• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and functional studies on sialoadhesin

Vinson, Mary January 1997 (has links)
No description available.
2

Interaction of multiple yeast species during fermentation

Luyt, Natasha Alethea 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The use of non-Saccharomyces yeasts together with the yeast S. cerevisiae in multistarter wine fermentations has emerged as a useful tool to modulate wine aroma and/or to decrease the concentration of undesirable compounds. However, upon inoculation, these yeast species do not co-exist passively, but interact in various ways. While competition for nutrients and the excretion of killer toxins in an antagonistic relationship are obvious and well established types of interactions, some studies have suggested the existence of other forms of cellular or molecular interactions. One of these includes physical cell-cell contact and to our knowledge, only one previous study has confirmed its existence in wine yeasts. Yeast interactions are also influenced by other factors, such as ethanol concentration, however some studies have highlighted the role that dissolved oxygen plays on the survival of non-Saccharomyces yeasts and their ability to compete for space with S. cerevisiae and little research has focused on this. This study aimed to investigate the occurrence of a physical cell-cell and/or metabolic interaction between S. cerevisiae and L. thermotolerans in mixed culture fermentations of synthetic grape must. For this purpose, fermentations in a Double Compartment Bioreactor (DCB) which separates yeast population through the use of a membrane were compared to mixed fermentations in the absence of the membrane, using the same reactor. Furthermore, the impact of oxygen supply on yeast behaviour was also assessed. Following mixed culture fermentations in a DCB, it was observed that the presence of S. cerevisiae led to a significant decline in viability in L. thermotolerans. This decline was significantly less prominent in mixed cultures where the cells were in indirect contact. Together, the data provided evidence for both cell-cell and metabolic interactions whereby S. cerevisiae had a strong negative influence on the growth of L. thermotolerans. However, it was also observed that L. thermotolerans had some negative impact on the growth of S. cerevisiae, leading to a reduction in biomass (when in indirect contact) and a reduced maximum CFU/mL compared to pure cultures. The data also suggest that direct physical contact may increase the production of glycerol and propanol, but this needs further investigation. By decreasing the frequency at which oxygen pulses were provided, a reduction in biomass and increase in fermentation duration was observed for all fermentations. However, this effect was somewhat reduced in mixed cultures. Here, no impact on fermentation duration was observed and the decrease in biomass was less compared to pure cultures. The impact of these oxygen pulses was also greater on L. thermotolerans. In the latter yeast’s pure culture a slight increase in glycerol was observed when less oxygen was provided and in general there appeared to be no impact on acetic acid production. Furthermore, there was little or no impact on volatile production, however, more repeats might reveal different results and therefore more research is needed to confirm these results. To our knowledge, this is the first study of its kind to confirm a physical cell-cell interaction between the yeast pair S. cerevisiae and L. thermotolerans. / AFRIKAANSE OPSOMMING: Die gebruik van nie-Saccharomyces gis saam met die gis S. cerevisiae in multi-inokuleringskulture het die afgelope paar jaar as n goeie hulpmiddel na vore gekom om wyn aroma te moduleer en/of om die konsentrasie van ongewensde verbindings te verminder. Sodra inokulasie plaasgevind het, het hierdie gis die potensiaal om op verskeie maniere teenoor mekaar te reageer. Kompetisie vir nutriente en die afskeiding van toksiese verbindings in n antagonistiese verhouding is alreeds goed beskryf in die literatuur. Somige studies het, alhoewel, die bestaan van ander vorme van sellulêre of molekulêre interaksies voorgestel. Een van hierdie sluit in n fisiese sell-sell interaksie en so ver as wat ons kennis strek, het nog net een studie van tevore so ‘n interaksie bevestig tussen wyn giste. Gis interaksies word ook beïnvloed deur ander faktore, soos byvoorbeeld etanol konsentrasie. Terwyl sommige studies die rol wat opgelosde suurstof speel in die oorlewing van nie-Saccharomyces gis en hulle vermoë om te kompeteer vir spasie met S. cerevisiae alreeds beklemtoon, het min navorsing al hierop gefokus. Hierdie studie het gestreef om die voorkoms van n fisiese sell-sell en/of metaboliese interaksie tussen S. cerevisie en L. thermotolerans in gemengde kultuur fermentasies van sintetiese druiwe sap te ondersoek. Vir hierdie doeleinde was fermentasies uitgevoer met behulp van ‘n Dubbel Kompartement Bioreaktor (DKB) wat gis populasies skei deur middel van ‘n membraan en hierdie was vergelyk met gemengde kultuur fermentasies sonder die membraan in dieselfde reaktor sisteem. Verder was die impak van suurstof toevoer op gis gedrag ook geassesseer. Na afloop van gemengde kultuur fermentasies in ‘n DKB, was daar waargeneem dat die teenwoordigheid van S. cerevisiae gelei het tot ‘n betekenisvolle afname in lewensvatbaarheid in L. thermotolerans. Hierdie afname was aansienlik minder in gemengde kulture waar die gis in indirekte kontak was. Saam verskaf hierdie data bewyse vir n sell-sell asook metaboliese interaksie waardeur S. cerevisiae ‘n sterk, negatiewe invloed op die groei van L. thermotolerans gehad het. Daar was egter ook waargeneem dat L. thermotolerans tot ‘n mindere mate ‘n negatiewe impak op die groei van S. cerevisiae gehad het en dat dit gelei het tot ‘n verlaging in biomassa (toe die gis in indirekte kontak was) en ‘n verlaagde maksimum CFU/mL in vergelyking met suiwer kulture. Die data dui ook aan dat fisiese kontak kon gelei het tot ‘n verhoging in gliserol en propanol produksie, maar hierdie kort verdere ondersoek. Deur die frekwensie te verminder waardeur suurstof pulse aan die fermentasies verskaf was, was ‘n verlaging in biomassa produksie en ‘n verlenging in fermentasie tydperk waargeneem. Hierdie tendense was waargeneem in almal, behalwe die gemengde kultuur fermentasies. Die effek van suurstof puls verlaging was minder op hierdie fermentasies aangesien daar geen impak op fermentasie tydperk was nie en die verlaging in biomassa minder was. Die impak van hierdie suurstof pulse was ook groter op L. thermotolerans. ‘n Klein toename in gliserol produksie was waargeneem in laasgenoemde gis se suiwer kultuur toe minder suurstof beskikbaar was en oor die algemeen was asynsuur onveranderd. Verder was daar ‘n klein of geen impak op vlugtige verbindings nie, alhoewel, meer herhalings mag verskillende resultate lewer en daarom is meer navorsing nodig om hierde resultate te bevestig. So ver as wat ons kennis strek is hierdie die eerste studie van sy soort om ‘n fisiese sell-sell interaksie tussen die gispaar S. cerevisiae en L. thermotolerans te bevestig.
3

