• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 8
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 111
  • 29
  • 27
  • 26
  • 24
  • 22
  • 22
  • 18
  • 16
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Carbon nanotubes developed on ceramic constituents through chemical vapour deposition

Liu, JingJing January 2012 (has links)
Carbon nanotubes (CNTs) were successfully grown on the surface of carbon fibre reinforcements in carbon fibre architecture through in-situ catalytic chemical vapour deposition (CCVD). Success was also implemented on powders of oxides and non-oxides, including Y-TZP powder, ball milled alumina powder, alumina grits, silicon carbide powder. Preliminary results have been achieved to demonstrate the feasibility of making ceramic composites consisting of CNTs reinforcements.
82

Synthesis of strongly correlated oxides and investigation of their electrical and optical properties / Synthèse des oxydes fortement corrélés et recherche de leurs propriétés électroniques et optiques

Channam, Venkat Sunil Kumar 14 September 2017 (has links)
Les oxydes fortement corrélés sont largement étudiés pour l'hôte d'applications uniques, telles que la supraconductivité à haute température, la magnéto-résistance colossale, les commandes exotiques magnétiques, chargées et orbitales et les transitions isolant-métal. Les oxydes métalliques de transition qui forment la majorité des systèmes d'oxydes corrélés et des oxydes de vanadium, en particulier VO2 et V2O5, sont les deux systèmes les plus préférés parmi les chercheurs pour plusieurs applications. Dans cette thèse, la croissance et la caractérisation de VO2 et V2O5 sont discutées avec un accent particulier sur la propriété optique, en particulier les propriétés thermochromiques. Traditionnellement, le comportement SMT et l'infrarouge reflètent la zone de focalisation pour la recherche VO2 et c'est seulement jusqu'à récemment que la VO2 est traitée comme un système beaucoup plus complexe et a été étudiée comme un métamatériel naturellement désordonné très réactif près de la température de transition de phase où le matériau présente des matériaux semi-conducteurs et métalliques Coexistence de phase. Étant donné que chaque phase de VO2 a des propriétés optiques et électriques distinctes, elle contrôle l'étendue des transitions de phase par une modulation de température précise, permet d'exploiter le matériau pour de nouvelles propriétés, comme la modulation d'émissivité dans la région NIR et pour la création de motifs IR réversibles et réinscriptibles. Le V2O5 est traditionnellement considéré comme un matériau TCR élevé et considéré comme un matériau de choix pour une application allant de la catalyse, des capteurs de gaz aux batteries au lithium. Dans cette étude, nous nous concentrons sur les propriétés optiques du matériau, en particulier la nature thermochromique de la gamme visible des revêtements V2O5 synthétisés par recuit oxydatif des revêtements VOx développés par MOCVD. L'impact du dopage et de la production sélective de vacance d'oxygène sur la propriété thermochromique est discuté. / Strongly correlated oxides are studied widely for the host of unique applications, such as hightemperature superconductivity, colossal magneto resistance, exotic magnetic, charge and orbital ordering, and insulator-to-metal transitions. Transitional metal oxides which form the majority of the correlated oxide systems and oxides of Vanadium, especially VO2 and V2O5 are the two most favourite systems among researchers for several applications. In this thesis, the growth and characterization of VO2 and V2O5 are discussed along with a special focus on the optical property, especially thermochromic properties. Traditionally SMT behaviour and Infrared reflectively was the focus area for VO2 research, and its only until recently that VO2 is being treated as a much more complex system and investigated as highly responsive naturally disordered metamaterial near the phase transition temperature where the material exhibits semiconducting and metallic phase co-existence. Since each phase of VO2 has a distinct optical and electrical properties, controlling the extent of phase transitions by accurate temperature modulation, enables exploitation of the material for new properties like emissivity modulation in the NIR region and for creating IR visible reversible and rewritable patterns. V2O5 is traditionally seen as a high TCR material and regarded as material of choice for application ranging from catalysis, gas sensors to lithium batteries. In this study, however we focus on the optical properties of the material, especially the visible range thermochromic nature of V2O5 coatings synthesised by oxidative annealing of MOCVD grown VOx coatings. The impact of doping and selective oxygen vacancy generation on the thermochromic property are discussed.
83

