Spelling suggestions: "subject:"cellules duu muscle disse vasculaire"" "subject:"cellules duu muscle lises vasculaire""
1 |
Modulation pharmacologique de la néointima vasculaireLemay, Andrée Jacinthe January 2001 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Modulation de l'expression des protéines Gi et de la signalisation de l'adénylate cyclase par le monoxyde d'azote : implication dans la régulation de la pression sanguineBassil, Marcel January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
Étude du rôle d’ARF6 dans la physiologie des cellules du muscle lisse vasculaire lors de l’athéroscléroseFiola-Masson, Émilie 12 1900 (has links)
L’athérosclérose est une pathologie cardiovasculaire chronique impliquant de nombreux acteurs. Les cellules du muscle lisse vasculaire (CMLV) jouent un important rôle dans la pathogénicité. Lors de la formation des plaques athérosclérotiques, ces cellules entraînent l’augmentation de la taille de l’athérome, accentuent la formation du chapeau fibreux et à long terme, contribuent à l’instabilité de la plaque.
Dans cette étude, nous nous sommes intéressés à l’impact d’ARF6 sur les cellules du muscle lisse vasculaire et ses implications pathologiques dans l’athérosclérose. Les ARF sont des GTPases agissant comme interrupteurs moléculaires dans divers processus physiologiques tels que le trafic vésiculaire intracellulaire et le remodelage des lipides membranaires. ARF6 est importante pour la prolifération et la migration cellulaire des CMLV, deux phénomènes importants dans le développement de l’athérosclérose. Nous émettons donc l’hypothèse que la GTPase ARF6 est impliquée dans la progression de l’athérosclérose.
En premier lieu, nous avons étudié l’effet de la GTPase dans le phénomène de l’invasion cellulaire. Dans l’athérosclérose, plusieurs facteurs environnementaux influencent l’invasion des CMLV. Nous avons voulu vérifier l’effet d’ARF6 sur l’invasion des CMLV médiée par le facteur de croissance dérivé des plaquettes (PDGF-BB) et l’angiotensine II (Ang II). Dans un modèle humain, l’invasion était diminuée en l’absence d’ARF6. Nous avons démontré que ce mécanisme résultait d’un effet d’ARF6 sur l’activité de la métalloprotéinase matricielle MMP14.
En second lieu, nous avons voulu évaluer l’effet d’ARF6 dans un modèle in vivo d’athérosclérose. En utilisant un modèle accéléré d’athérosclérose inductible, nous avons inhibé ARF6 dans les cellules du muscle lisse. Après dix semaines de diète riche en gras, nous avons observé une diminution de la taille des lésions athérosclérotiques dans les souris ARF6 KO, accompagnée d’une réduction de l’expression des facteurs pro-inflammatoires tels qu’IL-6. Dans un modèle in vitro, l’absence d’ARF6 réduisait l’absorption lipidique en agissant sur l’expression des transporteurs. De plus, ARF6 régulait des voies de signalisation impliquées dans l’inflammation.
En somme, nous avons démontré l’importance d’ARF6 dans la modulation pathologique des CMLV dans l’athérosclérose. Ainsi, ARF6 contribue à la pathogénicité des CMLV en modulant leur invasion cellulaire tout en jouant un rôle pro-inflammatoire. / Atherosclerosis is a chronic cardiovascular disease characterized by an accumulation of lipids, followed by the infiltration of macrophages and vascular smooth muscle cells (VSMC). VSMC are responsible for the increase of lesion size, the formation of a fibrous cap, and eventually contributing to the plaque instability.
In this study, we were interested in the role of ARF6 in the vascular smooth muscle cells and its pathological implications in atherosclerosis. ARF are a family of GTPases that act as molecular switches and are involved in diverse physiological mechanisms, such as vesicular traffic and membrane lipid transformation. In VSMC, ARF6 is important for cell proliferation and migration, two processes involved in atherosclerosis. We therefore hypothesize that the GTPase ARF6 is involved in the development of atherosclerosis through its impact on VSMC.
First, we studied the role of ARF6 in the mechanism of cell invasion. In atherosclerosis, multiple environmental factors affect VSMC invasion. We verified the impact of ARF6 on platelet-derived growth factor (PDGF-BB) and angiotensin II (Ang II)-mediated invasion. Using a human model, we observed a reduction of invasion in the absence of ARF6. We have demonstrated that this mechanism is due to the effect of ARF6 on the activity of the matrix metalloproteinase MMP14.