Agent-based modelling of cell-cell interactions for in vitro vascular formation and cancer cell growth

Li, Ye January 2015 (has links)
A complex system is a collection of parts, that can be identical or different, that interact with each other and environment, and exhibit emergent behaviour. Here, I consider the formation of vascular structures in the body as a complex system consisting of an emergent pattern in interacting endothelial cells. A cancer tumour is a different but related complex system that contains various types of cells, some of which having cancer-inducing mutations. To understand the formation of a vascular structure or a cancer tumour, it is important to understand both the single cells and cell-cell interactions. To study the physical interaction among cells in vascular formation or cancer cell growth, in this thesis an agent-based model is built based on the physical properties of cells which includes the size, shape, direction, and position of cells. In this way the mathematical equations in the model can show the physical variation among modelled cells. The 3-dimensional shape of cells is modelled, and so while I start with cell interactions in petri-dish the model can be easily extended to describe motility of cells in a 3-dimensional system in the future. The physical model is implemented and then simulated with in silico experiments, and then the spatial distribution of cells in in vitro experiments is analysed and used to calibrate the model. In vitro experiments with and without a drug in normal and hypoxic conditions are carried out. Also the patterns formed by cells with different treatment are analysed to produce different parameter combinations in the model. This physical model is shown to be able to predict vessel formation and be reused to predict the spatial distribution of cancer cells in in vitro growth experiments. With biological data such as cell size, cell shape, etc. this model is able to predict behaviours of various cell types, and can also be used to predict more complex phenomena, such as mixed type of cancer cells growing in 3-dimensions with vascular structures.
4

