• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 94
  • 33
  • 9
  • 9
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 394
  • 394
  • 89
  • 88
  • 64
  • 42
  • 39
  • 34
  • 28
  • 27
  • 27
  • 26
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Cálcio e boro para soja-perene: características anatômicas e agronômicas e concentração de nutrientes / Calcium and boron for perennial soybean: anatomical and agronomic characteristics and nutrient concentrations

Daniel Manfredini 31 March 2008 (has links)
Leguminosas forrageiras têm sido consorciadas com capins, e contribuído com a sustentabilidade do sistema solo-planta-animal. A soja-perene (Neonotonia wightii) é uma das leguminosas forrageiras bem adaptadas ao cultivo em áreas tropicais. A aplicação de cálcio e boro tem resultado em benefícios ao desenvolvimento da planta, especialmente para as espécies leguminosas. Este trabalho objetivou verificar os efeitos de combinações de cálcio e de boro para a soja-perene na morfofisiologia da planta, produção, concentração mineral, concentração de carboidratos na parede celular, em alterações anatômicas nos tecidos foliares e sintomas visuais. Foi conduzido um experimento em casa de vegetação com plantas de soja-perene cultivadas em solução nutritiva em vasos plásticos contendo quartzo moído como substrato. Empregou-se o delineamento de blocos ao acaso, e um esquema fatorial 52 incompleto, perfazendo um total de 13 combinações de doses de cálcio e boro. As plantas foram submetidas a dois períodos de crescimento. O primeiro corte das plantas foi realizado 46 dias após o transplante das mudas e o segundo 38 dias após o primeiro. O ponteiro (três folhas trifolioladas completamente expandidas contadas a partir do ápice) foi separado da porção inferior da planta (restante do tecido vegetal) e das raízes que também foram coletados. A interação cálcio x boro foi significativa apenas para a concentração de cálcio na porção inferior da soja-perene. As doses de cálcio alteraram a área foliar, as concentrações de cálcio, magnésio e potássio nos tecidos vegetais amostrados, e as concentrações de carboidratos na parede celular da planta. As doses de boro alteraram a produção, comprimento e superfície das raízes, as concentrações minerais nos tecidos analisados e as concentrações de carboidratos na parede celular das folhas. As combinações de baixas ou altas doses de cálcio e de boro promoveram alterações nas características anatômicas da soja-perene. Com o suprimento de boro de 10 mmol L-1 na solução nutritiva as plantas apresentaram deformações nas folhas novas e desenvolvimento anormal do sistema radicular. / Forage legumes have been mixed with grasses and contributed to improve the sustainability of the soil- plant- animal system. Perennnial soybean (Neonotonia wightii) is one forage legume well adapted to the tropical areas. Calcium and boron have resulted in benefits for plant development, particularly in legume species. This study was set with the objectives of verifying the effects of calcium and boron combinations for perennial soybean in plant morphophysiology, production, mineral concentrations, carbohydrate concentrations in cell wall, anatomical changes in leaf tissues and visual symptoms. A greenhouse experiment was carried out with plants grown in plastic pots containing ground quartz and supplied with nutrient solutions. An incomplete factorial 5 x 5, with 13 combinations of calcium and boron rates, was set in randomized block design. Plants were harvested twice, the first harvest one at 46 days after seedlings transplanting to the pots and the second harvest at 38 days after the first one. The upper part (three completely expended leaves) was separated from the lower part of plant tops and roots that were collected too. Calcium x boron interaction was only significant for the calcium concentration in the lower part of perennial soybean. Calcium rates changed leaf area, concentrations of calcium, magnesium and potassium in the sampled plant tissues, and carbohydrate concentrations in the cell wall of perennial soybean. Boron rates influenced changes in roots (dry matter, length and surface), mineral concentrations and carbohydrate concentrations in leaves cell wall. High or low rates of both calcium and boron had resulted in changes in anatomical characteristics of perennial soybean. When boron was supplied at 10 µmol L-1 plants presented deformed new leaves and abnormal root system growth.
112

Improving barley for biofuel production : investigating the role of 4CL and CCR in the lignin biosynthesis pathway

