Spelling suggestions: "subject:"centrifugal compressor"" "subject:"zentrifugal compressor""
41 |
<b>Expanding the Scope of Isolated Unsteady Diffuser Computational Modeling</b>Benjamin Lukas Holtmann (19140391) 16 July 2024 (has links)
<p dir="ltr">Increased scrutiny from customers and regulators to design aeroengines that are more efficient and environmentally friendly has pushed the need to investigate new engine architectures, manufacturing techniques, and computational fluid dynamic methods. This has led to the development of the CSTAR Gen. 2.5 centrifugal compressor, which uses an additively manufactured diffusion system and investigates the aerodynamic performance of an axi-centrifugal aeroengine. Additionally, an isolated unsteady diffuser computational model was previously developed that seeks to significantly reduce the computational cost of unsteady CFD in the diffuser.</p><p dir="ltr">The research presented in this paper is part of an ongoing attempt to utilize the capabilities of isolated unsteady diffuser modeling and rapid prototyping enabled through additive manufacturing in CSTAR Gen. 2.5 to develop a design framework that allows for quick computational and experimental analysis of diffusion systems in centrifugal compressors. Specifically, the scope of isolated unsteady diffuser modeling, which was previously only implemented in CSTAR Gen. 1 and at a single loading condition, is expanded by analyzing computational instabilities when applying the methodology to CSTAR Gen. 2.5 and analyzing results from four loading conditions (high loading, design point, low loading, and near choke) along a speedline.</p><p dir="ltr">Computational instabilities in the CSTAR Gen. 2.5 isolated diffuser models were determined to be caused by the decreased vaneless space compared to Gen. 1, which led to less “mixed” flow at the impeller outlet and a stronger diffuser potential field affecting the inlet profile. A boundary profile correction approach was developed which slightly increased very low total pressure near the diffuser shroud and negative radial velocity regions near the shroud and pitchwise locations of the diffuser vane leading edges while minimizing the overall affected area. The correction was successfully validated using 3D flow structure and minimum, average, and maximum total pressure, absolute velocity magnitude, and pressure comparisons at the diffuser inlet between an isolated and full-stage model.</p><p dir="ltr">Prediction capabilities of 3D flow structures and 1D performance parameters by isolated unsteady diffuser models were validated with results from full-stage unsteady models at each loading condition. The analysis indicated consistent performance by the isolated unsteady diffuser model at all loading conditions. An overall agreement in 3D flow structures was found, and trends in the full-stage unsteady models along the speedline were tracked well by the isolated unsteady model. At all loading conditions, there was a consistent over-representation of the separation region along the diffuser vane pressure side in the diffuser passage, overprediction of total pressure magnitude at the core of the flow at the diffuser outlet, and over- or underprediction of total pressure loss and static pressure recovery respectively. The similarity in the results between full-stage and isolated unsteady models, tracking of trends along the speedline, and consistent differences in 3D flow structure predictions and 1D performance parameters validates the isolated unsteady diffuser methodology for use at loading conditions from surge to choke.</p>
|
42 |
Analyse numérique des instabilités aérodynamiques dans un compresseur centrifuge de nouvelle génération / Numerical analysis of aerodynamic instabilities in a new generation centrifugal compressorBénichou, Emmanuel 10 December 2015 (has links)
L’étude effectuée au cours de cette thèse a permis de caractériser numériquement les instabilités d’origine aérodynamique rencontrées dans un compresseur centrifuge dessiné par Turbomeca. Ce compresseur est composé d’une roue directrice d’entrée, d’un rouet centrifuge, d’un diffuseur radial et de redresseurs axiaux. Le module expérimental, dénommé Turbocel, sera accueilli au LMFA courant 2016. Le contenu de cette étude repose donc exclusivement sur des résultats numériques dont certains sont cependant comparés à des résultats expérimentaux partiels obtenus par Turbomeca sur une configuration proche. _ Le fonctionnement du compresseur est analysé à différentes vitesses de rotation, à partir de simulations RANS et URANS menées avec le code elsA. Du point de vue de la méthodologie, deux points importants sont à retenir :- Du fait du caractère transsonique de l’écoulement dans le rouet et le diffuseur radial à haut régime de rotation, les simulations RANS stationnaires ne permettent pas d’accéder à une description satisfaisante des phénomènes physiques. Cela est dû à l’utilisation d’un plan de mélange aux différentes interfaces rotor-stator qui a pour effet d’empêcher les ondes de choc de remonter à l’amont, et qui affecte tant la physique de l’écoulement que l’étendue de la plage de fonctionnement stable.