• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 22
  • 15
  • 12
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 185
  • 185
  • 56
  • 35
  • 29
  • 26
  • 25
  • 22
  • 22
  • 21
  • 21
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Chemically Modified Oligonucleotides: Synthesis, Physicochemical and Biochemical Properties of their Duplexes with DNA and RNA

Pradeepkumar, Pushpangadan Indira January 2004 (has links)
This thesis is based on 9 papers dealing with the synthesis, physicochemical and biochemical properties of two types of chemically modified oligonucleotides which have the potential to down-regulate gene expression: (i) The first set is comprised of antisense oligonucleotides (AONs) conjugated with different chromophores of varying size, charge and π-electron density. Conjugation of the chromophores at the 3'- or 5'-end enhanced the target RNA binding affinity and RNase H recruitment capabilities compared to the native counterpart without changing the global helical conformation of their AON/RNA hybrid duplexes. The 3'-dipyridophenazine (DPPZ) has emerged as the most promising non-toxic chromophore in this series. (ii) The second set encompasses a new class of AONs containing North-East conformationally constrained 1',2'-oxetane-nucleosides. The introduction of oxetane-<b>T</b> and -<b>C</b> units imparts lowering of the Tm by ~ 6º and ~ 3 ºC/modification, respectively, of the AON/RNA hybrids, whereas the incorporation of the corresponding oxetane-<b>A</b> and-<b>G</b> units into AONs did not alter the thermostability in comparison with that of the native hybrid duplex. The oxetane-modified AONs have been found to possess enhanced serum stability compared to that of the native, whereas oxetane-<b>T</b> and -<b>C</b> containing AONs were more endonuclease-resistant than oxetane-<b>A</b> and-<b>G</b> modified AONs. All oxetane-modified mixmer AON/ RNA hybrid duplexes were, however, found to be excellent substrates for RNase H cleavage, which has been analyzed by Michaelis-Menten kinetics. The oxetane-modified mixmer AONs have shown effective down-regulation of the proto-oncogene c-myb mRNA in the K562 human leukemia cells, which was analyzed by QRT-PCR and Western Blot. Based on the amount of AON uptake after delivery, determined by slot blot, it was apparent that the oxetane-modified AONs are 5-6 times more effective antisense agents than the corresponding isosequential phosphorothioate analogues. The electrochemical assay based on sensitive nucleic acid mediated charge transport (CT) has revealed that the presence of oxetane-<b>T</b> unit causes more stacking perturbations in a DNA/DNA duplex than in a DNA/RNA duplex.
112

Studies of Charge Transport and Energy Level in Solar Cells Based on Polymer/Fullerene Bulk Heterojunction