Zwirek, Monika January 2013 (has links)
One of the challenges in the 21st Century is to overcome the recalcitrance of lignocellulose for the production of liquid biofuels. Lignin is one of the key factors in this recalcitrance. Grasses such as Miscanthus and switchgrass could become major sources of lignocellulose. Barley has potential as a genetically-tractable research model for such novel bioenergy crops and also as a bioenergy crop itself. This thesis concerns the 4CL and the CCR enzymes on the lignin pathway which were chosen as the targets to manipulate lignin in barley. They were selected because there is evidence that suppression of each of them in dicot species can lead to increased saccharification. The 4CL and CCR genes constitute multigene families where members have different expression patterns. RNAi was used to down-regulate 4CL1 and CCR1 using a constitutive promoter via Agrobacterium-mediated transformation of barley. From an extensive screen of the primary transformants for changes in protein level and lignin content, six CCR and four 4CL lines were taken forward for detailed analysis. Antibodies were also raised against barley 4CL and CCR recombinant proteins and these showed substantial reductions in the respective target protein levels in the RNAi lines. Both 4CL and CCR transgenic lines had significant reductions in lignin content, and CCR lines had changes in lignin structure due to changes in the proportions of acid soluble and acid insoluble lignin. No substantial consistent adverse effects on key agronomic traits were apparent in the 4CL and CCR transgenics. Selected 4CL and CCR transgenics had improved saccharification yield after using three different pretreatment methods, which is a desirable feature for biofuel production.
113

Análise serial da expressão gênica do caule de plantas de Eucalyptus grandis com 6 meses de idade / Serial analysis of gene expression in stems of 6 months old Eucalyptus grandis

Carneiro, Raphael Tozelli 22 June 2007 (has links)
De todas as adaptações que as plantas sofreram durante a evolução, a aquisição do sistema vascular à 400 milhões de anos atrás, foi sem dúvida um evento decisivo para sua bem sucedida existência na terra. A madeira é considerada o mais importante recurso natural de energia renovável e o setor econômico baseado na produção florestal cresce a cada ano. Inúmeros fatores como rápida taxa de crescimento, grande produção de biomassa, adaptabilidade a diversos ambientes e solos, boa qualidade de madeira para produção de uma ampla gama de produtos e presença de celulose de fibra curta, ideal para a produção de papel e celulose, contribuíram para o grande sucesso das espécies de Eucalyptus e tornaram o Brasil o maior produtor mundial de celulose de fibra curta utilizando o eucalipto como matéria prima. Devido à reconhecida importância econômica e também ambiental das árvores, o desenvolvimento do sistema vascular se tornou um importante e fascinante processo biológico para se estudar. No entanto, existe ainda pouco conhecimento sobre os processos celulares, moleculares e bioquímicos envolvidos na formação da madeira. Dessa forma, no presente trabalho foi utilizada a técnica de SAGE (Serial Analysis of Gene Expression) para caracterizar o perfil transcricional do caule de plantas de E. grandis com 6 meses de idade. A partir do sequenciamento de 826 clones, foi possível analisar 2.274 tags/genes, sendo que 989 (43,5%) genes puderam ser identificados e ter uma possível função atribuída. Genes que codificam enzimas e proteínas muito importantes durante o processo de formação da madeira, como aqueles relacionados à biossíntese e deposição da parede celular e organização do citoesqueleto, apresentaram elevada expressão, sendo possível ainda sugerir a ocorrência de possíveis mecanismos comuns de controle transcricional para grupos de genes funcionalmente relacionados. A posterior comparação com as proteínas identificadas por espectrometria de massas através do sistema LC-MS/MS a partir do mesmo material biológico mostrou que muitos desses genes representam também as proteínas mais abundantes. Juntamente com outros projetos que vêm sendo desenvolvidos no laboratório, o presente trabalho contribuiu para a construção de um banco de dados local com informações do transcritoma e do proteoma de diferentes idades e tecidos, fornecendo uma visão global sobre os genes envolvidos no processo de formação da madeira e possivelmente responsáveis pelo rápido crescimento nas espécies de Eucalyptus, indicando importantes alvos para futuros programas de melhoramento. / From the numerous adaptations that plants have developed during evolution, the acquisition of the vascular system some 400 million years ago was been a decisive event for their successful existence on earth. Wood is considered the most important natural resource of renewable energy and the Forest-based economical sector grows every year. Several factors like the fast growth rate, large biomass production, adaptability to a wide range of environments and soils, good wood quality for the production of a wide range of products and the presence of short cellulose fiber, suitable for pulp and paper production, have contributed to the great success of Eucalyptus species making Brazil the main producer of short cellulose fiber using eucalypt as raw material. Due to the recognized economical and also environmental importance of trees, the development of the vascular system became an important and fascinating biological process to study. However, little is known about the cellular, molecular and biochemical processes involved in wood formation. In this way, in the current work SAGE (Serial Analysis of Gene Expression) technique was used to characterize the transcriptional profile in stems of 6 months old Eucalyptus grandis. From the sequencing of 826 clones, it was possible to analyse 2,274 tags/genes, and 989 (43,5%) genes could be identified and to have a possible function attributed. Genes that code for enzymes and proteins important for wood formation process, like those related to cell wall biosynthesis and deposition, and cytoskeleton organization had high expression, making it possible to suggest the occurrence of a common transcriptional control for a few functionally related genes. The posterior comparison with the set of proteins identified by LC ESI-MS/MS from the same biological material showed that some of these genes also represent the most abundant proteins. Taken together with other projects that are being developed in the laboratory, the present work contributed for the construction of a local data-base with transcriptome and proteome information from different ages and tissues, giving a global vision of the genes involved in the wood formation process and potentially responsible for the fast growth in the Eucalyptus species, indicating important targets for future breedings programs.
114