- En-dessous d’un certain débit, les calculs URANS sur période machine révèlent que le comportement de l’étage n’obéit plus à la périodicité spatio-temporelle mono-canal. Une plage instable est alors obtenue à toutes les iso-vitesses simulées. A bas régime de rotation, une autre plage stable existe lorsque le compresseur est suffisamment vanné. L’étage retrouve alors une périodicité spatio-temporelle, à condition d’étendre le domaine de calcul dans le stator à deux canaux inter-aubes. En ce qui concerne les limites de stabilité de Turbocel, différentes évolutions sont décrites selon la vitesse de rotation considérée :- A haut régime de rotation, une basse fréquence commence à émerger près du point de rendement maximal et son intensité ne fait qu’augmenter jusqu.au pompage.- A bas régime, une signature basse fréquence comparable se manifeste près du point de rendement maximal mais disparaît passé un certain vannage, et n’est donc présente que sur une plage de débit délimitée. La seconde zone stable peut alors être numériquement parcourue jusqu.au pompage proprement dit. La signature basse fréquence est imputée à l’instauration d’une recirculation dans l’inducteur qui une fois établie est quasi-stationnaire. Les résultats numériques mettent en évidence que la source d’instabilité sévère sur Turbocel provient du diffuseur aubé. En fonction du point de fonctionnement, ce composant adopte des comportements différents, entre lesquels une certaine continuité existe, et ses performances chutent progressivement lorsque le débit diminue. Au final, les domaines de stabilité de l’étage de compression peuvent être reliés au type d’écoulement qui se développe dans le diffuseur radial, et apparaissent dictés par le diffuseur semi-lisse à haut régime de rotation. Enfin, afin d’étendre les plages de fonctionnement stable, une stratégie de contrôle basée sur l’aspiration de couche limite dans le diffuseur aubé a également été déterminée dans le cadre de cette thèse. Son évaluation fera l’objet d’études ultérieures sur Turbocel. / The present study aims at characterizing the aerodynamic instabilities involved in a centrifugal compressor designed by Turbomeca, by means of numerical simulation. This compressor is composed of inlet guide vanes, a centrifugal impeller, a radial vaned diffuser and axial outlet guide vanes. The test module, named Turbocel, will be delivered to the LMFA in 2016. Thus, the results presented in this manuscript are only based on CFD, although some of them are compared to experimental results obtained by Turbomeca on a close configuration.RANS and URANS simulations are performed for several rotational speeds, using the elsA software.Two methodological key points are to be emphasized:- As the flow in both the impeller and the radial diffuser is transonic at high rotational speed, steady RANS simulations cannot provide a satisfactory description of the physical phenomena taking place. This can be explained by the use of the mixing plane approach which prevents shock waves to extend upstream the rotor-stator interfaces, and which impacts the flow field predicted as well as the prediction of the stable operating range.- Below a given massflow rate, URANS simulations covering the spatial period of the compressor prove that the stage behavior does not obey to the single passage spatio-temporal periodicity anymore. An unstable operating range then appears at all the simulated rotational speeds. At low rotational speed, another stable range is however obtained if the compressor is further throttled’ A new periodicity arises on this massflow range, provided that the stator domain is extended to two neighboring blade passages. Concerning the stability domains of Turbocel, different evolutions are obtained depending on the rotational speed:- At high rotational speed, a low frequency phenomenon starts to develop near the peak efficiency point and its intensity keeps increasing until surge happens.- At low rotational speed, a low frequency signature also appears near the peak efficiency point, but it then vanishes when the compressor is further throttled, so that only a restricted operating range exhibits this instability. It then gives rise to a second stable operating range which can be described numerically, ending with surge itself. The low frequency signature is attributed to the enhancement of a flow recirculation in the inducer which, once fully established, is quasi-steady. The numerical results underline that the source of severe instability in the compressor comes from the vaned diffuser. Depending on the operating point, this component can adopt different behaviors, between which a relative continuity exists, and its performances decrease when the massflow rate decresases. The overall stage performances prove that at high rotational speed, the global stability is driven by the semi-vaneless diffuser and depends on the flow developing in the radial diffuser. Finally, in order to extend the stable operating range of the compressor, a flow control strategy based on boundary layer suction has also been determined in the diffuser. Its impact on the performances of Turbocel will be deeply studied later on.
