Spelling suggestions: "subject:"chinese remained theorem"" "subject:"chinese remain theorem""
1 |
Data Compression Using a Multi-residue System (Mrs)Melaedavattil Jaganathan, Jyothy 08 1900 (has links)
This work presents a novel technique for data compression based on multi-residue number systems. The basic theorem is that an under-determined system of congruences could be solved to accomplish data compression for a signal satisfying continuity of its information content and bounded in peak-to -peak amplitude by the product of relatively prime moduli,. This thesis investigates this property and presents quantitative results along with MATLAB codes. Chapter 1 is introductory in nature and Chapter 2 deals in more detail with the basic theorem. Chapter 3 explicitly mentions the assumptions made and chapter 4 shows alternative solutions to the Chinese remainder theorem. Chapter 5 explains the experiments in detail whose results are mentioned in chapter 6. Chapter 7 concludes with a summary and suggestions for future work.
|
2 |
Key Management Techniques for Dynamic Secure MulticastingKoneni, Madhu 21 July 2003 (has links)
Most of the Internet applications today require multicasting. For example, software updates, multimedia content distribution, interacting gaming and stock data distribution require multicast services. All of these applications require privacy and authenticity of the participants. Most of the multicasting groups are dynamic and some of them are large in number. Only those users who belong to the multicasting group should receive the information and be able to decrypt it. New users joining the group should receive information immediately but should not understand the information that was released prior to their joining. Similarly, if users leave the group, they should not receive any further information and should not be able to decrypt it. Keys need to be distributed to the users belonging to the current session and hence some kind of key management is required. Existing schemes for secure multicasting are limited to small and static groups. To allow large and dynamic groups to use the services of multicasting, some protocols have been developed: Multicast Trees, Spanning Tree, Centralized Tree-Based Key Management, Flat-key Management and Distributed Key Management. Some of these schemes are better than others with respect to the speed, memory consumption, and amount of communication needed to distribute the keys. All these schemes are limited in performance with respect to the speed, memory consumption, and amount of communication needed in distributing the keys.
In this thesis, a number of public and private key algorithms and key management techniques for secure and dynamic multicasting are studied and analyzed. The thesis is focused on the secure lock method developed by Chiou and Chen, using the Chinese Remainder Theorem. The protocol is implemented for a small group of users and its performance is studied. While, the secure lock method works well for a small group of users and the performance is degraded when the group grows in size. A protocol is proposed for a large and dynamic group, based on the idea of the Chinese Remainder Theorem. A performance study is carried out by comparing our proposed protocol with the existing multicasting protocols. The analysis shows that the proposed protocol works well for large and dynamic groups and gives significantly better performance. / Master of Science
|
3 |
O Teorema chinês dos restos e a partilha de senhasPRAZERES, Sidmar Bezerra dos 16 June 2014 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-29T14:30:56Z
No. of bitstreams: 1
Sidmar Bezerra dos Prazeres.pdf: 511759 bytes, checksum: cf327985c0961f16751448a107717241 (MD5) / Made available in DSpace on 2017-03-29T14:30:56Z (GMT). No. of bitstreams: 1
Sidmar Bezerra dos Prazeres.pdf: 511759 bytes, checksum: cf327985c0961f16751448a107717241 (MD5)
Previous issue date: 2014-06-16 / This paper aims to show the reader the importance of some topics of Number Theory. Work here, and prerequisites (Euclid Algorithms, Divisibility, Maxim Common Divisor), content with Linear Diophantine equations, congruences, and the main theme, which is the mighty Chinese Remainder Theorem of presenting their theories, importance, applicability on the day and its usefulness in the Theory of Numbers. The main applicability of Chinese Remainder Theorem of this work is Sharing Passwords. Sharing of passwords is a security mechanism, where a certain amount of people take possession of a key to access the secret without the possibility of obtaining the secret with his own key. / Este trabalho tem como objetivo mostrar ao leitor a importância de alguns t ópicos da Teoria dos N úmeros. Trabalharemos aqui, al ém de pré-requisitos (Algoritmo de Euclides, Divisibilidade, M áximo Divisor Comum), conte údos como Equa ções Diofantinas Lineares, Congruências e o principal tema, que e o poderoso Teorema Chinês dos Restos, apresentando suas teorias, importâncias, aplicabilidade no dia a dia e sua a utilidade na Teoria dos N úmeros. A principal aplicabilidade do Teorema Chinês apresentada neste trabalho e a Partilha de Senhas. Esta partilha de senhas é um mecanismo de seguran ça, onde uma certa quantidade de pessoas tomam posse de uma chave de acesso sem a possibilidade de obter a senha principal com a sua pr ópria chave.