Caracterização do proteoma da parede celular de folhas e entrenós jovens e maduros de cana-de-açúcar / Proteome Characterization of young and mature leaves and internodes from sugarcane

Fonseca, Juliana Guimarães 05 February 2015 (has links)
Este estudo trata das proteínas relacionadas ao desenvolvimento e à formação da parede celular vegetal de cana-de-açúcar, com o objetivo de auxiliar no desenvolvimento de novas tecnologias para a produção de etanol celulósico a partir do bagaço de cana. Com isso, as proteínas de parede celular de entrenós e folhas de plantas com 4 meses de idade em dois estádios de desenvolvimento, juvenil e maduro, foram identificadas. Para extração foi utilizado o método não destrutivo por infiltração a vácuo utilizando dois sais, 0,2 M de CaCl2 e 2 M de LiCl seguido de centrifugação. As amostras complexas foram digeridas, fracionadas, sequenciadas por LC-MSE . Os peptídeos foram processados utilizando o ProteinLynx 2.5 e comparados com a base de dados de ESTs traduzidos de cana e sorgo. A anotação das proteínas foi realizada com base no programa PFAM e dividas em classes funcionais. Apenas as proteínas que apareceram em pelo menos duas das três repetições biológicas foram utilizadas na análise principal. Para prever a localização subcelular das proteínas selecionadas utilizaram-se os softwares: SignalP, TargetP, Predotar e TMHMM. Apenas aquelas proteínas que foram preditas para serem secretadas por dois ou mais programas foram consideradas como proteínas de parede celular (PPC). Ao todo, 543 proteínas foram consideradas como PPC: 205 em entrenós jovens, 143 em entrenós maduros, 124 em folhas jovens e 71 em folhas maduras. Dentre essas proteínas, 365 foram consideradas diferentes, e caracterizadas em dez classes funcionais. A análise estatística compreendeu a análise de PCA e PLS-DA, havendo diferença estatística entre os tratamentos analisados. Neste trabalho, foram encontradas 66 glicosil-hidrolases e 39 peroxidases, sendo 14 e 11 exclusivas de tecidos juvenis, respectivamente. Essas proteínas são conhecidas por terem funções relacionadas à quebra e ao remodelamento dos polissacarídeos da parede celular vegetal, e, portanto, foram indicadas neste estudo como alvo de pesquisas futuras que utilizem as próprias enzimas da planta para otimização da produção do etanol celulósico.Individualmente, este estudo foi o que mais identificou PPCs dentre a literatura existente, além de ter sido pioneiro na utilização da análise quantitativa para PPC. / This study provides information about the proteins of the cell wall of sugarcane at diferente stages of development and formation. The aim of this study is to assist in the development of new technologies for the production of cellulosic ethanol from sugarcane bagasse. Cell wall proteins from 4-month-old internodes and leaves of sugarcane in two developmental stages, juvenile and mature, have been identified. Protein extraction was performed with a non-destructive method by using vacuum infiltration with two salts, 0.2 M CaCl2 and 2 M LiCl, followed by centrifugation. Complex samples were digested, fractionated and sequenced by LC-MSE. Peptides were processed by ProteinLynx 2.5 and compared to the translated sugarcane and sorghum ESTs database. The annotation of the proteins was performed using PFAM and the functional classification was according the one used in other related studies. Only the proteins that appeared in at least two of the three biological replicates were used in the main analysis. In order to predict the subcellular localization of these proteins, SignalP, TargetP, TMHMM and Predotar softwares were used. Only those proteins that were predicted to be secreted by two or more programs were considered as cell wall proteins (PPS). Altogether, 543 proteins were classified as PPC: 205 inimmature internodes, 143 in mature internodes, 124 in young leaves and 71 in matured leaves. Among these proteins, 365 were considered different, and divided into ten functional classes. Statistical analysis was made with PCA and PLSDA, confirming that there were statistical differences among the treatments. In this work, 66 glycoside hydrolases and 39 peroxidases c identified, being 14 and 11 unique to young tissues, respectively. These proteins have their function related to plant cell wall polysaccharides breakdown and remodeling, and, therewith, the glycoside hydrolases and peroxidases found in this study were indicated to be the target of future research using the plant\'s own enzymes to optimize the cellulosic ethanol production. Individually, this study was the one that most identified PPC among the existing literature, and is a pioneer in the use of quantitative analysis for PPCs.
115

