Spelling suggestions: "subject:"circuit design"" "subject:"dircuit design""
231 |
An incremental approach for hardware discrete controller synthesis / Une approche incrémentale pour la synthèse de contrôleurs discrets matérielsRen, Mingming 27 July 2011 (has links)
La synthèse de contrôleurs discrets (SCD) est appliquée pour générer automatiquement des contrôleurs matériels corrects par construction. Pour un système donné (un modèle à états), et une spécification de contrôle associée (une exigence comportementale), cette technique génère un contrôleur qui, composé avec le système initial, garantit la satisfaction de la spécification. La technique de SCD utilisée dans ce travail s’appuie sur les diagrammes de décision binaire (BDDs). Les contrôleurs générés doivent être compatibles avec les outils standards de synthèse matérielle de niveau RTL. Deux problèmes principaux ont été examinés: l’explosion combinatoire et la génération effective du contrôleur matériel. La maîtrise de l’explosion combinatoire s’appuie sur des approches de type «diviser pour régner », exploitant la modularité du système ou du contrôleur. La plupart des approches existantes ne traitent pas la communication explicite entre différents composants du système. Le mécanisme de synchronisation le plus couramment envisagé est le partage des événements d’entrée, faisant abstractiondes sorties. Nous proposons une technique de SCD incrémentale qui permet de traiter également les systèmes communicants. Une étape initiale d’abstraction modulaire est suivie par une séquence progressive de raffinements et de calculs de solutions approximatives de contrôle. La dernière étape de cette séquence engendre un contrôleur exact. Nous montrons que cette technique offre une efficacité améliorée en temps/mémoire par rapport à l’approche traditionnelle globale de la SCD. La génération du contrôleur matériel s’appuie sur un traitement spécifique du non-déterminisme de contrôle. Une architecture de contrôle à boucle partiellement fermée est proposée, afin de permettre une conception hiérarchique. Une technique automatique transformant une équation de contrôle en vecteur de fonctions de contrôle est proposée et illustrée. La SCD est ensuite appliquée et illustrée sur la correction de certaines erreurs de conception. L’efficacité des techniques proposées est illustrée sur un ensemble d’exemples de conception matérielle. / The Discrete Controller Synthesis (DCS) technique is used for automatic generation of correct-by-construction hardware controllers. For a given plant (a state-based model), and an associated control specification (a behavioral requirement), DCS generates a controller which, composed with the plant, guarantees the satisfaction of the specification. The DCS technique used relies on binary decision diagrams (BDDs). The controllers generated must be compliant with standard RTL hardware synthesis tools. Two main issues have been investigated: the combinational explosion, and the actual generation of the hardware controller. To address combinational explosion, common approaches follow the "divide and conquer" philosophy, producing modular control and/or decentralized control. Most of these approaches do not consider explicit communication between different components of a plant. Synchronization is mostly achieved by sharing of input events, and outputs are abstracted away. We propose an incremental DCS technique which also applies to communicating systems. An initial modular abstraction is followed by a sequence of progressive refinements and computations of approximate control solutions. The last step of this sequence computes an exact controller. This technique is shown to have an improved time/memory efficiency with respect to the traditional global DCS approach. The hardware controller generation addresses the control non-determinism problem in a specific way. A partially closed-loop control architecture is proposed, in order to preserve the applicability of hierarchical design. A systematic technique is proposed and illustrated, for transforming the automatically generated control equation into a vector of control functions. An application of the DCS technique to the correction of certain design errors in a real design is illustrated. To prove the efficiency of the incremental synthesis and controller implementation, a number of examples have been studied.