Gadisa, Abay January 2006 (has links)
π-Conjugated polymers have attracted considerable attention since they are potential candidates for various opto-electronic devices such as solar cells, light emitting iodes, photodiodes, and transistors. Electronic de vices based on conjugated polymers can be easily processed at low temperature using inexpensive technologies. This leads to cost reduction, a key-deriving factor for choosing conjugated polymers for various types of applications. In particular, polymer based solar cells are of special interest due to the fact that they can play a major role in generating clean and cheap energy in the future. The investigations described in thesis are aimed mainly at understanding charge transport and the role of energy le vels in solar cells based on polymer/acceptor bulk heterojunction (BHJ) active films. Best polymer based solar cells, with efficiency 4 to 5%, rely on polymer/fullerene BHJ active films. These solar cells are in an immature state to be used for energy conversion purposes. In order to enhance their performance, it is quite important to understand the efficiency-limiting factors. Solid films of conjugated polymers compose conjugation segments that are randomly distributed in space and energy. Such distributio n gives rise to the localization of charge carriers and hence broadening of electron density of states. Consequently, electronic wave functions have quite poor overlap resulting into absence of continuous band transport. Charge transport in polymers and organic materials, in general, takes place by hopping among the localized states. This makes a bottleneck to the performance of polymer-based solar cells. In this context, the knowledge of charge transport in the solar cell materials is quite important to develop materials and device architectures that boost the efficiency of such solar cells. Most of the transport studies are based on polyfluorene copolymers and fullerene electron acceptor molecules. Fullerenes are blended with polymers to enhance the dissociation of excited state into free carriers and transport free electrons to the respective electrode. The interaction within the polymer-fullerene complex, therefore, plays a major role in the generation and transport of both electrons and holes. In this thesis, we present and discuss the effect of various polymer/fullerene compositions on hole percolation paths. We mainly focus on hole transport since its mobility is quite small as compared to electron mobility in the fullerenes, leading to creation of spa ce charges within the bulk of the solar cell composite. Changing a polymer band gap may necessitate an appropriate acceptor type in order to fulfill the need for sufficient driving force for dissociation of photogenerated electron-hole pairs. We have observed that different acceptor types give rise to completely different hole mobility in BHJ films. The change of hole transport as a function of acceptor type and concentration is mainly attributed to morphological changes. The effect of the acceptors in connection to hole transport is also discussed. The later is supported by studies of bipolar transport in pure electron acceptor layers. Moreover, the link between charge carrier mobility and photovoltaic parameters has also been studied and presented in this thesis. The efficiency of polymer/fullerene-based solar cells is also significantly limited by its open-circuit voltage (Voc), a parameter that does not obey the metal-insulator-metal principle due to its complicated characteristics. In this thesis, we address the effect of varying polymer oxidation potential on Voc of the polymer/fullerene BHJ based solar cells. Systematic investigations have been performed on solar cells that comprise several polythiophene polymers blended with a fullerene derivative electron acceptor molecule. The Voc of such solar cells was found to have a strong correlation with the oxidation potential of the polymers. The upper limit to Voc of the aforementioned solar cells is thermodynamically limited by the net internal electric filed generated by the difference in energy levels of the two materials in the blend. The cost of polymer-based solar cells can be reduced to a great extent through realization of all-plastic and flexible solar cells. This demands the replacement of the metallic components (electrodes) by highly conducting polymer films. While hole conductor polymers are available, low work function polymer electron conductors are rare. In this thesis, prototype solar cells that utilizes a highly conducting polymer, which has a work function of ~ 4.3 eV, as a cathode are demonstrated. Development of this material may eventually lead to fabrication of large area, flexible and cheap solar cells. The transparent nature of the polymer cathode may also facilitate fabrication of multi-layer and tandem solar cells. In the last chapter of this thesis, we demonstrate generation of red and near infrared polarized light by employing thermally converted thin films of polyfluorene copolymers in light emitting diodes. This study, in particular, aims at fabricating polarized infrared light emitting devices. / On the day of the defence day the status of article III was In press and article VI was Manuscript.
113

Determination via computational modeling of the structure-properties relationships in intercalated polymer:fullerene blends found in bulk-heterojunction solar cells

Cho, Eunkyung 13 November 2012 (has links)
In bulk-heterojunction solar cells, device performance is influenced by both the intrinsic properties of the individual components - typically conjugated polymers and fullerene derivatives - and how they assemble and interact at their interface. The ability of fullerene to intercalate within the side-chains of a conjugated polymer can significantly affect the microstructure and overall device performance. Here, a series of computational chemistry approaches are applied to investigate the relationships between structure and property in intercalated polymer:fullerene blend. Using a combination of molecular mechanics (MM) calculation and simulations of 2D grazing incidence X-ray diffraction (GIXD) patterns, we have determined the molecular packing configuration of poly (2,5-bis (3-tetradecyl thiophene-2-yl) thieno[3,2-b]thiophene) (PBTTT-C₁₄) and a blend of PBTTT-C₁₄ and [6,6]-phenyl-C₇₁-butyric acid methyl ester (PC₇₁BM). Based on the confirmed packing structures, the electronic properties and morphological disorder were examined using density functional theory (DFT) and molecular dynamics (MD) calculations, respectively; we also investigated the intermolecular interaction energies behind the structure formation. Finally, we examined the vibrational, redox, and optical properties of the pristine polymer and a series of fullerene derivatives to understand the characteristic modes related to the various charged states of the systems.
114