Second, we wanted to verify the role of ARF6 in atherosclerosis in an in vivo model. Using an accelerated inducible atherosclerosis model, we inhibited ARF6 in smooth muscle cells. After ten weeks of high-fat diet, we observed a reduction in the size of atherosclerotic lesions in ARF6 KO mice. This reduction was accompanied by a decrease in the expression of proinflammatory factors. In our in vitro model, ARF6 depletion reduced lipid uptake by downregulating the lipidic transporter expression. Also, ARF6 was responsible to activate inflammation signaling pathways.
In summary, we have demonstrated the impact of ARF6 in the pathological modulation of VSMC in atherosclerosis. Indeed, ARF6 contributes to the pathogenicity of VSMC through its ability to modulate cell invasion and induce proinflammatory actions.
|
4 |
Modulation de la voie de signalisation de Gαq par l’hyperglycémie : mécanisme moléculaireDescorbeth, Magda 01 1900 (has links)
Les complications vasculaires telles que l’augmentation de la contractilité et la prolifération cellulaire sont les complications les plus communes observées dans le diabète et l’hyperglycémie chronique est un facteur important dans ces processus. La voie de signalisation de Gαq joue un rôle important dans la régulation du tonus vasculaire et l’altération de celle-ci peut contribuer aux complications vasculaires observées dans les cas de diabète et d’hyperglycémie. Il a été observé que les taux et l’activité des protéines kinase C (PKC) et du diacylglycérol (DAG) sont augmentés dans ces conditions. Cependant, aucune étude n’a démontré l’implication de Gαq/11 et des PLCβ, molécules de signalisation en amont de PKC/DAG. Plusieurs études révèlent que l’augmentation des taux et de l’activité des PKC et du DAG induite par l’hyperglycémie dans des cellules du muscle lisse vasculaire (CMLV) est attribuée à l’augmentation du stress oxydatif. De plus, les niveaux de certains peptides vasoactifs, tels que l’angiotensine II et l’endothéline-1, augmentés dans les conditions de diabète/d’hyperglycémie, peuvent contribuer à l’augmentation du stress oxydatif observée. Le travail présenté dans cette thèse avait pour but d’examiner les effets de l’hyperglycémie sur les niveaux d’expression protéique de Gαq/11 et de ses molécules associées, ainsi que d’étudier le mécanisme moléculaire par lequel l’hyperglycémie module la voie de signalisation de Gαq dans les CMLV.
Dans la première étude, nous avons examiné si l’hyperglycémie pouvait moduler l’expression des protéines Gαq, Gα11, PLCβ1 et PLCβ2. Le prétraitement des CMLV A10 avec 26 mM de glucose durant 72 heures augmente l’expression des protéines Gαq, Gα11, PLCβ-1 et PLCβ-2 en comparaison avec les CMLV témoins. Le traitement avec des antagonistes aux récepteurs AT1 de l’Ang II, et ETA/ETB de l’ET-1, atténue la hausse de Gαq, de Gα11, de PLCβ1 et de PLCβ2 induite par l’hyperglycémie. De plus, la formation d’IP3 stimulée par l’ET-1 était plus élevée dans les CMLV exposée à 26 mM de glucose. Le traitement des CMLV A10 avec l’Ang II et l’ET-1 augmente également les niveaux d’expression des protéines Gα q/11 et PLCβ. Cette augmentation de l’expression est restaurée au niveau des CMLV témoins par les antagonistes des récepteurs AT1, ETA et ETB. Ces résultats suggèrent que l’augmentation de l’expression des protéines Gαq/11 et PLCβ dans les CMLV induite par l’hyperglycémie est attribuée à l’activation des récepteurs AT1, ETA et ETB.