|
232 |
Modélisation compacte et conception de circuit hybride pour les dispositifs spintroniques basés sur la commutation induite par le courant / Compact modeling and hybrid circuit design for spintronic devices based on current-induced switchingZhang, Yue 11 July 2014 (has links)
La miniaturisation du nœud technologique de CMOS en dessous de 90 nm conduit à une forte consommation statique pour les mémoires et les circuits logiques, due aux courants de fuite de plus en plus importants. La spintronique, une technologie émergente, est d’un grand intérêt pour remédier à ce problème grâce à sa non-volatilité, sa grande vitesse d’accès et son intégration facile avec les procédés CMOS. Comparé à la commutation induite par le champ magnétique, le transfert de spin (STT), une approche de commutation induite par le courant, non seulement simplifie le processus de commutation mais aussi permet un fonctionnement sans précédent en termes de consommation et de vitesse. Cette thèse est consacrée à la modélisation compacte et la conception de circuit hybride pour les dispositifs spintroniques basés sur la commutation induite par le courant. La jonction tunnel magnétique (JTM), élément fondamental de la mémoire magnétique (MRAM), et la mémoire racetrack, nouveau concept fondé sur la propagation des parois de domaine induites par le courant, sont particulièrement étudiés. Ces dispositifs et circuits spintroniques sont basés sur les matériaux à anisotropie magnétique perpendiculaire (AMP) qui ouvrent la perspective d’une miniaturisation submicronique tout en conservant une grande stabilité thermique. De nombreux modèles physiques et paramètres réalistes sont intégrés dans la modélisation compacte pour obtenir une bonne cohérence avec les mesures expérimentales. En utilisant ces modèles compacts précis, certaines applications pour la logique et les mémoires magnétiques, tels que l’additionneur complet magnétique (ACM) et la mémoire adressable par contenu (CAM), sont conçues et simulées. Nous analysons et évaluons leur potentiel de performance en termes de surface, vitesse et consommation d’énergie par rapport aux circuits classiques. Enfin, afin de lutter contre la limitation de capacité entravant la large application, nous proposons deux optimisations de conception : la mémoire multivaluée (MLC) pour la STT-MRAM et l’assistance par champ magnétique pour la mémoire racetrack. Ce concept de MLC utilise le comportement stochastique des STT pour atteindre une haute vitesse tout en augmentant la densité de STT-MRAM. La mémoire racetrack assistée par champ magnétique est fondée sur l’observation d’une propagation des parois de domaine en dessous du courant critique, propagation est attribué à l’effet « Walker breakdown ». Ceci ouvre une nouvelle voie pour réduire le courant de propagation et augmenter la capacité des mémoires racetrack au-delà des améliorations des circuits périphériques et des matériaux. / The shrinking of complementary metal oxide semiconductor (CMOS) fabrication node below 90 nm leads to high static power in memories and logic circuits due to the increasing leakage currents. Emerging spintronic technology is of great interest to overcome this issue thanks to its non-volatility, high access speed and easy integration with CMOS process. Spin transfer torque (STT), a current-induced switching approach, not only simplifies the switching process but also provides an unprecedented speed and power performances, compared with the field-induced switching. This thesis is dedicated to the compact modelling and hybrid circuit design for current-induced switching spintronic devices. Magnetic tunnel junction (MTJ), the basic element of magnetic random access memory (MRAM), and racetrack memory, a novel concept based on current-induced domain wall (CIDW) motion, are particularly investigated. These spintronic devices and circuits are based on the materials with perpendicular-magnetic-anisotropy (PMA) that promises the deep submicron miniaturization while keeping a high thermal stability. Numbers of physical models and realistic parameters are integrated in the compact modeling to achieve a good agreement with experimental measurements. By using these accurate compact models of PMA STT MTJ and PMA racetrack memory, some magnetic logic and memory applications, such as magnetic full adder (MFA) and content addressable memory (CAM), are designed and simulated. We analyze and assess their performance potential in terms of speed, area and power consumption compared with the conventional circuits. Finally, in order to tackle the capacity bottleneck hindering the wide application, we propose two design optimizations: MLC for MRAM and magnetic field assistance for racetrack memory. This MLC design benefits from the STT stochastic behavior to achieve an ultra-high speed while increasing the density. The racetrack memory with magnetic field assistance is based on the observation that CIDW motion can be triggered below the critical current due to “Walker breakdown” effect. This opens a new route to reduce the propagation current and increase the capacity of racetrack memory beyond the improvements of peripheral circuits or materials.
|
233 |
Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure DetectionQian, Chengliang 03 October 2013 (has links)
About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively.