BIOSYNTHETIC MECHANISM OF THE ANTIBIOTIC CAPURAMYCIN

Yan, Erfu 01 January 2018 (has links)
A-102395 is a member of the capuramycin family of antibiotics which was isolated from the culture broth of Amycolatopsis sp. SANK 60206. A-102339 is structurally classified as a nucleoside antibiotic, which like all members of the capuramycin family, inhibits bacterial MraY (translocase I) with IC50 of 11 nM which is the lowest among the capuramycin family. A semisynthetic derivative of capuramycin is currently in clinical trials as an antituberculosis antibiotic, suggesting high potential for using A-102395 as a starting point for new antibiotic discovery. In contrast to other capuramycins, A-102395 has a unique arylamine-containing polyamide side chain. The biosynthetic gene cluster of A-102395 was previously identified and includes 35 putative open reading frames responsible for biosynthesis and resistance. Presently, there are no reports focused on the biosynthesis of this polyamide chain. Here we present the functional assignment and biochemical characterization of seven proteins, Cpr33-38 and Cpr12, that initiate the biosynthesis of the polyamide. Functional characterization of Cpr38, which has sequence similarity to the gene products encoded by pabA and pabB from E. coli, revealed that it functions as a 4-amino-4-deoxychorismate (ADC) synthase catalyzing a two-step reaction involving amidohydrolysis of L-Gln with ammonia channeled and incorporated into chorismic acid to generate ADC. Cpr12, encoded by a gene that was originally proposed to be outside the gene cluster and sharing similarity to proteins annotated as ADC lyase, was revealed to catalyze the elimination of pyruvate to form PABA. Cpr36 is demonstrated to function as a free-standingpeptidyl carrier protein (PCP), which is activated to form holo-protein from the apo-form. Cpr37, which belongs to the adenylation domain protein in the nonribosomal peptide synthase (NRPS), subsequently activates PABA and loads it to holo-Cpr36 Two proteins Cpr34 and Cpr35 work in concert to catalyze decarboxylative condensation between a thioester linked PABA and malonyl-S-acyl carrier protein (ACP) during aromatic polyketide biosynthesis catalyzed by type II polyketide synthases. Following condensation, Cpr33 acts as 3-oxoacyl-ACP reductase that catalyzes reduction to the β-hydroxythioester intermediate. In this scenario, hydride is predicted to be added to the re face to generate the S configuration resulting in the same stereochemical outcome as other 3-oxoacyl-ACP reductase (FabG) from bacterial type II fatty acid synthases.These findings are critical advancement for interrogating the biosynthesis of the unusual chemical components of the family of antibiotics of capuramycin.
116

Effects of phytoestrogenic isoflavones on the process of drug transport and metabolism

Lucas, Anthony January 2003 (has links)
This thesis is concerned with phytoestrogenic isoflavones, which are a group of plant-derived compounds that can be consumed in the diet or as over-the-counter preparations for self-medication, and have been associated with a wide range of health benefits. However, unlike the extract of St John's wort and grapefruit juice, little is known about the potential for phytoestrogenic isoflavones to be involved in pharmacokinetic interactions. This thesis describes a series of experiments that investigate that potential by assessing the effects of the isoflavones on intestinal P-glycoprotein-mediated transport, hepatic metabolism, and hepatic cell membrane transport of conventional drugs.
117