Dans la seconde étude, nous avons examiné l’implication du stress oxydatif dans l’augmentation des niveaux d’expression des protéines Gαq/11 et PLCβ et de leur signalisation induite par l’hyperglycémie. Nous avons également déterminé le mécanisme responsable de l’augmentation du stress oxydatif induite par l’hyperglycémie. L’augmentation de l’expression des protéines Gαq/11 et PLCβ des CMLV A10 exposées à 26 mM de glucose est revenue au niveau basal après un traitement avec l’antioxydant diphenyleneiodonium (DPI), et la catalase, un chélateur du peroxyde d’hydrogène, mais pas par le 111Mn-tetralis(benzoic acid porphyrin) (MnTBAP) ni par l’acide urique, des chélateurs du peroxynitrite. De plus, l’augmentation de la formation d’IP3 stimulée par l’ET-1 dans les CMLV exposées à 26 mM de glucose est revenue au niveau basal après un traitement avec le DPI et la catalase. Ces résultats suggèrent que l’augmentation du stress oxydatif induite par l’hyperglycémie contribue à l’augmentation de l’expression des protéines Gαq/11 et les molécules associées à la voie de signalisation de Gq. De plus, l’augmentation de la production d’anion superoxyde (O2-), de l’activité de la NADPH oxydase et de l’expression des protéines p22(phox) et p47(phox) induite par l’hyperglycémie est revenue à un niveau basal après un traitement avec les antagonistes des récepteurs AT1, ETA et ETB. Ces résultats suggèrent que l’hyperglycémie augmente les niveaux endogènes de l’Ang II et de l’ET-1, ce qui augmente le stress oxydatif par la formation d’O2- et de H2O2 et peut contribuer à l’augmentation des niveaux de Gq/11α et de leurs molécules de signalisation.
Puisqu’il a été observé que l’hyperglycémie transactive les récepteurs aux facteurs de croissance tels que le récepteur au facteur de croissance épidermique (EGF-R) et le récepteur au facteur de croissance dérivé des plaquettes (PDGF-R), nous avons entrepris d’examiner, dans la troisième étude, l’implication d’EGF-R et de PDGF-R dans l’augmentation des niveaux de Gαq/11, de PLCβ et de leur signalisation induite par l’hyperglycémie. L’augmentation des niveaux d’expression des protéines Gαq, Gα11, PLCβ-1 et PLCβ-2 induite par l’hyperglycémie est revenue au niveau basal après un traitement avec les inhibiteurs d’EGF-R (AG1478) et de PDGF-R (AG1295) et par l’inhibiteur de c-Src, PP2. L’augmentation de la phosphorylation d’EGF-R et de PDGF-R induite par l’hyperglycémie a été abolie par AG1478, AG1295 et PP2. De plus, l’augmentation des niveaux de Gαq/11, et de PLCβ induite par l’hyperglycémie est atténuée par l’inhibiteur des MAPK, le PD98059, et par l’inhibiteur d’AKT, le wortmannin. L’augmentation de la phosphorylation d’ERK et d’AKT était également atténuée par AG1478 et AG1295. Ces résultats suggèrent que la transactivation des récepteurs aux facteurs de croissance induite par c-Src peut contribuer à l’augmentation des niveaux de Gα q/11/PLC et de leur signalisation par la voie des MAPK/PI3K.
En conclusion, les études présentées dans cette thèse indiquent que l’hyperglycémie augmente les niveaux de Gαq/11 et de PLCβ. Nous avons émis des évidences qui démontrent que l’augmentation endogène de l’Ang II et de l’ET-1 par l’hyperglycémie peut contribuer à l’augmentation de la production d’O2- et de H2O2 résultant ainsi en une augmentation du stress oxydatif qui pourrait être responsable de l’augmentation de Gαq/11/PLC et de leur signalisation dans les conditions d’hyperglycémie. Finalement, nous avons démontré que la transactivation des récepteurs aux facteurs de croissance induite par l’hyperglycémie peut être responsable de l’augmentation de Gαq/11/PLC et les molécules associées à la voie de signalisation de Gq dans les cas de diabète et d’hyperglycémie. / Vascular complications including increased contractility and cell proliferation are most common complications in diabetes, and chronic hyperglycemia seem to be an important contributing factor in this process. Gqα signaling pathway plays an important role in the regulation of vascular tone and aberration of these mechanisms may contribute to vascular complications in hyperglycemia/diabetes. The levels and activity of protein kinase C (PKC) and diacylglycerol (DAG) were shown to be up-regulated in diabeteshyperglycemia. In addition, studies on the expression of upstream signaling molecules of phosphatidyl inositol (PI) turnover were lacking. The enhanced activity/levels of protein PKC and DAG induced by high glucose in VSMC have been shown to be attributed to the increased oxidative stress. Furthermore, the levels of various vasoactive peptides including Ang II and ET-1 which are augmented in diabetes and under hyperglycemic conditions, may also contribute to the enhanced oxidative stress in diabetes/hyperglycemia. The work presented in this thesis was therefore undertaken to examine if hyperglycemia/diabetes could also modulate the expression of Gqα and phospholipase Cb (PLCβ) proteins and associated PI turnover signaling in A10 VSMC exposed to high glucose and to explore the molecular mechanisms by which high glucose modulates Gqα/PLC signaling.