Hot-wire chemical vapor deposition of silicon nitride thin films

Adams, Abdulghaaliq January 2013 (has links)
Magister Scientiae - MSc / Amorphous silicon nitride (a-SiN:H) thin films has a multitude of applications, stemming from the tunability of the material properties. Plasma enhanced chemical vapour deposition (PECVD) is the industrial workhorse for production of device quality a-SiN:H. However, this technique has drawbacks in terms of film quality, rooting from ion bombardment, which then results in undesirable oxidation. Hot wire chemical vapour deposition (HWCVD) has shown to be a viable competitor to its more costly counterpart, PECVD. A thin film produced by HWCVD lacks ion bombardment due to the deposition taking place in the absence of plasma. This study will focus on optimising the MVsystems ® HWCVD chamber at The University of the Western Cape, for production of device quality a-SiN:H thin films at low processing parameters. The effect of these parameters on the structural, optical and morphological properties was investigated, for reduction of production costs. The films were probed by heavy ion elastic recoil detection, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, Xray diffraction, and ultraviolet visible spectroscopy. It was shown that silicon rich, device quality a-SiN:H thin films could be produced by HWCVD at wire temperatures as low as 1400 °C and the films showed considerable resistance to oxidation in the bulk.
84

Optical properties of annealed hydrogenated amorphous silicon nitride (a-SiNx:H) thin films for photovoltaic application

Jacobs, Sulaiman January 2013 (has links)
Magister Scientiae - MSc / Technological advancement has created a market for large area electronics such as solar cells and thin film transistors (TFT’s). Such devices now play an important role in modern society. Various types of conducting, semiconducting and insulating thin films of the order of hundreds, or even tens of nanometres are combined in strata to form stacks to create interactions and phenomena that can be exploited and employed in these devices for the benefit of mankind. One such is for the generation of energy via photovoltaic devices that use thin film technology; these are known as second and third generation solar cells. Silicon and its alloys such as silicon germanium (SiGex), silicon oxide (SiOx), silicon carbide (SiCx) and silicon nitride (SiNx) play an important role in these devices due to the fact that each material in its different structures, whether amorphous, micro or nano-crystalline or completely crystalline, has its own range of unique optical, mechanical and electrical properties. These structures and their material properties can thus exert a huge influence over the overall device performance. viii Chemical vapour deposition (CVD) techniques are most widely used in industry to obtain thin films of silicon and silicon alloys. Source gases are decomposed by the external provision of energy thereby allowing for the growth of a thin solid film on a substrate. In this study a variant of CVD, namely Hot Wire Chemical Vapour Deposition (HWCVD) will be used to deposit thin films of silicon nitride by the decomposition of silane (SiH4), hydrogen (H2) and ammonia (NH3) on a hot tantalum filament (~1600 C). Hydrogenated amorphous silicon nitride (a-SiNx:H) has great potential for application in optoelectronic devices. In commercial solar cell production its potential for use as anti-reflection coatings are due to its intermediate refractive index combined with low light absorption. An additional benefit is the passivation of interface and crystal defects due to the bonded hydrogen. This can lead to better photon conversion efficiency. Its optical properties including optical band gap, Urbach tail, and wavelength-dependent optical constants such as absorption coefficient and refractive index are crucial for the design and application in the relevant optoelectronic device. The final firing step in the production of micro-crystalline silicon solar cells, allows hydrogen to effuse into the solar cell from the a-SiNx:H, and drives bulk passivation of the grain boundaries. We therefore propose the exploration of annealing effects on the thin film structure. The study undertakes a comparison of optical and bonding structure of the as deposited thin film compared to that of the annealed thin film which would have undergone changes due to high temperature annealing under vacuum. However, it is difficult to simultaneously obtain all of these important ix optical parameters for a-SiNx:H thin films. Ultraviolet visible (UV-vis) spectroscopy will be the method of choice to investigate the optical properties. Infrared (IR) spectroscopy is a source of useful information on the microstructure of the material. In particular, the local atomic bonding configurations involving Si, N, and H atoms in a-SiNx:H films can be obtained by Fourier Transform Infrared Spectroscopy (FTIR). Therefore, this study will attempt to establish a relationship between film microstructure of a-SiNx:H thin films and their macroscopic optical properties.
85

Development And Synthesis Of Metalorganic Complexes Of Zr, Hf, And Cr For Application To The CVD And Sol-Gel Synthesis Of Oxide Thin Films