|
4 |
Design and implementation of high-speed algorithms for public-key cryptosystemsJoseph, George 09 June 2005 (has links)
The aim of this dissertation is to improve computational efficiency of modular exponentiation-based public-key cryptosystems. The operational speed of these public-key cryptosystems is largely determined by the modular exponentiation operation of the form A = ge mod m where g is the base, e is the exponent and m is the modulus. The required modular exponentiation is computed by a series of modular multiplications. Optimized algorithms are required for various platforms, especially for lower-end platforms. These require the algorithms to be efficient and consume as little resources as possible. In these dissertation algorithms for integer multiplication, modular reduction and modular exponentiation, was developed and implemented in software, as required for public-key cryptography. A detailed analysis of these algorithms is given, as well as exact measurement of the computational speed achieved by each algorithm. This research shows that a total speed improvement of 13% can be achieved on existing modular exponentiation based public-key cryptosystems, in particular for the RSA cryptosystem. Three novel approaches are also presented for improving the decryption speed efficiency of the RSA algorithm. These methods focus on the selection of the decryption exponent by careful consideration of the difference between the two primes p and q. The resulting reduction of the decryption exponent improves the decryption speed by approximately 45%. / Dissertation (MEng (Electronics))--University of Pretoria, 2006. / Electrical, Electronic and Computer Engineering / unrestricted
|
5 |
Energy Efficient Secure Key Management Schemes for WSNs and IoTWen, Wen January 2016 (has links)
Secret sharing is critical to most applications making use of security and remains one of the most challenging research areas in modern cryptography. In this thesis, we propose a novel efficient multi-secret sharing scheme based on the Chinese remainder theorem (CRT) with two verification methods, while the previous works are mostly based on the Lagrange polynomial.
Key management schemes play an important role in communication security in Wireless Sensor Networks (WSNs). While the previous works mainly targeting on two different types of WSNs: distributed and hieratical, in this thesis, we propose our flexible WSN key management scheme, which is based on (n,t,n) multi-secret sharing technique, to provide a key management solution for heterogeneous architecture. The powerful key managers are responsible for most of the communicational and computational workload. They can provide Peer-to-Peer pair-wise keys for a pair of sensors to establish a secure communication session, and in the same time, they can also form communication clusters as cluster heads according to different application requirements.
Internet of Things (IoT) becomes more and more popular and practical in recent years. Considering the diversity of the devices and the application scenarios, it is extremely hard to couple two devices or sub-networks with different communication and computation resources. In this thesis, we propose novel key agreement schemes based on (n,t,n) multi-secret sharing techniques for IoT in order to achieve light weighted key exchange while using Host Identity Protocol (HIP). We refer the new schemes as HIP-MEXs with different underlying multi-secret sharing techniques. We analyzed the computational and communication costs of the extremely resource constrained device which is referred to as Initiator, and CRT based HIP-MEX successfully outsource the heavy workload to the proxy, which are considered more powerful, when establishing new secret key.
|
6 |
Σχεδίαση κυκλωμάτων με πλεονάζουσες και μη αναπαραστάσεις για το αριθμητικό σύστημα υπολοίπων / Design of arithmetic circuits for residue number system using redundant and not redundant encodingsΒασσάλος, Ευάγγελος 11 October 2013 (has links)
Η υλοποίηση αποδοτικών αριθμητικών κυκλωμάτων αποτελεί ένα ανοικτό πεδίο έρευνας καθώς η συνεχής εξέλιξη της τεχνολογίας απαιτεί την επανεκτίμηση των μεθόδων σχεδίασής τους, ενώ παράλληλα δημιουργεί νέους τομείς εφαρμογής τους. Ο τεράστιος όγκος πληροφορίας και η ανάγκη γρήγορης επεξεργασίας της έχει οδηγήσει στην ανάγκη αύξησης της συχνότητας λειτουργίας των αντίστοιχων κυκλωμάτων. Μεγάλης σημασίας παραμένει επίσης η ανάγκη για τη μείωση της κατανάλωσης ισχύος των συστημάτων αυτών, αλλά και του κόστους τους, που συνδέονται άμεσα με την επιφάνεια ολοκλήρωσής τους. Η ικανοποίηση των παραμέτρων αυτών επιτάσσει σε διάφορες περιπτώσεις την υιοθέτηση αριθμητικών συστημάτων, πέραν του συμβατικού δυαδικού συστήματος. Χαρακτηριστικά παραδείγματα αποτελούν το Αριθμητικό Σύστημα Υπολοίπων (Residue Number System – RNS) όπως επίσης και τα αριθμητικά συστήματα πλεοναζουσών αναπαραστάσεων (redundant number systems).