The first study was undertaken to investigate if hyperglycemia can modulate the expression of Gqα, G11α, PLCβ-1 and PLCβ-2 and associated signaling. Pre-treatment of A10 VSMC with high glucose (26 mM) for 3 days augmented the levels of Gqα, G11α, PLCβ-1 and β-2 proteins as compared to control cells which were restored to control levels by endothelin-1 (ET-1) ETA and ETB and angiotensin II (Ang II) AT1 receptor antagonists. In addition, ET-1-stimulated IP3 formation was also significantly higher in VSMC exposed to high glucose. Furthermore, treatment of A10 VSMC with Ang II and ET-1 also increased significantly the levels of Gq/11α and PLCβ proteins which were restored towards control levels by ETA/ETB and AT1 receptor antagonists. These results suggest that high glucose augmented the expression of Gq/11α, PLCβ and -mediated signaling in VSMC which may be attributed to activation of AT1, ETA and ETB receptors.
The second study was undertaken to investigate the implication of oxidative stress in high glucose-induced enhanced expression of Gq/11α and PLCβ1/2 proteins and associated signaling in A10 VSMC and to explore the mechanism responsible for high glucose induced enhanced oxidative stress. We showed that the increased levels of Gqα, G11α, PLCβ-1 and PLCβ-2 proteins in A10 VSMCs exposed to high glucose were restored to control levels by the antioxidant diphenyleneiodonium (DPI), and catalase, a scavenger of hydrogen peroxide, but not by 111Mn-tetralis(benzoic acid porphyrin) (MnTBAP) and uric acid, scavengers of peroxynitrite. In addition, endothelin-1 (ET-1)-stimulated production of IP3 that was enhanced by high glucose was also restored towards control levels by DPI and catalase. These results suggest that high glucose-induced enhanced oxidative stress that contributes to the enhanced expression of Gq/11α and PLCβ protein and signaling. Furthermore, the enhanced production of superoxide anion (O2-), NADPH oxidase activity and enhanced expression of p22(phox) and p47(phox) proteins induced by high glucose was restored to control levels by losartan, BQ123 and BQ788, the antagonists of angiotensin AT1 and endothelin-1 ETA/ETB receptors respectively. These results suggest that high glucose-induced enhanced levels of endogenous Ang II and ET-1, by increasing oxidative stress may contribute to the increased levels of Gq/11α and-mediated signaling in A10 VSMC.
Since high glucose has been shown to increase growth factor receptor activation, we investigated, in the third study, the role of epidermal growth factor receptor (EGF-R) and platelet-derived growth factor receptor (PDGF-R) transactivation in high glucose-induced enhanced expression of Gq/11α and PLCβ. The increased levels of Gqα, G11α, PLCβ-1 and PLCβ-2 proteins induced by high glucose were restored to control levels by AG1478, an inhibitor of EGF-R, and AG1295, an inhibitor of PDGF-R as well as by PP2, an inhibitor of c-Src. High glucose-induced increased phosphorylation of EGF-R and PDGF-R which were abolished by AG1478, AG1295 and PP2. High glucose-induced enhanced levels of Gq, G11α and PLCβ were also attenuated by PD98059, an inhibitor of mitogen-activated protein kinase (MAPK), and wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K). In addition, high glucose-induced enhanced phosphorylation of ERK1/2 and AKT was also attenuated by AG1478 and AG1295. These results suggest that c-Src-induced transactivation of growth factor receptor contributes to the high glucose-induced enhanced expression of Gq/11α/PLC and-mediated cell signaling through MAPK/PI3K pathway.