Development of a novel algae biofilm photobioreactor for biofuel production

Ozkan, Altan 03 October 2012 (has links)
Algae are photosynthetic microorganisms that convert carbon dioxide and sunlight into biomass that can be used for biofuel production. Although they are usually cultivated in suspension, these microorganisms are capable of forming productive biofilms over substrata given the right conditions. This dissertation focuses on algal biofilms and their application in biofuel feedstock production. In particular it reports the construction and performance of an algae biofilm photobioreactor, the physico-chemical surface properties of different algal species and adhesion substrata, and cell-surface interactions based on experimental results and theoretical models. A novel algae biofilm photobioreactor was constructed and operated (i) to demonstrate the proof of concept, (ii) to analyze the performance of the system, and (iii) to determine the key advantages and short comings for further research. The results indicated that significant reductions in water and energy requirements were possible with the biofilm photobioreactor. Although the system achieved net energy ratio of about 6, the overall productivity was low as Botryococcus branunii is notoriously slow growing algae. Thus, further studies were focused on identification of algal species capable of biofilm growth with larger biomass and lipid productivities. Adhesion of cells to substrata precedes the formation of all biofilms. A comprehensive study has been conducted to determine the interactions of a planktonic and a benthic algal species with hydrophilic and hydrophobic substrata. The physico-chemical surface properties of the algal cells and substrata were determined and using these data, cell-substrata interactions were modeled with the thermodynamic, Derjaguin, Landau Verwey, Overbeek (DLVO) and Extended Derjaguin, Landau, Verwey, Overbeek (XDLVO) approaches and critical parameters for algal adhesion were identified. Finally, the adhesion rate and strength of algal species were quantified with parallel plate flow chamber experiments. The results indicated that both cell and substrata surface hydrophobicity played a critical role for the adhesion rate and strength of the cells and XDLVO approach was the most accurate model. Finally, based on these findings the physico-chemical surface properties of ten algal species and six substrata were quantified and a screening was done to determine algae species substratum couples favoring adhesion and biofilm formation. / text
5

Controlling Microbial Colonization and Biofilm Formation Using Topographical Cues

Kargar, Mehdi 13 January 2015 (has links)
This dissertation introduces assembly of spherical particles as a novel topography-based anti-biofouling coating. It also provides new insights on the effects of surface topography, especially local curvature, on cell–surface and cell–cell interactions during the evolution of biofilms. I investigated the adhesion, colonization, and biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa on a solid coated in close-packed spheres of polystyrene, using flat polystyrene sheets as a control. The results show that, whereas flat sheets are covered in large clusters after one day, a close-packed layer of 630–1550 nm monodisperse spheres prevents cluster formation. Moreover, the film of spheres reduces the density of P. aeruginosa adhered to the solid by 80%. Our data show that when P. aeruginosa adheres to the spheres, the distribution is not random. For 630 nm and larger particles, P. aeruginosa tends to position its body in the confined spaces between particles. After two days, 3D biofilm structures cover much of the flat polystyrene, whereas 3D biofilms rarely occur on a solid with a colloidal crystal coating of 1550 nm spheres. On 450 nm colloidal crystals, the bacterial growth was intermediate between the flat and 1550 nm spheres. The initial preference for P. aeruginosa to adhere to confined spaces is maintained on the second day, even when the cells form clusters: the cells remain in the confined spaces to form non-touching clusters. When the cells do touch, the contact is usually the pole, not the sides of the bacteria. The observations are rationalized based on the potential gains and costs associated with cell-sphere and cell-cell contacts. I concluded that the anti-biofilm property of the colloidal crystals is correlated with the ability to arrange the individual cells. I showed that a colloidal crystal coating delays P. aeruginosa cluster formation on a medical-grade stainless-steel needle. This suggests that a colloidal crystal approach to biofilm inhibition might be applicable to other materials and geometries. The results presented in appendix 1 suggest that colloidal crystals can also delay adhesion of Methicillin resistant staphylococcus aureus (MRSA) while it supports selective adhesion of this bacterium to the confined spaces. / Ph. D.
6

