocrine-Endocrine CrosstalkDorian Dale (13149045) 27 July 2022 (has links)
<p> </p>
<p>Traditionally, the exocrine and endocrine cellular compartments of the pancreas have been considered distinct functional systems. However, recent studies suggest a more intricate relationship between the exocrine and endocrine, which may impact pancreatic growth and health. Additionally, translational control mechanisms have been linked to organ development. Our lab has shown that the mRNA translation factor eukaryotic initiation factor 5A (eIF5A), when in its post-translationally modified “hypusinated” form, plays a role in pancreas development. The hypusination of eIF5A requires the rate-limiting enzyme deoxyhypusine synthase (<em>Dhps</em>) to post-translationally modify a critical lysine residue which in turn produces the active form of eIF5A that functions in mRNA translation. When we generated animals with a deletion of <em>Dhps</em> in the pancreatic progenitor cells, there was no alteration in islet mass but significant exocrine insufficiency at embryonic (E) day 18.5 concomitant with downregulation of proteins required for exocrine pancreas development and function. Resultantly these animals died by 6 weeks-of-age. These observations prompted the question, is the phenotype caused by the absence of hypusinated eIF5A or the increase of unhypusinated eIF5A? To address this, we generated a mouse model wherein <em>Eif5a</em> is deleted in the pancreas (eIF5A∆PANC) and these mutant animals also display exocrine insufficiency. Interestingly, beta cell mass is increased at E18.5, and the mutant animals maintain euglycemia and survive up to 2 years. Ongoing analyses are interrogating the differences between these animal models with the goal to determine if mRNA translation facilitates cellular communication between the exocrine and endocrine pancreas.</p>
|
80 |
NOTCH SIGNALING REGULATES STEMNESS AND METABOLISM OF LIPOSARCOMA CELLSPei Chieh Tien (14232620) 09 December 2022 (has links)
<p>Liposarcoma (LPS) arises from adipocytes and is a rare malignancy among all cancer types, but represents the most common form of soft tissue sarcoma, with approximately 2,000 new cases reported annually. Clinically, liposarcomas are classified into four subtypes based on histological analysis: well-differentiated liposarcoma (WDLPS), dedifferentiated liposarcoma (DDLPS), myxoid/round cell liposarcoma, and pleomorphic liposarcoma. Although histological analysis provides useful information for identifying various liposarcoma subtypes, treatment options rely on a fundamental understanding of driver mutations and molecular mechanisms underlying tumorigenesis. This thesis focuses on elucidating important driver mutations and therapeutic targets to eradicate DDLPS. Notch signaling is an evolutionarily conserved signaling pathway essential for organ development and stem cell function. Aberrant Notch signaling underlies the tumorigenesis of many cancers including LPS. However, the specific role of Notch signaling in development of LPS remains elusive. In Chapter 2, I provide evidence demonstrating that Notch signaling plays a key role in cancer stem cells (CSCs), also referred to as tumor-initiating cells (TICs), that drive aggressive DDLPS. I used serial transplantation to enrich and generate a murine DDLPS cell line with constitutively activated Notch signaling (NICDOE). My analyses revealed that NICDOE DDLPS cells are heterogeneous and contain TICs that express cancer stem cell markers. Chapter 3 elucidates how Notch signaling regulates CSCs of LPS. I analyzed human LPS samples to establish a strong correlation between Notch signaling activation and tumor marker expression and prognosis. I further performed gene expression and metabolic analyses of NICDOE DDLPS cells. These assays revealed that NICDOE reduced mitochondrial respiration in DDLPS cells, which was associated with diminished expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a master regulator of mitochondrial biogenesis. CRISPR/CAS9-mediated deletion of the NICDOE cassette rescued the expression of PGC-1α and mitochondrial respiration in DDLPS cells. Similarly, overexpression of PGC-1α was sufficient to rescue mitochondrial biogenesis in DDLPS cells. Together, these data demonstrate that Notch signaling regulates CSCs, at least partially by controlling PGC-1α mediated mitochondria biogenesis.</p>
|
Page generated in 0.1111 seconds