Oxidative Damage in DNA: an Exploration of Various DNA Structures

Ndlebe, Thabisile S. 17 May 2006 (has links)
Research efforts to determine the causes, effects and locations of mutations within the human genome have been widely pursued due to their role in the development of various diseases. The main cause of mutations in vivo is oxidative damage to DNA via oxidants and free radical species. Numerous studies have been performed in vitro to determine how oxidative damage is induced in DNA. Most of these in vitro studies require photosensitizers to initiate the oxidative damage through various mechanisms. For the purposes of this research, all the photosensitizers that were used initiated oxidative damage in DNA through the electron transfer mechanism. In the charge transport studies, an anthraquinone photosensitizer was covalently linked to the 5 end of DNA by a short carbon tether in order to determine the pattern of damage induced along the length of the DNA. Anthraquinone preferentially damages guanine bases. Our first work sought to determine the effects of charge transport through guanine rich quadruplex DNA dimers. The dimers were formed by the combination of two hairpins with duplex overhangs extending beyond the quadruplex region. This enabled the optimal comparison of the effects of charge transport between duplex and quadruplex DNA structures. Another area of research we pursued in this area was to determine the effects of charge transport in M-DNA (a novel DNA conformation that was reported to form in the presence of zinc ions at a pH above 8). Earlier work on M-DNA suggested that it behaved like a molecular wire. Our research attempted to determine the effects of charge transport on this structure in order to show the behavior of a DNA molecular wire as compared to the standard studies performed in this area on normal B-DNA structures. Lastly, in collaboration with Dr. Ramaiah and colleagues we designed some viologen linked acridine photosensitizers which were tested for any ability to cleave GGG bulges. In preliminary studies, these viologen linked acridine derivatives showed preferential cleavage for guanine bases. They were not covalently bound to DNA, although they could potentially form non covalent interactions with DNA such as intercalation and/or groove binding. Our overall research goal was to determine the extent and overall effect of oxidative damage (using different photosensitizers) on the various DNA structures mentioned above.
115

Contributions aux propriétés de transport d'un système à N Corps / Contributions to the transport properties of many body systems

Silva, Fernanda Deus da 11 March 2015 (has links)
Nous étudions plusieurs problémes reliés aux propriétés de transport dans les systèmes corrélés. La thèse contient 3 parties distinctes, chacune d'entre elles décrivant un aspect particulier. Nous avons obtenu dans chacun des cas des résultats qui permettent une meilleure compréhension du transport. Nous étudions l'effet de la dissipation et d'une perturbation extérieure dépendant du temps sur le diagramme de phases d'un systèmes à N corps à température nulle et à température finie. En présence de perturbation dépendant du temps, la dissipation joue un rôle important dans l'évolution vers un état stable indépendant du temps. Nous utilisons le formalisme de Keldysh dans l'approximation adiabatique qui permet d'étudier le diagramme de phases du système en fonction de parameter et de la température. Dans la 2ième partie, nous étudions un concept important pour la physique des systèmes métalliques à plusieurs bandes, le concept d'hybridation, et la façon dont l'hybridation affecte la supraconductivité du métal. De façon générale, une hybridation dépendante ou non du vecteur d'onde k a tendance à détruire la supraconductivité. Nous montrons dans ce chapitre qu'une hybridation antisymétrique a l'effet inverse et renforce la supraconductivité. Nous montrons que si l'hybridation est antisymétrique, la supraconductivité a des propriétés non-triviales. Nous proposons que dans un tel système, il puisse exister des fermions de Majorana, même en l'absence de couplage spin-orbite. Le dernier chapitre de la thèse porte sur les effets du couplage spin-orbite sur le transport dans les nanostructures magnétiques. Dans les nanostructures, le couplage spin-orbite joue un rôle important en raison de la brisure de symmétrie à la surface ou aux interfaces. En particulier, nous étudions l'effet de l'interaction Dzyaloshinskii-Moriya (DM) sur le transport de spin dans un système tri-couche. Nous montrons qu'il existe une interaction DM entre les moments des couches et les électrons de conduction, et l'influence de cette interaction sur le transport est étudiée dans un modèle simplifié ou chaque couche est représentée par un point. / We study some important problems related to the transport properties of many body systems. It is divided in three parts, each one focusing in a specific topic. We obtain relevant results that improve our understanding of these systems. We investigate the effect of dissipation and time-dependent external sources, in the phase diagram of a many body system at zero and finite temperature. In the presence of time-dependent perturbations, dissipation is essential for the system to attain a steady, time independent state. In order to treat this time dependent problem, we use a Keldysh approach within an adiabatic approximation that allows us to study the phase diagram of this system as a function of the parameters of the system and temperature. We also discuss the nature of the quantum phase transitions of the system. Next, we study an important concept in the physics of metallic multi-band systems, that of hybridization, and how it affects the superconducting properties of a material. A constant or symmetric $k$-dependent hybridization in general act in detriment of superconductivity. We show here that when hybridization between orbitals in different sites assumes an anti-symmetric character having odd-parity it {it{enhances}} superconductivity. The antisymmetric hybridization in a problem study in this thesis (present in Chapter 3) allow us to propose a new system where it is possible to investigate Majorana fermions, even in absence of spin-orbit interactions. In the last part of this thesis we study the effect of spin-orbit coupling (SOC) on transport properties in magnetic nanostructures. In this system SOC plays an important role, because surfaces (or interfaces) introduce symmetry breaking which is a source of spin-orbit interaction. We study the role of Dzyaloshinshkii-Moriya (DM) interaction on spin-transport in a 3 layer system. We show that there is a DM interaction between magnetics ions in the layers and spin of conduction electrons. We study the influence of this DM interaction on transport within a simple model where each layer is represented by a point.
116