Comparison of methods for DNA extraction from Candida albicans

Dadgar, Ashraf January 2006 (has links)
<p>Invasive Candida infection is an increasing cause of morbidity and mortality in the immunocompromised patient. Molecular diagnosis based on genomic amplification methods, such as real time PCR, has been reported as an alternative to conventional culture for early detection of invasive candidiasis. The template DNA extraction step has been the major limitation in most reported nucleic acid based assays, due to problems in breaking fungal cell walls and incomplete purification in PCR inhibitor substances.</p><p>The aim of this study was to compare enzymatic cell wall disruption using recombinant lyticase with mechanical disruption using glass beads. The QIAamp tissue kit was compared with two automated DNA extraction robots, the BioRobot M48 and NucliSens easyMAG, to determine their sensitivity, reliability and duration for DNA release of C. albicans. Mechanical cell wall disruption shortened and facilitated the extraction procedure, but the quantity of released DNA was significantly lower than when enzymatic cell wall disruption was used. Use of robots did not significantly shorten the DNA extraction time, compared with manual DNA extraction. However the NucliSens easyMAG resulted in a higher yield of target DNA compared to the BioRobot M48 and the manual QIAamp tissue kit.</p> / <p>Invasiva svampinfektioner är ett stort problem hos patienter med dåligt immunförsvar. Förekomst av invasiva svampinfektioner har ökat under senare år och medför hög dödlighet. En svampinfektion som inte snabbt diagnostiseras och behandlas kan bli livshotande om patientens kondition är dålig. Candida albicans är den vanligaste orsaken till invasiva svampinfektioner. Med traditionell svampidentifiering kan det ta dagar till veckor att isolera och artbestämma svampen. En snabbare metod att detektera Candida är att använda sig av molekylärbiologiska metoder som påvisar svampens arvsmassa, DNA. Svampar har en cellvägg som är svår att bryta ner och därför är DNA extraktionssteget ett av de mest rapporterade problemen vid DNA svampdiagnostik.</p><p>Syftet med denna studie var att jämföra enzymatisk och mekanisk cellväggsnedbrytning av C. albicans med hjälp av enzymet lyticase respektive glaskulor. Vi jämförde också en manuell metod med två automatiska robotar för att bestämma deras känslighet, tillförlitlighet och tidsåtgång för DNA-extraktion från C. albicans. De slutsatser som nåtts är att den enzymatiska cellväggsnedbrytningen var känsligare men betydligt mer tidskrävande än den mekaniska cellväggsnedbrytningen. Denna studie visade även att en av de automatiska systemen extraherade signifikant mer DNA än den manuella metoden.</p>
118

Role of two secreted proteins from Trichoderma virens in mycoparasitism and induction of plant resistance

Djonovic, Slavica 25 April 2007 (has links)
The soil-borne filamentous fungus Trichoderma virens is a biocontrol agent with a well known ability to produce antibiotics, parasitize pathogenic fungi and induce systemic resistance in plants. Here we report the identification, purification and characterization of an elicitor secreted by T. virens; a small protein designated Sm1 (small protein 1). Confrontation and disk assays demonstrated that Sm1 lacks toxic activity against plants and microbes. Native, purified Sm1 triggers production of reactive oxygen species in rice (Oryza sativa) and cotton (Gossypium hirsutum), and induces the expression of defense related genes both locally and systemically in cotton. Gene expression analysis revealed that SM1 is expressed throughout fungal development and is transcriptionally regulated by nutrient conditions and the presence of a host plant. When T. virens was co-cultured with cotton in an axenic hydroponic system, SM1 expression and secretion of the protein was significantly higher than when the fungus was grown alone. These results indicate that Sm1 is involved in plant-Trichoderma recognition and the induction of resistance by activation of plant defense mechanisms. Following the cloning of SM1, strains disrupted in or over-expressing SM1 were generated. Targeted gene disruption revealed that SM1 was not involved in fungal development. Expression of defense related genes in cotton and maize (Zea mays) was induced locally and systemically following colonization by T. virens in the hydroponic system. Low levels of expression of cotton or maize defense genes were found when seedlings were grown with a T. virens strain disrupted in SM1, ssupporting the Sm1-elicitor hypothesis. Additionally, unique proteins in T.virens-cotton/maize interaction were identified. Thus, the induction of defense responses in two agriculturally important crops appears to be microbially mediated. Functional analysis of a cell wall degrading enzyme, beta-1,6-glucananse (Tv-bgn3) from T. virens, demonstrated involvement of this enzyme indirectly in mycoparasitic activity of T. virens. Protein extracts from the strain disrupted in TV-BGN3 displayed reduced capability to inhibit growth of Pythium ultimum as compared to the wild-type. Additionally, protein extracts from the strains co-expressed with TV-BGN2 (beta-1,3-glucananse) from T. virens showed a significantly increased capability to inhibit growth of P. ultimum and Rhizoctonia solani hyphae.
119