Dharmaprakash, M S 07 1900 (has links) (PDF)
No description available.
86

Thermodynamics and Kinetics of Nucleation and Growth of Silicon Nanowires

Shakthivel, Dhayalan January 2014 (has links) (PDF)
Si nanowires have potential applications in a variety of technologies such as micro and nanoelectronics, sensors, electrodes and photovoltaic applications due to their size and specific surface area. Au particle-assisted vapour-liquid-solid or VLS growth method remains the dominant process for Si nanowire growth. A comprehensive kinetic model that addresses all experimental observations and provides a physico-chemical model of the VLS growth method is thus essential. The work done as part of this research is divided into two sections. A steady state kinetic model was first developed for the steady state growth rate of Si nanowires using SiCl4 and SiH4 as precursors. The steady state refers to a balance between the rates of injection and ejection of Si into the Au droplet. This balance results in a steady state supersaturation under which wire growth proceeds. In particular evaporation and reverse reaction of Si from the Au droplet and modes of crystal growth for wire growth have been considered in detail for the first time. The model is able to account for both, the radius independent and radius dependent growth rates reported in the literature. It also shows that the radius dependence previously attributed to purely thermodynamic considerations could also as well be explained just by steady state kinetics alone. Expressions have been derived for the steady state growth rate that require the desolvation energy, activation energy for precursor dissociation and supersaturation prevalent in the particle as inputs for calculation. In order to evaluate this model the incubation and growth of Si nanowires were studied on sapphire substrates in an indigenously built automated MOCVD reactor. Sapphire was chosen as the substrate, as opposed to Si which is commonly used, so as to ensure that the vapour phase is the only source of Si. A classical incubation period for nucleation, of the order of 4-8 minutes, was experimentally observed for the first time. Using the change in this incubation period with temperature a value of 15kT was determined to be the desolvation energy for growth using SiH4. The steady state growth rate of Si nanowires were measured and compared with the predictions of the model using the values of activation energies so determined. The thesis based on the current research work is organized as follows: Chapter 1 introduces the research area followed by a brief outline of the overall work Chapter 2 provides a summary of current literature, and puts the research described in this thesis in perspective. The diameter dependent growth rate of NWs which was initially solely attributed to the Gibbs-Thomson effect is first summarized. Experimental observations to the contrary are then highlighted. These contradictions provided the incentive for the research described in this thesis. Following a summary of the growth rate theories, the experimental observations on incubation available in the literature are summarized. All the other variants of the VLS method are also discussed. Chapter 3 describes the design, construction and working of an indigenously built semi- automated CVD reactor. This CVD reactor was used to conduct the Si NW growth experiments over sapphire substrates. Chapter 4 develops the physical chemistry model for Au catalyzed Si nanowire growth using SiCl4 and SiH4 precursors. The model originated from the contradictions present in the literature over the rate limiting step of the VLS growth mechanism and the steady state growth rate dependence on wire diameter. The development starts with explaining the thermodynamics of the steady state VLS process. The significance of the model lies in the detailed analysis of the all the atomistic process occurring during the VLS growth. In particular the evaporation and reverse reaction of Si from Au-Si droplet is explained in detail and possibly for the first time. Expressions for steady state growth rate by various modes, such as layer by layer growth (LL), by multilayer growth (ML) and growth by movement of a rough interface at the L-S growth interface are derived and presented. Chapter 5 discusses the results which emerge out the kinetic model from the previous chapter. Under a single framework of equations, the model is successful in explaining both the diameter independent and diameter dependent growth of NWs. As one of the major outcomes of the model, the growth rates of Si NWs are predicted and trends in growth rate are found to agree with those experimentally observed. Growth rate dependencies on pressure and temperature are implicitly included in the equations derived. An estimate of supersaturation has been extracted for the first time using the framework of equations. Chapter 6 contains the experimental results of the Si NW growth over sapphire substrates. An incubation period in the order of 3-8 minutes has been observed for Si NW growth on sapphire. The data has been compared with existing literature data and interpreted using classical transient nucleation theory. The incubation period data has been utilized to extract the kinetic parameter, QD, which is the desolvation enegy. These parameters and the measured steady state growth rates have been used to estimate the supersaturation existing in the droplet using the framework developed in chapters 4 and 5. Chapter 7 summarizes the outcome of the current research and highlights the future directions for the research problem addressed in this thesis.
87

Multicomponent catalysts for methanol electro-oxidation processes synthesized using organometallic chemical vapourde position technique