Oxygen gain analysis for polymer electrolyte membrane fuel cells

O'neil, Kevin Paul 08 February 2012 (has links)
Oxygen gain is the difference in fuel cell performance operating on oxygen-depleted and oxygen-rich cathode fuel streams. Oxygen gain experiments provide insight into the degree of oxygen mass-transport resistance within a fuel cell. By taking these measurements under different operating conditions, or over time, one can determine how oxygen mass transport varies with operating modes and/or aging. This paper provides techniques to differentiate between mass-transport resistance within the catalyst layer and within the gas-diffusion medium for a polymer-electrolyte membrane fuel cell. Two extreme cases are treated in which all mass transfer limitations are located only (i) within the catalyst layer or (ii) outside the catalyst layer in the gas diffusion medium. These two limiting cases are treated using a relatively simple model of the cathode potential and common oxygen gain experimental techniques. This analysis demonstrates decisively different oxygen gain behavior for the two limiting cases. For catalyst layer mass transfer resistance alone, oxygen gain values are limited to a finite range of values. However, for gas diffusion layer mass transfer resistance alone, the oxygen gain is not confined to a finite range of values. This analysis is then extended to evaluate ionic effects within the catalyst layer. / text
117

Étude du transport de charges dans les cristaux moléculaires à partir des bandes d'énergie

Tardif, Benjamin January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
118

Étude et optimisation de l'absorption optique et du transport électronique dans les cellules photovoltaïques à base de nanofils / Study and optimization of the optical absorptance and electrical transport in photovoltaic nanowire based solar cells