Η διδακτορική αυτή διατριβή ασχολείται με την υλοποίηση αποδοτικών κυκλωμάτων για το Αριθμητικό Σύστημα Υπολοίπων, με την έρευνα να επικεντρώνεται στην υιοθέτηση τόσο πλεοναζουσών όσο και μη-πλεοναζουσών αναπαραστάσεων στα διάφορα κανάλια επεξεργασίας του.
Το πρώτο μέρος της διατριβής έχει ως στόχο τη σχεδίαση αποδοτικών κυκλωμάτων υπολοίπων με χρήση μη-πλεοναζουσών αναπαραστάσεων τόσο για τις κύριες-βασικές αριθμητικές πράξεις (πρόσθεση, πολλαπλασιασμός) όσο και για τις δευτερεύουσες-βοηθητικές (αφαίρεση, ύψωση σε δύναμη) πράξεις. Συγκεκριμένα, παρουσιάζονται κυκλώματα αφαίρεσης και πρόσθεσης/αφαίρεσης για κανάλια υπολοίπου της μορφής 2^n+-1, κυκλώματα πολλαπλασιασμού με σταθερά για το σύνολο διαιρετών {2^n-1, 2^n, 2^n+1} καθώς και κυκλώματα Booth πολλαπλασιασμού προγραμματιζόμενης λογικής για τα κανάλια υπολοίπου 2^n+-1. Επιπλέον, παρουσιάζονται κυκλώματα ύψωσης στον κύβο για το κανάλι υπολοίπου 2^n-1. Προτείνεται επίσης μια οικογένεια αριθμητικών κυκλωμάτων (αθροιστές, αφαιρέτες, πολλαπλασιαστές, κυκλώματα ύψωσης στο τετράγωνο) υπολοίπου 2^n+1 για την αναπαράσταση ελάττωσης κατά 1, που ενσωματώνουν τη μετατροπή του αποτελέσματος στην κανονική αναπαράσταση μέσα στην αρχιτεκτονική τους, ενώ παρουσιάζεται και μία ενιαία μεθοδολογία σχεδίασης κυκλωμάτων ανάστροφης μετατροπής για σύνολα διαιρετών με κανάλια της μορφής 2^n+1 που υιοθετούν την αναπαράσταση ελάττωσης κατά 1. Τέλος, διερευνούνται και οι διαιρέτες της μορφής 2^n-2 και προτείνονται για αυτούς αποδοτικές αρχιτεκτονικές κυκλωμάτων πρόσθεσης, πολλαπλασιασμού, ύψωσης στο τετράγωνο και ευθείας μετατροπής.
Στο δεύτερο μέρος της διατριβής το ενδιαφέρον εστιάζεται σε μία διαφορετική κατηγορία αναπαραστάσεων, οι οποίες παρέχουν περισσότερους από ένα δυνατούς τρόπους κωδικοποίησης των εντέλων τους. Οι πλεονάζουσες αυτές αναπαραστάσεις παρουσιάζουν συγκεκριμένα χαρακτηριστικά, όπως η δυνατότητα εξισορρόπησης ταχύτητας και επιφάνειας υλοποίησης. Στη διατριβή εξετάζονται τρεις πλεονάζουσες αναπαραστάσεις για το Αριθμητικό Σύστημα Υπολοίπων με κανάλια διαιρετών της μορφής 2^n+-1 και παρουσιάζεται μία γενικευμένη μεθοδολογία διαχείρισης των ψηφίων τους, η οποία εφαρμόζεται στη σχεδίαση κυκλωμάτων μετατροπής.
Στο τελευταίο μέρος περιγράφονται δύο εφαρμογές συστημάτων που βασίζονται στο Αριθμητικό Σύστημα Υπολοίπων. Αναλυτικότερα, σχεδιάζεται και υλοποιείται ένα σύστημα ανίχνευσης ακμών σε εικόνα με ένα στάδιο προ-επεξεργασίας για μείωση του θορύβου καθώς και τρία φίλτρα πεπερασμένης κρουστικής απόκρισης. / The implementation of efficient arithmetic circuits has always been an open field for research, since the technology evolves rapidly, demanding the reevaluation of their design methods. At the same time this continuous evolution opens new research areas for these circuits. The need for fast processing of a vast amount of information demands an increase of the operational frequency of the corresponding circuits, while at the same time low power consumption, low cost and therefore low area remain of crucial importance. Meeting these needs in arithmetic circuits usually implies the employment of alternative, non-binary number systems. Such examples are the Residue Number System (RNS) and number systems with redundant representations.