|
43 |
Vibration resistance of air bearing turbo compressorsLoosli, Christian, Dietmann, Fabian, Fröhlich, Patrik, Zwyssig, Christof 27 May 2022 (has links)
Air bearing radial turbo (also called centrifugal) compressors prevail in most mobile fuel cell air supply applications due to the small size and weight, the high efficiency and the oil- and maintenance free operation. An important aspect in mobile fuel cell applications is the vibration resistance of all system components, including the compressor, with vibration requirements up to 20 g in automotive applications.
This paper gives the background of the air bearing vibration characteristics, depicting the dependencies of vibration resistance on inlet conditions and operating points. The critical operating conditions concerning vibration resistance are identified, and it is outlined how vibration requirements can be included in the design process of an air bearing turbo compressor. A visualization of vibration resistance in the commonly used compressor map is presented, allowing the fuel cell system integrator to take qualified decisions for the mechanical integration of the compressor concerning vibrations.
|
44 |
Development of a Reduced Computational Model to Replicate Inlet Distortion in an APU-Style Inlet of a Centrifugal CompressorEvan Henry Bond (12455190) 25 April 2022 (has links)
<p>The purpose of this research was to determine what components of a complex centrifugal compression system inlet needed to be modelled to accurately predict the swirl and total pressure distortions at the compressor face. Two computational models were developed. A full-fidelity case where all the inlet geometry was modelled and a reduced model where a small portion of the inlet was considered. Both the numerical cases were compared with experimental data from a research compressor rig developed by Honeywell Aerospace. The test apparatus was designed with a modular inlet system to develop swirl distortion patterns. The modular inlet system utilized transposable baffles within the radial-to-axial section of the inlet and blockage plates of varying sizes and geometries at the inlet to this section. Discerning the dominant inlet component that dictates distortion behavior at the compressor face would allow the reduced modelling of inlet components for compression systems and would allow coupling with more tortuous systems. Furthermore, it would reduce the design iteration and simulation time of the inlet systems. Several investigations utilizing a reduced model only considering a radial-to-axial inlet are available in literature, but no comprehensive justification has been presented as to the impact this has on the distortion behavior. Experimental surveys of flow conditions just upstream of the inducer of the centrifugal compressor were conducted at several operating conditions. The highest and lowest mass flow rates of these operating points were simulated using ANSYS CFX 2020R1 for both the computational models. Multiple inlet configurations were simulated to test the robustness of the reduced model in comparison to the full fidelity. The numerical simulations highlighted shortcomings of the instrumentation used to characterize the experimental flow field at the inducer, particularly with respect to total pressure distortion. Furthermore, transient pressure data were measured in experiment and indicated unsteady fluctuations in the inlet that would not be captured by steady computational fluid dynamic simulations. These data matched locations of disagreement with swirl distortion behavior at high mass flow rates. This suggested that transient vortex movement occured at the aerodynamic interface plane in certain configurations. The total pressure distortion metrics between the two models were remarkably comparable. Furthermore, the simplified model accurately predicted the mixing losses associated with the blockage plates at the inlet to the radial-to-axial inlet using a simple inlet extension. Swirl 18 distortion was dictated by the radial-to-axial inlet. The reduced model data trends were comparable with experiment for both the baffle and blocker plate configurations. The swirl intensities for all configurations were comparable between the two models. The reduced model swirl directivity trends matched those of experiment. The most notable deviations between the full-fidelity model and the reduced model were observed with swirl directivity numerics. </p>
|
45 |
An Experimental and Computational Study of Surge in Turbocharger Compression SystemsDehner, Richard D. January 2016 (has links)
No description available.