Michallon, Jérôme 26 January 2015 (has links)
La conversion photovoltaïque est un procédé très attractif pour la fourniture d’énergie propre et renouvelable. Cette filière est en plein essor grâce à une réduction constante des coûts de revient et des politiques incitatives de nombreux pays. Pourtant, l’ensemble des panneaux photovoltaïques installés ne produit qu’une faible part de la consommation mondiale en électricité. Les récents développements technologiques dans l’industrie photovoltaïque se sont surtout concentrés sur les cellules dites de seconde génération, à savoir les couches minces à base de CIGS, CdTe, a-Si, a-SiGe. Cette filière permet la fourniture d’électricité à coût inférieur à la technologie standard silicium, mais les rendements de conversion demeurent encore faibles, ce qui nécessite de larges surfaces disponibles. Il est à noter notamment que les cellules couches minces à base de matériaux semiconducteurs à gap direct comme le CIGS et le CdTe sont en plein essor puisqu’ils profitent en particulier d’une absorption accrue par rapport au silicium ; toutefois, ces matériaux sont présents en quantité limitée à la surface de la planète (In, Te). Dans ce contexte, les cellules à base de nanofils constituent une solution intéressante aux problèmes de l’absorption de la lumière, du transport et de la séparation des porteurs de charge photo-générés mais aussi de la quantité de matière utilisée. En effet, en utilisant une jonction radiale (i.e. entourant le nanofil), il est possible de séparer l’absorption de la lumière ( liée notamment à la longueur du nanofil) de la collecte des porteurs de charge (qui dépend du diamètre des nanofils). L’intérêt de ces structures réside également dans les propriétés de base des nanofils : la relaxation élastique favorable sur leur surface latérale ouvre le champ au dépôt de nanofils par hétéro-épitaxie sur tout type de substrat alors que la faible densité de défauts étendus en leur sein est propice à un transport efficace des porteurs de charges. Ainsi, la possibilité de réaliser des nanofils sur substrat souple en réduisant de manière importante la quantité de matière utilisée par rapport à une cellule en silicium cristallin massif peut être envisagée. Plusieurs laboratoires grenoblois ont déjà une expertise dans le domaine de la croissance des nanofils. Cette thèse a pour but de réaliser une analyse expérimentale approfondie des propriétés optoélectroniques des nanofils (par des mesures de réflectivité, de durée de vie des porteurs minoritaires et de recombinaisons en surface et aux interfaces) combinée à des simulations optiques (de type RCWA ou FDTD) et électriques (TCAD). L’objectif ultime étant de concevoir et de développer des cellules à base de nanofils de silicium et de ZnO/CdTe. Des démonstrateurs seront réalisés sur la base des simulations électro-optiques. Pour cela, les moyens d’élaboration, de caractérisation et de technologie des différents laboratoires et entités, ainsi que les compétences associées, seront mis en commun pour accompagner les travaux du doctorant. / Photovoltaic energy is a very attractive way to produce renewable energy. The current increase in the photovoltaic energy production mainly takes advantage of the continuous decrease in the solar cell cost as well as to incentive policy. However, installed photovoltaic panels only contribute to a very small part of the global electricity production. Therefore, important technological developments are dedicated to the second generation of solar cells (i.e. thin film solar cells) in order to reduce more their manufacturing cost despite the resulting lower conversion efficiency owing to a weaker structural and optical material quality. One alternative way to increase the solar cell efficiency is to fabricate nanowire-based solar cells since they may benefit from a higher light absorption and carrier collection efficiency. The light absorption is actually increased thanks to the high surface/volume ratio of nanowires but also to light trapping related to the nanowire length. Furthermore, the collection of minority charge carriers is more efficient in radial structures (i.e. core-shell structures) since the nanowire diameter is very small. This PhD thesis aims at investigating the optoelectronic properties of silicon and ZnO/CdTe nanowires (absorption, lifetime of minority charge carriers, bulk and surface recombination…) in order to design an optimised nanowire-based solar cell structure. Electromagnetic simulations will be first performed to define the best nanowire geometry for the absorbance, and then compared to experimental measurements of the absorption coefficient. Electrical characterisations (lifetime measurements, surface recombination…) will be also achieved to analyse the structural quality and to simulate the solar cell electrical properties. Some prototypes of optimised solar cells will eventually be fabricated.
119

Elementary processes in layers of electron transporting Donor-acceptor copolymers : investigation of charge transport and application to organic solar cells