In conclusion, the studies presented in this thesis indicate that hyperglycemia increased the levels of Gq/11α and PLCβ1/2 proteins and mediated signaling. We provided evidence that high glucose-induced increased levels of Ang II and ET-1 may contribute to the enhanced production of O2- and H2O2 and results in enhanced oxidative stress which may be responsible for the high glucose-induced enhanced expression of Gq/11α and PLCβ. Finally, we demonstrated that high glucose-induced transactivation of growth factor receptors may also be responsible for the high glucose-induced enhanced expression of Gq/11α and PLCβ1/2.
|
5 |
Modulation de la voie de signalisation de Gαq par l’hyperglycémie : mécanisme moléculaireDescorbeth, Magda 01 1900 (has links)
Les complications vasculaires telles que l’augmentation de la contractilité et la prolifération cellulaire sont les complications les plus communes observées dans le diabète et l’hyperglycémie chronique est un facteur important dans ces processus. La voie de signalisation de Gαq joue un rôle important dans la régulation du tonus vasculaire et l’altération de celle-ci peut contribuer aux complications vasculaires observées dans les cas de diabète et d’hyperglycémie. Il a été observé que les taux et l’activité des protéines kinase C (PKC) et du diacylglycérol (DAG) sont augmentés dans ces conditions. Cependant, aucune étude n’a démontré l’implication de Gαq/11 et des PLCβ, molécules de signalisation en amont de PKC/DAG. Plusieurs études révèlent que l’augmentation des taux et de l’activité des PKC et du DAG induite par l’hyperglycémie dans des cellules du muscle lisse vasculaire (CMLV) est attribuée à l’augmentation du stress oxydatif. De plus, les niveaux de certains peptides vasoactifs, tels que l’angiotensine II et l’endothéline-1, augmentés dans les conditions de diabète/d’hyperglycémie, peuvent contribuer à l’augmentation du stress oxydatif observée. Le travail présenté dans cette thèse avait pour but d’examiner les effets de l’hyperglycémie sur les niveaux d’expression protéique de Gαq/11 et de ses molécules associées, ainsi que d’étudier le mécanisme moléculaire par lequel l’hyperglycémie module la voie de signalisation de Gαq dans les CMLV.
Dans la première étude, nous avons examiné si l’hyperglycémie pouvait moduler l’expression des protéines Gαq, Gα11, PLCβ1 et PLCβ2. Le prétraitement des CMLV A10 avec 26 mM de glucose durant 72 heures augmente l’expression des protéines Gαq, Gα11, PLCβ-1 et PLCβ-2 en comparaison avec les CMLV témoins. Le traitement avec des antagonistes aux récepteurs AT1 de l’Ang II, et ETA/ETB de l’ET-1, atténue la hausse de Gαq, de Gα11, de PLCβ1 et de PLCβ2 induite par l’hyperglycémie. De plus, la formation d’IP3 stimulée par l’ET-1 était plus élevée dans les CMLV exposée à 26 mM de glucose. Le traitement des CMLV A10 avec l’Ang II et l’ET-1 augmente également les niveaux d’expression des protéines Gα q/11 et PLCβ. Cette augmentation de l’expression est restaurée au niveau des CMLV témoins par les antagonistes des récepteurs AT1, ETA et ETB. Ces résultats suggèrent que l’augmentation de l’expression des protéines Gαq/11 et PLCβ dans les CMLV induite par l’hyperglycémie est attribuée à l’activation des récepteurs AT1, ETA et ETB.
Dans la seconde étude, nous avons examiné l’implication du stress oxydatif dans l’augmentation des niveaux d’expression des protéines Gαq/11 et PLCβ et de leur signalisation induite par l’hyperglycémie. Nous avons également déterminé le mécanisme responsable de l’augmentation du stress oxydatif induite par l’hyperglycémie. L’augmentation de l’expression des protéines Gαq/11 et PLCβ des CMLV A10 exposées à 26 mM de glucose est revenue au niveau basal après un traitement avec l’antioxydant diphenyleneiodonium (DPI), et la catalase, un chélateur du peroxyde d’hydrogène, mais pas par le 111Mn-tetralis(benzoic acid porphyrin) (MnTBAP) ni par l’acide urique, des chélateurs du peroxynitrite. De plus, l’augmentation de la formation d’IP3 stimulée par l’ET-1 dans les CMLV exposées à 26 mM de glucose est revenue au niveau basal après un traitement avec le DPI et la catalase. Ces résultats suggèrent que l’augmentation du stress oxydatif induite par l’hyperglycémie contribue à l’augmentation de l’expression des protéines Gαq/11 et les molécules associées à la voie de signalisation de Gq. De plus, l’augmentation de la production d’anion superoxyde (O2-), de l’activité de la NADPH oxydase et de l’expression des protéines p22(phox) et p47(phox) induite par l’hyperglycémie est revenue à un niveau basal après un traitement avec les antagonistes des récepteurs AT1, ETA et ETB. Ces résultats suggèrent que l’hyperglycémie augmente les niveaux endogènes de l’Ang II et de l’ET-1, ce qui augmente le stress oxydatif par la formation d’O2- et de H2O2 et peut contribuer à l’augmentation des niveaux de Gq/11α et de leurs molécules de signalisation.