Etude d'un écosystème bactérien synthétique anaérobie producteur d'hydrogène : Impact des interactions bactérie-bactérie sur le métabolisme

Benomar, Saida 07 December 2012 (has links)
Un grand nombre d'espèces microbiennes, issues d'environnements divers et présentant une large gamme de métabolismes différents, peuvent produire de l'hydrogène par voie fermentaire. Jusqu'à présent, les études ont principalement porté sur l'utilisation de cultures microbiennes pures, voire génétiquement modifiées, en vue d'optimiser la production de biohydrogène à partir de sucres simples ou peu complexes. Les efforts de recherche portent désormais sur l'utilisation de cultures microbiennes mixtes pour produire du biohydrogène à partir de sources organiques plus complexes issus par exemple du traitement de la biomasse. Toutefois, la présence de voies métaboliques alternatives tout comme l'instabilité du processus biologique constitue des verrous scientifiques et techniques qu'il conviendra de lever pour une application potentielle. Ceci nécessite entre autre une meilleur connaissance des interactions bactériennes et donc métaboliques présentent au sein du consortium.Pour cela, nous avons développé une approche innovante et pluridisciplinaire d'ingénierie écologique qui consiste en la conception, la construction et l'étude d'un consortium microbien synthétique afin d'établir les paramètres régissant les réseaux d'interactions métaboliques avec pour objectif d'optimiser la production d'hydrogène. Dans un premier temps nous avons choisit d'étudier les réseaux d'interactions métaboliques entre deux souches modèles connues comme partie prenante d'un consortium bactérien naturel, une bactérie du genre Clostridie et une du genre Desulfovibrio, la première étant productrice d'hydrogène par fermentation / Numerous microorganisms can produce hydrogen by “dark fermentation”. Isolated from various environments, they present a broad range of different metabolisms. Until now, literature reports have mainly dealt with the use of pure microbial cultures producing biohydrogen from simple sugars, such as glucose and sucrose. More recently, studies on biohydrogen production by mixed cultures from complex organic sources have been developed. Even though biohydrogen productivities and conversion yields can be interesting for industrial purposes, several scientific and technical constraints remain to be addressed. In particular, the presence of alternative metabolic ways of hydrogen consumption generally results in chronic instability of the biological processes. To increase the stability and the efficiency of dark fermentative processes, it is now necessary to acquire a better understanding of the metabolic interaction networks existing between producing and consuming microorganisms.We have developed an innovative and multidisciplinary approach to ecological engineering, which consists of the construction and study of synthetic microbial consortia to establish the metabolic networks existing between microorganisms for further optimization of biohydrogen production. First we have studied the networks of metabolic interactions between two bacterial models known as involved in a natural bacterial consortium: a bacterium from Clostridium genus; Clostridium acetobutylicum and one from Desulfovibrio genus, Desulfovibrio vulgaris Hildenborough. The first one being producing of hydrogen by fermentation of complex sugars and the second
7

Characterisation of the lectin microvirin from Microcystis aeruginosa PCC 7806 and new insights into the role of microcystin