Naidoo, Qiling Ying January 2011 (has links)
Philosophiae Doctor - PhD / In this study, the OMCVD method is demonstrated as a powerful, fast, economic and environmental friendly method to produce a set of PGMelectrocatalysts with different supports, metal content and metal alloys in one step and without the multiple processing stages of impregnation, washing, drying, calcinationsand activation. / South Africa
88

Příprava grafenu metodou CVD / The preparation of Grafen by method CVD

Procházka, Pavel January 2012 (has links)
This diploma thesis is mainly focused on the fabrication of graphene layers on the copper foil by the Chemical Vapor Deposition (CVD). For this purpose the high-temperature chamber for the production of the graphene was completed and fully automated. The production of the high area graphene on the copper foil was experimentally achieved. The Raman microscopy and X-ray photoelectron spectroscopy measurements proved that the produced graphene is mostly a monolayer. Graphene layer was transferred on non-conductive substrate.
89

Phosphane and Phosphite Silver(I) Complexes: Synthesis, Reaction Chemistry and their Use as CVD Precursors

Djiele Ngameni, Patrice 27 January 2005 (has links)
Silver(I) complexes of type LnAgX (X = organic ligand, such as carboxylates, dicarboxylates, Schiff-base; L = Lewis-bases, e. g. PnBu3, P(OMe)3, P(OEt)3; n = 1, 2, 3) have been synthesized and characterized with respect to their suitability for the Chemical Vapour Deposition (CVD) of silver thin films. For some of these compounds single crystal could be obtained. Their solid-state structure was determined by single crystal X-ray diffraction. The volatility, thermal stability, and gas phase decomposition mechanism of selected compounds were studied using temperature-programmed and in-situ mass spectrometry. CVD experiments were performed according to the results of the gas phase analysis. Silver films could be grown by using a cold-wall CVD reactor. The morphology of the latter films was determined. / Silber(I) Komplexe LnAgX (X = organische Ligand, Z. B. Carboxylate, Dicarboxylate, Schiff Base; L = Lewis-Base, Z. B. PnBu3, P(OMe)3, P(OEt)3; n = 1, 2, 3) wurden Bezug auf ihre Eignung für die chemische Gasphasenabscheidung von Silberfilmen synthetisiert und charakterisiert. Von einigen dieser Verbindung konnten Einkristalle erhalten werden. Der Bau dieser Verbindungen wurde mittels Röntgeneinkristallographie ermittelt. Ausgewählten Verbindungen wurden mit Temperatur-programmierter und in-situ Massenspektrometrie analysiert. Gasphasenabscheidungs- mechanismen für einige Prekursoren sind vorgestellt. CVD-Abscheidungsexperimente wurden entsprechend den Ergebnissen der Gasphaseanalyse durchgeführt. Silber Schichten konnten mit einen Kaltwand CVD-Reaktor erzeugt werden, deren Oberflächenmorphologie wurde untersucht.
90

Chemical vapor deposition of ruthenium-based layers by a single-source approach

Jeschke, Janine, Möckel, Stefan, Korb, Marcus, Rüffer, Tobias, Assim, Khaybar, Melzer, Marcel, Herwig, Gordon, Georgi, Colin, Schulz, Stefan E., Lang, Heinrich 06 March 2017 (has links)
A series of ruthenium complexes of the general type Ru(CO)2(P(n-Bu)3)2(O2CR)2 (4a, R = Me; 4b, R = Et; 4c, R = i-Pr; 4d, R = t-Bu; 4e, R = CH2OCH3; 4f, R = CF3; 4g, R = CF2CF3) was synthesized by a single-step reaction of Ru3(CO)12 with P(n-Bu)3 and the respective carboxylic acid. The molecular structures of 4b, 4c and 4e–g in the solid state are discussed. All ruthenium complexes are stable against air and moisture and possess low melting points. The physical properties including the vapor pressure can be adjusted by modification of the carboxylate ligands. The chemical vapor deposition of ruthenium precursors 4a–f was carried out in a vertical cold-wall CVD reactor at substrate temperatures between 350 and 400 °C in a nitrogen atmosphere. These experiments show that all precursors are well suited for the deposition of phosphorus-doped ruthenium layers without addition of any reactive gas or an additional phosphorus source. In the films, phosphorus contents between 11 and 16 mol% were determined by XPS analysis. The obtained layers possess thicknesses between 25 and 65 nm and are highly conformal and dense as proven by SEM and AFM studies. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.1294 seconds