The subject of this PhD dissertation is the implementation of efficient arithmetic circuits for the RNS emphasizing both in redundant and not redundant representations.
The first part of the dissertation deals with the design of efficient non-redundant arithmetic circuits for main arithmetic operations such as addition and multiplication that are met in every processing system, as well as for auxiliary operations like subtraction, squaring and cubing. Specifically, the circuits presented include subtractors and adders/subtractors for the moduli channels of the 2^n+-1 form, single-constant multipliers for the {2^n-1, 2^n, 2^n+1} moduli set, configurable modulo 2^n +-1 Booth-encoded multipliers as well as modulo 2^n-1 cubing units. Furthermore, a family of diminished-1 modulo 2^n+1 arithmetic circuits (adders, subtractors, multipliers and squarers) is also presented, that produces the respective result directly to weighted (normal) representation, embedding that way the conversion process between these two representations. The design of efficient Residue-to-Binary converters is also considered and a novel generic methodology is proposed for the systematic design of those circuits. The modulo 2^n-2 channel is also investigated and an arithmetic processing framework is proposed including adders, multipliers, squarers and Binary-to-Residue converters.
In the second part, we focus on a different category of representations, where operands can be encoded in more than one ways. Such representations offer certain characteristics such as a tradeoff between area and speed. In particular, we consider three redundant representations for the RNS processing channels of the 2^n+-1 form, which are the most common choice. A generic methodology is presented for treating their digits in order to design efficient converters for them.
The last part of the dissertation presents two applications that are implemented entirely in the RNS domain. Their architectures rely on the proposed arithmetic circuits. The first application is an image edge detector with a pre-processing noise filtering stage. The second application involves the design of three Finite Impulse Response (FIR) filters.
|
7 |
Σχεδίαση παράλληλης διάταξης επεξεργαστών σε ένα chip : δημιουργία και μελέτη high radix RNS αθροιστήΓιαννοπούλου, Λεμονιά 09 July 2013 (has links)
Η άθροιση μεγάλων αριθμών είναι μια χρονοβόρα και ενεργοβόρα διαδικασία. Πολλές μέθοδοι έχουν αναπτυχθεί για να μειωθεί η καθυστέρηση υπολογισμού του αθροίσματος λόγω της μετάδοσης κρατουμένου. Τέτοιες είναι η πρόβλεψη κρατουμένου (carry look ahead) και η επιλογή κρατουμένου (carry select). Αυτές οι αρχιτεκτονικές δεν είναι επαρκώς επεκτάσιμες για μεγάλους αριθμούς (με πολλά bits) ή πολλούς αριθμούς, διότι παράγονται μεγάλα και ενεργοβόρα κυκλώματα. Στην παρούσα εργασία μελετάται η μέθοδος υπολοίπου (RNS), η οποία χρησιμοποιεί συστήματα αριθμών μεγαλύτερα από το δυαδικό. Ορίζεται μια βάση τριών αριθμών και οι αριθμοί αναπαρίστανται στα εκάστοτε τρία συστήματα της βάσης. Η άθροιση γίνεται παράλληλα σε κάθε σύστημα και τέλος οι αριθμοί μετατρέπονται πάλι στο δυαδικό. Τα πλεονεκτήματα αυτής της προσέγγισης είναι η παραλληλία και η απουσία μεγάλων κυκλωμάτων διάδοσης κρατουμένου. Το μειονέκτημα είναι ότι χρειάζονται κυκλώματα μετατροπής από και προς το δυαδικό σύστημα. Αυτού του είδους οι αθροιστές συγκρίνονται για κατανάλωση ενέργειας με τους γνωστούς carry look ahead και carry select. Διαπιστώθηκε ότι οι RNS αθροιστές καταναλώνουν λιγότερη ενέργεια. / The addition of many-bits numbers is a time and power consuming task. Many methods are developed to reduce the sum calculation delay due to carry propagation. Such techniques are Carry Look Ahead and Carry Select, Those techniques are not scalable to many bits numbers or a set of many numbers: the circuits needed are big and power consuming. In this thesis, the the RNS technique is investigated. This technique uses radix bigger than binary. A 3-numbers base is defined and the numbers that participate in the sum are represented uniquely in each element radix. The addition is performed in parallel in each radix. Finally the result is transformed back to the binary numbers system. The advantages of this technique are the parallelization of the process and the lack of carry propagation circuits. The disadvantage is that transformation circuits are need from/to binary system. The RNS adders are compared to CLA and CS for power. Such adders are compared to CLA and CS for power consumption. It is found that RNS adders consume less energy.
|
Page generated in 0.0708 seconds