Kehr, Jan-Christoph 03 September 2009 (has links)
Sowohl in Süßwasserseen als auch in marinen Gewässern kommt es immer wieder zu Massenentwicklungen von Cyanobakterien, sogenannten “Blüten”. In Seen werden diese oftmals von Cyanobakterien der Gattung Microcystis dominiert, deren Arten häufig Toxine bilden. Die verbreitesten dieser Toxine sind die leberschädigen Microcystine, die eine Klasse nichtribosomal synthetisierter Peptide darstellen. Nachdem die toxische Wirkung der Microcystine bisher als deren Hauptfunktion angesehen wurde, deuten neuere Forschungsergebnisse darauf hin, dass Microcystine eine andere Primärfunktion für die Produzenten besitzen. Im Rahmen dieser Studie wurde Microvirin (Mvn), ein putatives Lektin aus Microcystis aeruginosa PCC 7806, von dem angnommen wurde, dass es funktional mit Microcystin assoziiert ist, charakterisiert. Zunächst konnte gezeigt werden, dass Mvn tatsächlich zuckerbindende Aktivität besitzt und spezifisch Mannan, ein Oligosaccharid aus Mannoseuntereinheiten, erkennt. Bindestudien zeigten, dass Zucker dieses Typs auf der Zelloberfläche von M. aeruginosa PCC 7806 lokalisiert sind und eine Bindestelle für das sekretierte Mvn darstellen. Mit Hilfe fluoreszenzmikroskopiebasierender Methoden wurde gezeigt, dass sowohl Mvn als auch das korrespondierende Mannanoligosaccharid stammspezifisch sind. Weiterhin konnte durch PCR gezeigt werden, dass das mvn-Gen in allen getesteten Microcystis-Stämmen vorkommt, die auch Gene für die Microcystinbiosynthese besitzen. Eine direkte Interaktion von Microcystin und Mvn konnte in vitro bestätigt werden. Microcystin bindet dabei über seinen N-Methyl-Dehydroalaninrest kovalent an die reduzierten Cysteinreste des Proteins. Ein Einfluss auf die Oligomerisierung des Proteins wurde festgestellt. Microcystin bindet an Cysteinreste von Proteinen, und es konnte gezeigt werden, dass dies besonders unter oxidativen Stressbedingungen geschieht. Die Daten liefern somit weitere Indizien für eine Rolle von Microcystin in der Stressadaptation. / Cyanobacteria frequently appear as so-called “water-blooms” during summer months. Cyanobacteria of the genus Microcystis, whose species often dominate freshwater lakes, produce toxins that represent a potential threat for humans and animals. The most prominent toxins are the non-ribosomally synthesised hepatotoxic microcystins. Toxicity has been considered the main function of these peptides, but recent studies propose different primary functions of microcystins for their producers. The involvement of microcystins in the response to oxidative stress was proposed recently. Within this study the putative lectin microvirin (Mvn), which was suggested to be functionally related to microcystin, was characterised. Initially it was shown that Mvn does indeed possess a carbohydrate binding activity, and specificity for mannan, an oligosaccharide made of mannose subunits, was proven. Binding studies using fluorescence-labelled Mvn and antibodies identified carbohydrates of this type at the cell surface of M. aeruginosa being a binding site for the secreted Mvn. Fluorescence microscopy techniques were employed to show that Mvn as well as the corresponding mannan oligosaccharide are strain-specific. Additionally it was shown by PCR that the mvn gene is present in all tested Microcystis strains possessing microcystin biosynthesis genes. A direct interaction of microcystin and Mvn was confirmed in vitro. Microcystin covalently binds to the reduced cysteine residues of the protein via its N-methyl-dehydroalanine moiety. An impact on the oligomerisation state of Mvn was observed. Microcystin seems to bind cysteine residues in an unspecific manner in vivo, and it was shown that this occurs especially under conditions of oxidative stress such as iron depletion and exposition to high light. Hence, the data provide further evidence for an involvement of microcystins in stress adaptation.
8