Puisqu’il a été observé que l’hyperglycémie transactive les récepteurs aux facteurs de croissance tels que le récepteur au facteur de croissance épidermique (EGF-R) et le récepteur au facteur de croissance dérivé des plaquettes (PDGF-R), nous avons entrepris d’examiner, dans la troisième étude, l’implication d’EGF-R et de PDGF-R dans l’augmentation des niveaux de Gαq/11, de PLCβ et de leur signalisation induite par l’hyperglycémie. L’augmentation des niveaux d’expression des protéines Gαq, Gα11, PLCβ-1 et PLCβ-2 induite par l’hyperglycémie est revenue au niveau basal après un traitement avec les inhibiteurs d’EGF-R (AG1478) et de PDGF-R (AG1295) et par l’inhibiteur de c-Src, PP2. L’augmentation de la phosphorylation d’EGF-R et de PDGF-R induite par l’hyperglycémie a été abolie par AG1478, AG1295 et PP2. De plus, l’augmentation des niveaux de Gαq/11, et de PLCβ induite par l’hyperglycémie est atténuée par l’inhibiteur des MAPK, le PD98059, et par l’inhibiteur d’AKT, le wortmannin. L’augmentation de la phosphorylation d’ERK et d’AKT était également atténuée par AG1478 et AG1295. Ces résultats suggèrent que la transactivation des récepteurs aux facteurs de croissance induite par c-Src peut contribuer à l’augmentation des niveaux de Gα q/11/PLC et de leur signalisation par la voie des MAPK/PI3K.
En conclusion, les études présentées dans cette thèse indiquent que l’hyperglycémie augmente les niveaux de Gαq/11 et de PLCβ. Nous avons émis des évidences qui démontrent que l’augmentation endogène de l’Ang II et de l’ET-1 par l’hyperglycémie peut contribuer à l’augmentation de la production d’O2- et de H2O2 résultant ainsi en une augmentation du stress oxydatif qui pourrait être responsable de l’augmentation de Gαq/11/PLC et de leur signalisation dans les conditions d’hyperglycémie. Finalement, nous avons démontré que la transactivation des récepteurs aux facteurs de croissance induite par l’hyperglycémie peut être responsable de l’augmentation de Gαq/11/PLC et les molécules associées à la voie de signalisation de Gq dans les cas de diabète et d’hyperglycémie. / Vascular complications including increased contractility and cell proliferation are most common complications in diabetes, and chronic hyperglycemia seem to be an important contributing factor in this process. Gqα signaling pathway plays an important role in the regulation of vascular tone and aberration of these mechanisms may contribute to vascular complications in hyperglycemia/diabetes. The levels and activity of protein kinase C (PKC) and diacylglycerol (DAG) were shown to be up-regulated in diabeteshyperglycemia. In addition, studies on the expression of upstream signaling molecules of phosphatidyl inositol (PI) turnover were lacking. The enhanced activity/levels of protein PKC and DAG induced by high glucose in VSMC have been shown to be attributed to the increased oxidative stress. Furthermore, the levels of various vasoactive peptides including Ang II and ET-1 which are augmented in diabetes and under hyperglycemic conditions, may also contribute to the enhanced oxidative stress in diabetes/hyperglycemia. The work presented in this thesis was therefore undertaken to examine if hyperglycemia/diabetes could also modulate the expression of Gqα and phospholipase Cb (PLCβ) proteins and associated PI turnover signaling in A10 VSMC exposed to high glucose and to explore the molecular mechanisms by which high glucose modulates Gqα/PLC signaling.