Identification of novel components that connect cellulose synthases to the cytoskeleton

Bringmann, Martin January 2012 (has links)
Cellulose is the most abundant biopolymer on earth and the main load-bearing structure in plant cell walls. Cellulose microfibrils are laid down in a tight parallel array, surrounding plant cells like a corset. Orientation of microfibrils determines the direction of growth by directing turgor pressure to points of expansion (Somerville et al., 2004). Hence, cellulose deficient mutants usually show cell and organ swelling due to disturbed anisotropic cell expansion (reviewed in Endler and Persson, 2011). How do cellulose microfibrils gain their parallel orientation? First experiments in the 1960s suggested, that cortical microtubules aid the cellulose synthases on their way around the cell (Green, 1962; Ledbetter and Porter, 1963). This was proofed in 2006 through life cell imaging (Paredez et al., 2006). However, how this guidance was facilitated, remained unknown. Through a combinatory approach, including forward and reverse genetics together with advanced co-expression analysis, we identified pom2 as a cellulose deficient mutant. Map- based cloning revealed that the gene locus of POM2 corresponded to CELLULOSE SYNTHASE INTERACTING 1 (CSI1). Intriguingly, we previously found the CSI1 protein to interact with the putative cytosolic part of the primary cellulose synthases in a yeast-two-hybrid screen (Gu et al., 2010). Exhaustive cell biological analysis of the POM2/CSI1 protein allowed to determine its cellular function. Using spinning disc confocal microscopy, we could show that in the absence of POM2/CSI1, cellulose synthase complexes lose their microtubule-dependent trajectories in the plasma membrane. The loss of POM2/CSI1, however does not influence microtubule- dependent delivery of cellulose synthases (Bringmann et al., 2012). Consequently, POM2/CSI1 acts as a bridging protein between active cellulose synthases and cortical microtubules. This thesis summarizes three publications of the author, regarding the identification of proteins that connect cellulose synthases to the cytoskeleton. This involves the development of bioinformatics tools allowing candidate gene prediction through co-expression studies (Mutwil et al., 2009), identification of candidate genes through interaction studies (Gu et al., 2010), and determination of the cellular function of the candidate gene (Bringmann et al., 2012). / Zellulose ist das abundanteste Biopolymer der Erde und verleiht pflanzlichen Zellwänden ihre enorme Tragkraft. Mit der Reißfestigkeit von Stahl umwickeln Zellulosefibrillen pflanzliche Zellwände wie ein Korsett. Die Orientierung der Zellulosefibrillen bestimmt zugleich die Wachstumsrichtung, indem sie den Zellinnendruck (Turgor) in die entsprechende Ausdehnungsrichtung dirigiert (Somerville et al.,2004).Folglich zeigen Mutanten mit gestörter Zellulosesynthese oft geschwollene Organe und Zellen, die sich nicht mehr gerichtet ausdehnen können (zusammengefasst von Endler und Persson,2011). Wie aber erhalten die Zellulosefibrillen ihre parallele Orientierung? Erste Experimente aus den1960ern führten zur Vermutung, kortikale Mikrotubuli leiten die Zellulosesynthasen auf ringförmigen Bahnen um die Zellen herum (Green, 1962; Ledbetter and Porter, 1963). Diese Theorie wurde 2006 mit Hilfe moderner mikroskopischer Methoden bestätigt (Paredez et al., 2006). Wie jedoch dieser Leitmechanismus funktioniert, blieb bisher unentdeckt. Durch die Kombination verschiedener genetischer und bioinformatischer Methoden, konnten wir pom2 als Zellulose defiziente Mutante identifizieren. Die Ermittlung des Genlocus durch Map-based cloning zeigte, dass es sich bei POM2 um CELLULOSE SYNTHASE INTERACTING 1 (CSI1) handelt, ein Gen, dessen korrespondierendes Protein, wie vorher von uns gezeigt, mit dem zytosolischen Teil der primären Zellulosesynthasen interagiert (Gu et al., 2010). Durch ausführliche zellbiologische Charakterisierung von POM2/CSI1 konnten wir seine zelluläre Funktion entschlüsseln. Mit Hilfe konfokaler Spinning- Disc-Mikroskopie konnten wir zeigen, dass in Abwesenheit von POM2/CSI1, Zellulosesynthasen von den Mikrotubuli- Bahnen abweichen. Der ebenfalls von den Mikrotubuli abhängige Transport der Zellulosesynthasen zur Zellmembran hingegen, war nicht beeinflusst (Bringmann et al., 2012). Demzufolge ist POM2/CSI1 das gesuchte Bindeglied zwischen aktiven Zellulosesynthasen und Mikrotubuli. In dieser Dissertationsschrift werden drei Publikationen des Autors zusammengefasst, die wa ̈hrend der Arbeit an der Dissertiation entstanden sind. Sie beinhalten die Entwicklung bioinformatischer Methoden zur Ko- Expressionsanalyse, um Kandidatengene zu ermitteln (Mutwil et al., 2009), die Identifikaton des Kandidatengens POM2/CSI1 in einer Interaktionsstudie (Gu et al., 2010), sowie die Bestimmung der zellula ̈ren Funktion des korrespondieren- den Proteins POM2/CSI1 (Bringmann et al., 2012).
120