|
46 |
<b>Experimental and Numerical Evaluation of Stationary Diffusion System Aerodynamics in Aeroengine Centrifugal Compressors</b>Jack Thomas Clement (18429954) 25 April 2024 (has links)
<p dir="ltr">As aircraft engine manufacturers continue to embark on their pursuit of higher-efficiency, lower-emissions gas turbines, a prevailing theme in the industry has been the increase of the engine bypass ratio. As the optimization space for engine bypass ratios trends towards smaller and smaller engine core sizes, the feasibility of centrifugal compressors as the final stage in an axial-centrifugal compressor becomes apparent due to their performance advantages at smaller scales.</p><p dir="ltr">This study performed an investigation into the aerodynamics of a stationary diffusion system intended for use with a final stage aeroengine centrifugal compressor using experimental and numerical techniques. Experimental work was performed at the Purdue Compressor Research Lab at Purdue University’s Maurice J. Zucrow Laboratories. Data were collected from several iterations of rapidly prototyped, additively manufactured diffuser and deswirl parts with internal instrumentation features. Furthermore, computational work on the stage was conducted using the Ansys Turbosystem.</p><p dir="ltr">The goal of this research is to identify trends in stationary diffusion system designs and the geometric features that cause them. Furthermore, the ability of steady computational fluid dynamics methods to predict these changes was evaluated using two turbulence models to produce a simulation of the compressor flow field. When used in conjunction with one another, the efficient use of computational methods to identify an optimal design and rapid prototyping to validate it leads to the determination of the best diffusion system design at a lower cost and time requirement than what is otherwise currently possible.</p><p dir="ltr">The different geometries which were tested identified the negative effects of spanwise vane contouring on the diffuser performance and the ability of endwall divergence to augment the pressure recovery performance of a design at the expense of increased losses. A full understanding of the effect of each design parameter is enabled by iterative inclusion or exclusion of certain design parameters. Furthermore, the use of computational fluid dynamics showed that the BSLEARSM turbulence model performs reasonably well in predicting the build-to-build performance trends. However, neither the BSLEARSM nor the SST turbulence model were able to accurately identify performance trends for the deswirl. For this reason, additional work is warranted to identify an optimal set of parameters to characterize the high axial and meridional turning present in this component.</p>
|
47 |
Návrh malého proudového motoru do 1kN tahu / Design of small jet engine to 1kN thrustGongol, Jakub January 2013 (has links)
This work will be focused on issue of a jet engine. The thesis will be divided into search retrieval part and computational part. In the search retrieval part it will focus on different configurations of jet engines as well as areas of their use. The main part of the thesis will however focus on a calculations where a turbine, compressor and an exhaust nozzle will be designed in order to give a thrust of approximately 1kN. Next step will be determination of an engine charcteristic that will give us a preview on how the engine performance will look like in off-design modes.
|
48 |
Stability Enhancement in Aeroengine Centrifugal Compressors using Diffuser Recirculation ChannelsMark Yuriy Shapochka (13272837) 22 August 2022 (has links)
<p>The objective of this research was to develop stability enhancing design features for aeroengine centrifugal compressors. The motivation for this research is based on climate change and fuel-efficiency concerns, which call for improvements in achievable pressure ratios and surge margins. Specifically, this research aimed to develop diffuser recirculation channels and provide more insight into their design space. These channels are passive casing treatments in the diffuser and have been successfully demonstrated to improve stage surge margin. Diffuser recirculation channels are secondary flow paths that connect an opening near the diffuser inlet to one further down in the passage. Flow is recirculated by relieving the static pressure differential between the two openings. The basic design concept of these features is to add blockage upstream of the diffuser inlet, reducing the amount of diffusion in the vaneless space. In addition, channel geometries can be optimized to specifically target adverse flow properties, such as high incidence on the diffuser vane leading edge.</p>
<p><br></p>
<p>This design development was purely computational and served as the first approach to implementation of these features in a future generation of the Centrifugal Stage for Aerodynamic Research (CSTAR) at the Purdue Compressor Research Lab. Design development consisted of a computational design study, which quantified the effects of changing diffuser recirculation channel geometries on stage stability and performance metrics. Moreover, the CFD model for this future configuration of CSTAR was created and served as the baseline comparison for design iterations. The design study was comprised of controlled variation of channel geometry parameters and iterative solving of those cases in unsteady full stage single passage CFD models. Further design optimization studies were completed on specific down-selected recirculation channel geometry configurations. In total, 16 unsteady CFD cases with varied geometry configurations and 43 steady models were solved. Once a final optimized design was confirmed, a pressure characteristic at 100 % corrected design speed was generated. Compared to the baseline speed line, the implementation of diffuser recirculation channels resulted in a more gradual numerical surge and apparent numerical surge margin enhancement. Furthermore, the variation in incidence at the diffuser vane leading edge near the shroud was significantly reduced with diffuser recirculation. For the baseline compressor, incidence grew by about 70 degrees from the design aerodynamic loading to numerical surge at that location. However, flow stabilization due to diffuser 16 recirculation resulted in a change of approximately 2 degrees through that range. In conclusion, a first approach design recommendation for diffuser recirculation channels is CSTAR was generated through computational studies. Using this recommendation, diffusers with this recirculation channel design can be manufactured and tested for experimental concept validation. </p>