Schubert, Marcel January 2014 (has links)
Donor-acceptor (D-A) copolymers have revolutionized the field of organic electronics over the last decade. Comprised of a electron rich and an electron deficient molecular unit, these copolymers facilitate the systematic modification of the material's optoelectronic properties. The ability to tune the optical band gap and to optimize the molecular frontier orbitals as well as the manifold of structural sites that enable chemical modifications has created a tremendous variety of copolymer structures. Today, these materials reach or even exceed the performance of amorphous inorganic semiconductors. Most impressively, the charge carrier mobility of D-A copolymers has been pushed to the technologically important value of 10 cm^{2}V^{-1}s^{-1}. Furthermore, owed to their enormous variability they are the material of choice for the donor component in organic solar cells, which have recently surpassed the efficiency threshold of 10%. Because of the great number of available D-A copolymers and due to their fast chemical evolution, there is a significant lack of understanding of the fundamental physical properties of these materials. Furthermore, the complex chemical and electronic structure of D-A copolymers in combination with their semi-crystalline morphology impede a straightforward identification of the microscopic origin of their superior performance. In this thesis, two aspects of prototype D-A copolymers were analysed. These are the investigation of electron transport in several copolymers and the application of low band gap copolymers as acceptor component in organic solar cells. In the first part, the investigation of a series of chemically modified fluorene-based copolymers is presented. The charge carrier mobility varies strongly between the different derivatives, although only moderate structural changes on the copolymers structure were made. Furthermore, rather unusual photocurrent transients were observed for one of the copolymers. Numerical simulations of the experimental results reveal that this behavior arises from a severe trapping of electrons in an exponential distribution of trap states. Based on the comparison of simulation and experiment, the general impact of charge carrier trapping on the shape of photo-CELIV and time-of-flight transients is discussed. In addition, the high performance naphthalenediimide (NDI)-based copolymer P(NDI2OD-T2) was characterized. It is shown that the copolymer posses one of the highest electron mobilities reported so far, which makes it attractive to be used as the electron accepting component in organic photovoltaic cells.par Solar cells were prepared from two NDI-containing copolymers, blended with the hole transporting polymer P3HT. I demonstrate that the use of appropriate, high boiling point solvents can significantly increase the power conversion efficiency of these devices. Spectroscopic studies reveal that the pre-aggregation of the copolymers is suppressed in these solvents, which has a strong impact on the blend morphology. Finally, a systematic study of P3HT:P(NDI2OD-T2) blends is presented, which quantifies the processes that limit the efficiency of devices. The major loss channel for excited states was determined by transient and steady state spectroscopic investigations: the majority of initially generated electron-hole pairs is annihilated by an ultrafast geminate recombination process. Furthermore, exciton self-trapping in P(NDI2OD-T2) domains account for an additional reduction of the efficiency. The correlation of the photocurrent to microscopic morphology parameters was used to disclose the factors that limit the charge generation efficiency. Our results suggest that the orientation of the donor and acceptor crystallites relative to each other represents the main factor that determines the free charge carrier yield in this material system. This provides an explanation for the overall low efficiencies that are generally observed in all-polymer solar cells. / Donator-Akzeptor (D-A) Copolymere haben das Feld der organischen Elektronik revolutioniert. Bestehend aus einer elektronen-reichen und einer elektronen-armen molekularen Einheit,ermöglichen diese Polymere die systematische Anpassung ihrer optischen und elektronischen Eigenschaften. Zu diesen zählen insbesondere die optische Bandlücke und die Lage der Energiezustände. Dabei lassen sie sich sehr vielseitig chemisch modifizieren, was zu einer imensen Anzahl an unterschiedlichen Polymerstrukturen geführt hat. Dies hat entscheidend dazu beigetragen, dass D-A-Copolymere heute in Bezug auf ihren Ladungstransport die Effizienz von anorganischen Halbleitern erreichen oder bereits übetreffen. Des Weiteren lassen sich diese Materialien auch hervorragend in Organischen Solarzellen verwenden, welche jüngst eine Effizienz von über 10% überschritten haben. Als Folge der beträchtlichen Anzahl an unterschiedlichen D-A-Copolymeren konnte das physikalische Verständnis ihrer Eigenschaften bisher nicht mit dieser rasanten Entwicklung Schritt halten. Dies liegt nicht zuletzt an der komplexen chemischen und mikroskopischen Struktur im Film, in welchem die Polymere in einem teil-kristallinen Zustand vorliegen. Um ein besseres Verständnis der grundlegenden Funktionsweise zu erlangen, habe ich in meiner Arbeit sowohl den Ladungstransport als auch die photovoltaischen Eigenschaften einer Reihe von prototypischen, elektronen-transportierenden D-A Copolymeren beleuchtet. Im ersten Teil wurden Copolymere mit geringfügigen chemischen Variationen untersucht. Diese Variationen führen zu einer starken Änderung des Ladungstransportverhaltens. Besonders auffällig waren hier die Ergebnisse eines Polymers, welches sehr ungewöhnliche transiente Strom-Charakteristiken zeigte. Die nähere Untersuchung ergab, dass in diesem Material elektrisch aktive Fallenzustände existieren. Dieser Effekt wurde dann benutzt um den Einfluss solcher Fallen auf transiente Messung im Allgemeinen zu beschreiben. Zusätzlich wurde der Elektronentransport in einem neuartigen Copolymer untersucht, welche die bis dato größte gemesse Elektronenmobilität für konjugierte Polymere zeigte. Darauf basierend wurde versucht, die neuartigen Copolymere als Akzeptoren in Organischen Solarzellen zu implementieren. Die Optimierung dieser Zellen erwies sich jedoch als schwierig, konnte aber erreicht werden, indem die Lösungseigenschaften der Copolymere untersucht und systematisch gesteuert wurden. Im Weiteren werden umfangreiche Untersuchungen zu den relevanten Verlustprozessen gezeigt. Besonders hervorzuheben ist hier die Beobachtung, dass hohe Effizienzen nur bei einer coplanaren Packung der Donator/Akzeptor-Kristalle erreicht werden können. Diese Struktureigenschaft wird hier zum ersten Mal beschrieben und stellt einen wichtigen Erkenntnisgewinn zum Verständnis von Polymersolarzellen dar.
120