Discovery of fiber-active enzymes in Populus wood

Aspeborg, Henrik January 2004 (has links)
Renewable fibers produced by forest trees provide excellentraw material of high economic value for industrialapplications. Despite this, the genes and corresponding enzymesinvolved in wood fiber biosynthesis in trees are poorlycharacterized. This thesis describes a functional genomicsapproach for the identification of carbohydrate-active enzymesinvolved in secondary cell wall (wood) formation in hybridaspen. First, a 3' target amplification method was developed toenable microarray-based gene expression analysis on minuteamounts of RNA. The amplification method was evaluated usingboth a smaller microarray containing 192 cDNA clones and alarger microarray containing 2995 cDNA clones that werehybridized with targets isolated from xylem and phloem.Moreover, a gene expression study of phloem differentiation wasperformed to show the usefulness of the amplificationmethod. A microarray containing 2995 cDNA clones representing aunigene set of a cambial region EST library was used to studygene expression during wood formation. Transcript populationsfrom thin tissue sections representing different stages ofxylem development were hybridized onto the microarrays. It wasdemonstrated that genes encoding lignin and cellulosebiosynthetic enzymes, as well as a number of genes withoutassigned function, were differentially expressed across thedevelopmental gradient. Microarrays were also used to track changes in geneexpression in the developing xylem of transgenic, GA-20 oxidaseoverexpressing hybrid aspens that had increased secondarygrowth. The study revealed that a number of genes encoding cellwall related enzymes were upregulated in the transgenic trees.Moreover, most genes with high transcript changes could beassigned a role in the early events of xylogenesis. Ten genes encoding putative cellulose synthases (CesAs) wereidentified in our ownPopulusESTdatabase. Full length cDNA sequences wereobtained for five of them. Expression analyses performed withreal-time PCR and microarrays in normal wood undergoingxylogenesis and in tension wood revealed xylem specificexpression of four putative CesA isoenzymes. Finally, an approach combining expressionprofiling,bioinformatics as well as EST and full length sequencing wasadopted to identify secondary cell wall related genes encodingcarbohydrate-active enzymes, such as glycosyltransferases andglycoside hydrolases. As expected, glycosyltransferasesinvolved in the carbohydrate biosynthesis dominated thecollection of the secondary cell wall related enzymes that wereidentified. Key words:Populus, xylogenesis, secondary cell wall,cellulose, hemicellulose, microarrays, transcript profiling,carbohydrate-active enzyme, glycosyltransferase, glycosidehydrolase

Page generated in 0.0781 seconds