Exploration of a mammary epithelial cell model for the study of inflammation and mechanisms of anti-inflammatory activity in medicinal plants

Al-Maalouf, Samar Wadih 05 January 2007 (has links)
No description available.
9

Live Single Cell Imaging and Analysis Using Microfluidic Devices

Khorshidi, Mohammad Ali January 2013 (has links)
Today many cell biological techniques study large cell populations where an average estimate of individual cells’ behavior is observed. On the other hand, single cell analysis is required for studying functional heterogeneities between cells within populations. This thesis presents work that combines the use of microfluidic devices, optical microscopy and automated image analysis to design various cell biological assays with single cell resolution including cell proliferation, clonal expansion, cell migration, cell-cell interaction and cell viability tracking. In fact, automated high throughput single cell techniques enable new studies in cell biology which are not possible with conventional techniques. In order to automatically track dynamic behavior of single cells, we developed a microwell based device as well as a droplet microfluidic platform. These high throughput microfluidic assays allow automated time-lapse imaging of encapsulated single cells in micro droplets or confined cells inside microwells. Algorithms for automatic quantification of cells in individual microwells and micro droplets are developed and used for the analysis of cell viability and clonal expansion. The automatic counting protocols include several image analysis steps, e.g. segmentation, feature extraction and classification. The automatic quantification results were evaluated by comparing with manual counting and revealed a high success rate. In combination these automatic cell counting protocols and our microfluidic platforms can provide statistical information to better understand behavior of cells at the individual level under various conditions or treatments in vitro exemplified by the analysis of function and regulation of immune cells. Thus, together these tools can be used for developing new cellular imaging assays with resolution at the single cell level. To automatically characterize transient migration behavior of natural killer (NK) cells compartmentalized in microwells, we developed a method for single cell tracking. Time-lapse imaging showed that the NK cells often exhibited periods of high motility, interrupted with periods of slow migration or complete arrest. These transient migration arrest periods (TMAPs) often overlapped with periods of conjugations between NK cells and target cells. Such conjugation periods sometimes led to cell-mediated killing of target cells. Analysis of cytotoxic response of NK cells revealed that a small sub-class of NK cells called serial killers was able to kill several target cells. In order to determine a starting time point for cell-cell interaction, a novel technique based on ultrasound was developed to aggregate NK and target cells into the center of the microwells. Therefore, these assays can be used to automatically and rapidly assess functional and migration behavior of cells to detect differences between health and disease or the influence of drugs. The work presented in this thesis gives good examples of how microfluidic devices combined with automated imaging and image analysis can be helpful to address cell biological questions where single cell resolution is necessary. / <p>QC 20130927</p>
10

Alteração da expressão gênica das vias de sinalização TGFβ/BMP, matriz extracelular e moléculas de adesão decorrente da passagem celular em cultura primária de hDPSC. / Alteration of gene expression of signaling TGFβ / BMP pathways, extracellular matrix and adhesion molecules due to cell passage in hDPSC primary culture.