The first study was undertaken to investigate if hyperglycemia can modulate the expression of Gqα, G11α, PLCβ-1 and PLCβ-2 and associated signaling. Pre-treatment of A10 VSMC with high glucose (26 mM) for 3 days augmented the levels of Gqα, G11α, PLCβ-1 and β-2 proteins as compared to control cells which were restored to control levels by endothelin-1 (ET-1) ETA and ETB and angiotensin II (Ang II) AT1 receptor antagonists. In addition, ET-1-stimulated IP3 formation was also significantly higher in VSMC exposed to high glucose. Furthermore, treatment of A10 VSMC with Ang II and ET-1 also increased significantly the levels of Gq/11α and PLCβ proteins which were restored towards control levels by ETA/ETB and AT1 receptor antagonists. These results suggest that high glucose augmented the expression of Gq/11α, PLCβ and -mediated signaling in VSMC which may be attributed to activation of AT1, ETA and ETB receptors.
The second study was undertaken to investigate the implication of oxidative stress in high glucose-induced enhanced expression of Gq/11α and PLCβ1/2 proteins and associated signaling in A10 VSMC and to explore the mechanism responsible for high glucose induced enhanced oxidative stress. We showed that the increased levels of Gqα, G11α, PLCβ-1 and PLCβ-2 proteins in A10 VSMCs exposed to high glucose were restored to control levels by the antioxidant diphenyleneiodonium (DPI), and catalase, a scavenger of hydrogen peroxide, but not by 111Mn-tetralis(benzoic acid porphyrin) (MnTBAP) and uric acid, scavengers of peroxynitrite. In addition, endothelin-1 (ET-1)-stimulated production of IP3 that was enhanced by high glucose was also restored towards control levels by DPI and catalase. These results suggest that high glucose-induced enhanced oxidative stress that contributes to the enhanced expression of Gq/11α and PLCβ protein and signaling. Furthermore, the enhanced production of superoxide anion (O2-), NADPH oxidase activity and enhanced expression of p22(phox) and p47(phox) proteins induced by high glucose was restored to control levels by losartan, BQ123 and BQ788, the antagonists of angiotensin AT1 and endothelin-1 ETA/ETB receptors respectively. These results suggest that high glucose-induced enhanced levels of endogenous Ang II and ET-1, by increasing oxidative stress may contribute to the increased levels of Gq/11α and-mediated signaling in A10 VSMC.
Since high glucose has been shown to increase growth factor receptor activation, we investigated, in the third study, the role of epidermal growth factor receptor (EGF-R) and platelet-derived growth factor receptor (PDGF-R) transactivation in high glucose-induced enhanced expression of Gq/11α and PLCβ. The increased levels of Gqα, G11α, PLCβ-1 and PLCβ-2 proteins induced by high glucose were restored to control levels by AG1478, an inhibitor of EGF-R, and AG1295, an inhibitor of PDGF-R as well as by PP2, an inhibitor of c-Src. High glucose-induced increased phosphorylation of EGF-R and PDGF-R which were abolished by AG1478, AG1295 and PP2. High glucose-induced enhanced levels of Gq, G11α and PLCβ were also attenuated by PD98059, an inhibitor of mitogen-activated protein kinase (MAPK), and wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K). In addition, high glucose-induced enhanced phosphorylation of ERK1/2 and AKT was also attenuated by AG1478 and AG1295. These results suggest that c-Src-induced transactivation of growth factor receptor contributes to the high glucose-induced enhanced expression of Gq/11α/PLC and-mediated cell signaling through MAPK/PI3K pathway.
In conclusion, the studies presented in this thesis indicate that hyperglycemia increased the levels of Gq/11α and PLCβ1/2 proteins and mediated signaling. We provided evidence that high glucose-induced increased levels of Ang II and ET-1 may contribute to the enhanced production of O2- and H2O2 and results in enhanced oxidative stress which may be responsible for the high glucose-induced enhanced expression of Gq/11α and PLCβ. Finally, we demonstrated that high glucose-induced transactivation of growth factor receptors may also be responsible for the high glucose-induced enhanced expression of Gq/11α and PLCβ1/2.
|
Page generated in 0.1284 seconds