|
49 |
<b>Redefining Critical Angle of Inlet Distortion for Centrifugal Compressors</b>Evan Henry Bond (12455190) 27 January 2025 (has links)
<p dir="ltr">With increasing demand for reduced carbon emissions and increased fuel costs, novel aircraft designs are being developed that reduce the wetted area of the aircraft leading to complex inlet installations for engine integrations. With this, an understanding of the effects of inlet distortion on the compression system is paramount. One key parameter that defines the response of the compression system to inlet distortions is that of the critical angle of distortion. This is the circumferential angle that a distortion must occupy before performance and stability of the compression system is changed. This effort investigates the mechanism by which the critical angle of distortion alters the performance and stability of a high-speed centrifugal compressor. With this, a more accurate estimate of the critical angle of distortion for compressors is developed that allows for characterization of this angle without the need for copious simulations and experimental test campaigns. This investigation was driven by computational fluid dynamic simulations that were utilized to determine the critical angle of inlet distortion. Once this was understood, inlet distortion screens were designed via use of porous inlet-only CFD models to generate similar distortion profiles to those used in the CFD campaign. Finally, these screens were tested and the distortion profiles of the screens investigated along with the performance and stability changes of the compressor due to increasing distortion extents.</p><p dir="ltr">To determine the critical angle of distortion for the centrifugal compressor investigated, a computational fluid dynamics study of the compressor was conducted. In this effort, pure once-per-rev total pressure distortions were delivered to the compression system with the extent varied in terms of number of impeller main blade pitches. The effects of this on performance and machine static pressure rise characteristics was analyzed. These simulations were conducted using a full-annulus transient model to allow for distortion propagation through the passages to be as realistic as possible. The critical angle of distortion of the compressor was found to correspond to 4.5 pitches (or 95.3°) as at this point the compressor efficiency and total pressure ratio were exponentially deteriorated for any increase in distortion extent.</p><p dir="ltr">With knowledge of the critical angle, an understanding of the mechanism by which this alters performance was presented in terms of reduced frequency. Advective, acoustic, and relative acoustic definitions of reduced frequency were analyzed to determine which correlated best with physical flow disturbances from the inlet distortion propagation through the impeller passage. Furthermore, rothalpy was investigated as a tool to track distortion through the passage as it is maintained along a streamline but contains information of the relative frame temporal pressure gradient due to disturbances in the absolute frame. Utilizing distortion tracking and reduced frequencies, the critical angle of inlet distortion was found to correlate with the acoustic reduced frequency. For acoustic reduced frequencies below unity, the compressor performance was degraded.</p><p dir="ltr">With an understanding of the critical extent, inlet-only simulations were conducted to generate designs of total pressure screens to precipitate similar total pressure distortion profiles to the compressor for a design of experiment. These designs were evaluated experimentally using rotatable inlet rakes upstream of the compressor. A comparison between the experimental and CFD data for these distortion profiles showed discrepancies, which were investigated. The findings from this allowed an outline of best practices for future design work for generating total pressure distortion profiles using porous inlet-only models for design of experimental testing of inlet distortion related effects.</p><p dir="ltr">Finally, the centrifugal compressor’s response to the designed inlet distortion screens was analyzed. The compressor was mapped from choke to surge at 80%, 90%, and 100% speed. These corresponded to subsonic, transonic, and supersonic inlet relative Mach numbers for the impeller. The compressor was found to be sensitive above the critical distortion extent with efficiency and stage total pressure ratio degraded. Surge margin was enhanced by use of the screens at 100% speed, but severely degraded at 80% and this was found to correlate with the work characteristic slope. The typical understanding of a more negative work characteristic slope being a more stable operating condition for the compressor was found to be untrue for the distortion screens tested. The compressor entered instability at the same value of work coefficient for all distortion conditions, which lead to a more positive slope of the work characteristic allowing for a wider operating range in terms of flow coefficient.</p>
|
Page generated in 0.0824 seconds