Charge transport limits and electrical dopant activation in transparent conductive (Al,Ga):ZnO and Nb:TiO2 thin films prepared by reactive magnetron sputtering

Cornelius, Steffen 01 December 2014 (has links) (PDF)
Transparent conductive oxides (TCOs) are key functional materials in existing and future electro-optical devices in the fields of energy efficiency, energy generation and information technology. The main application of TCOs is as thin films transparent electrodes where a combination of maximum electrical conductivity and transmittance in the visible to nearinfrared spectral range is required. However, due to the interdependence of the optical properties and the free electron density and mobility, respectively, these requirements cannot be achieved simultaneously in degenerately doped wide band-gap oxide semiconductors. Therefore, a detailed understanding of the mechanisms governing the generation of free charge carriers by extrinsic doping and the charge transport in these materials is essential for further development of high performance TCOs and corresponding deposition methods. The present work is aimed at a comprehensive investigation of the electrical, optical and structural properties as well as the elemental composition of (Al,Ga) doped ZnO and Nb doped TiO2 thin films prepared by pulsed DC reactive magnetron sputtering. The evolution of the film properties is studied in dependence of various deposition parameters through a combination of characterization techniques including Hall-effect, spectroscopic ellipsometry, spectral photometry, X-ray diffraction, X-ray near edge absorption, Rutherford backscattering spectrometry and particle induced X-ray emission. This approach resulted in the development of an alternative process control method based on the material specific current-voltage pressure characteristics of the reactive magnetron discharge which allows to precisely control the oxygen deficiency of the sputter deposited films. Based on the experimental data, models have been established that describe the room temperature charge transport properties and the dielectric function of the obtained ZnO and TiO2 based transparent conductors. On the one hand, these findings allow the prediction of material specific electron mobility limits by identifying the dominating charge carrier scattering mechanisms. On the other hand, new insight is gained into the origin of the observed transition from highly conductive to electrically insulating ZnO layers upon the incorporation of increasing concentrations of Al at elevated growth temperatures. Moreover, the Al and Ga dopant activation in ZnO have been quantified systematically for a wide range of Al concentrations and deposition conditions. A direct comparison of the Ga and Al doping efficiency demonstrates that Ga is a more efficient electron donor in ZnO. Further, it has been shown that high free electron mobilities in polycrystalline and epitaxial Nb:TiO2 layers can be achieved by reactive magnetron sputtering of TiNb alloy targets. The suppression of rutile phase formation and the control of the Nb dopant activation by fine tuning the oxygen deficiency have been identified as crucial for the growth of high quality TiO2 based TCO layers.

Page generated in 0.1019 seconds