Penna, Vanessa [UNIFESP] January 2014 (has links) (PDF)
Submitted by Maria Anália Conceição (marianaliaconceicao@gmail.com) on 2016-06-23T11:30:40Z No. of bitstreams: 1 Publico-NOVO-03.pdf: 1761339 bytes, checksum: 1ec50dfc6d5850f1b16cf857655b8101 (MD5) / Approved for entry into archive by Maria Anália Conceição (marianaliaconceicao@gmail.com) on 2016-06-23T11:32:12Z (GMT) No. of bitstreams: 1 Publico-NOVO-03.pdf: 1761339 bytes, checksum: 1ec50dfc6d5850f1b16cf857655b8101 (MD5) / Made available in DSpace on 2016-06-23T11:32:12Z (GMT). No. of bitstreams: 1 Publico-NOVO-03.pdf: 1761339 bytes, checksum: 1ec50dfc6d5850f1b16cf857655b8101 (MD5) Previous issue date: 2014 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Introdução: A Engenharia Tecidual (ET) tem como objetivo a fabricação de órgãos e tecidos. Preconiza-se o uso de células autólogas para evitar a incompatibilidade imunológica, porém, pela escassez do número de células obtidas na fonte celular, muitas passagens se tornam necessárias para atingir um número adequado de células. As culturas primárias freqüentemente sofrem diferenciação indesejada, modificando o comportamento e o destino celular. O uso de enzimas proteolíticas durante as passagens celulares é potencialmente lesivo à fisiologia celular, todavia pouca relevância tem sido dada a este aspecto na ET. Essas enzimas, ao digerir a matriz extracelular (MEC), também alteram proteínas de superfície (PS), interferindo na interação célula-célula (ICC). Consequentemente podem alterar a sinalização celular, a expressão gênica, o comportamento e o destino. Objetivo: Avaliar a expressão gênica na via de sinalização TGFβ/BMP, em matriz extracelular e em moléculas de adesão, das células tronco mesenquimais de polpa dental humana (hDPSC) obtidas diretamente do tecido e sob cultura primária até a terceira passagem. Métodos: Foi analisada a expressão gênica por qRT-PCR array da via de sinalização TGFβ/BMP, matriz extracelular e moléculas de adesão após três passagens celulares na cultura primária de hDPSC. Resultados: Os genes COL16A1(p=0,045), TIMP1(p=0,003), THBS1(p=0,027), TGFBI(p=0,001), ITGA8(p=0,002), FN1(p=0,035), CD44(p=0,046),TSC22D1(p=0,026) e RPL13A(p=0,017) tiveram sua expressão aumentada e os genes NCAM1(p=0,047), BGLAP(p=0,037) e ID1(p=0,027) tiveram sua expressão diminuída em relação às células de tecido de origem. Conclusão: Houve alteração da expressão gênica na cultura celular de hDPSC após três passagens. Porém, um gene solitariamente pode não exercer função chave na diferenciação de células, influenciada pela relação com a MEC e com o ambiente extracelular. O controle por modulação da diferenciação celular representa um aspecto importante no desenvolvimento da ET. / Introduction: Tissue Engineering (TE) aims to manufacture organs and tissues and advocates the use of autologous cells to avoid immune incompatibility. However, a longer culture time is necessary to achieve that purpose. Primary cultures often suffer undesirable differentiation, modifying behavior and cell fate. The use of proteolytic enzymes during cell passages is potentially harmful to cell physiology, but little importance has been given to this aspect in ET. These enzymes which digest the extracellular matrix (ECM) also alter surface proteins (SP) and interfere with cell-cell interactions (ICC). Consequently, may alter cell signaling by modifying gene expression, behavior and cell fate. Objective: To assess gene expression in the signaling TGFβ / BMP pathway, in extracellular matrix and in adhesion molecules, of mesenchymal human dental pulp cells from tissue and cultured until third passage. Methods: We had evaluated gene expression by qRT-PCR array of signaling TGFβ / BMP pathway, in extracellular matrix and in adhesion molecules, of mesenchymal cells from primary and third passage cultured human dental pulp Results: COL16A1(p=0,045), TIMP1(p=0,003), THBS1(p=0,027), TGFBI(p=0,001), ITGA8(p=0,002), FN1(p=0,035), CD44(p=0,046),TSC22D1(p=0,026) and RPL13A(p=0,017) genes had their expression increased and NCAM1(p=0,047), BGLAP(p=0,037) and ID1(p=0,027) genes had reduced expression compared to primary cells. Conclusion: There were modifications in gene expression after three passages. However, a single gene could not be enough to exert a key role in cell differentiation that is broadly affected by its relationship with the ECM and extracellular environment. The control by modulation of cellular differentiation, is an important aspect in the development of ET. / FAPESP: 2013/00288-4

Page generated in 0.1395 seconds