This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals.
The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with a die area of 0.45 mm^2.
The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-μm CMOS process. The die size is 11.25 mm^2.
The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy.
|
234 |
Etude des couplages substrats dans des circuits mixtes "Smart Power" pour applications automobiles / Substrate coupling study in Smart Power Mixed ICs for automotive applicationThomas tomasevic, Marc veljko 27 February 2017 (has links)
Les circuits Smart Power, utilisés dans l’industrie automobile, se caractérisent par l’intégration sur une puce des parties de puissance avec des parties analogiques&numériques basse tension. Leur principal point faible vient de la commutation des structures de puissance sur des charges inductives. Celles-ci injectent des courants parasites dans le substrat, pouvant activer des structures bipolaires parasites inhérentes au layout du circuit, menant à une défaillance ou la destruction du circuit intégré.Ces structures parasites ne sont pas actuellement modélisées dans les outils CAO ni simulées par les simulateurs de type SPICE. L'extraction de ces structures à partir du layout et leur intégration dans les outils CAO est l’objectif du projet européen AUTOMICS, dans le cadre duquel cette thèse a été réalisée.La caractérisation du couplage substrat sur deux cas d’études a permis de valider les modèles théoriques et de les comparer aux simulations utilisant le nouveau modèle de couplage substrat. / Smart Power circuits, used in the automotive industry, are characterized by the integration on one chip of the power parts with low voltage analog and digital parts. Their main weak point comes from the switching of power structures on inductive loads. These inject parasitic currents in the substrate, capable of activating the bipolar parasitic structures inherent in the layout of the circuit, leading to failure or destruction of the integrated circuit.These parasitic structures are not currently integrated into CAD tools nor simulated by SPICE simulators. The extraction of these structures from the layout and their integration into the CAD tools is the objective of the European AUTOMICS project, in which this thesis is carried out.The characterization of the substrate coupling of 2 case study was used to validate theoretical models and compare them to simulations using the new substrate coupling model.
|
235 |
Exploring Analog and Digital Design Using the Open-Source Electric VLSI Design SystemAluru, Gunasekhar 05 1900 (has links)
The design of VLSI electronic circuits can be achieved at many different abstraction levels starting from system behavior to the most detailed, physical layout level. As the number of transistors in VLSI circuits is increasing, the complexity of the design is also increasing, and it is now beyond human ability to manage. Hence CAD (Computer Aided design) or EDA (Electronic Design Automation) tools are involved in the design. EDA or CAD tools automate the design, verification and testing of these VLSI circuits. In today’s market, there are many EDA tools available. However, they are very expensive and require high-performance platforms. One of the key challenges today is to select appropriate CAD or EDA tools which are open-source for academic purposes. This thesis provides a detailed examination of an open-source EDA tool called Electric VLSI Design system. An excellent and efficient CAD tool useful for students and teachers to implement ideas by modifying the source code, Electric fulfills these requirements. This thesis' primary objective is to explain the Electric software features and architecture and to provide various digital and analog designs that are implemented by this software for educational purposes. Since the choice of an EDA tool is based on the efficiency and functions that it can provide, this thesis explains all the analysis and synthesis tools that electric provides and how efficient they are. Hence, this thesis is of benefit for students and teachers that choose Electric as their open-source EDA tool for educational purposes.
|
236 |
Dopravní řešení brněnského výstaviště v návaznosti na VMO / Transport network for Brno Exhibition Centre and Brno City RingRoadJosiek, David Unknown Date (has links)
The goal of this thesis is to design variant solution of interconnection of great city circuit and exhibition ground with secured safety of traffic without local area accesibility sacrification.
|
237 |
Acceleration Methods for Evolutionary Design of Digital Circuits / Acceleration Methods for Evolutionary Design of Digital CircuitsVašíček, Zdeněk Unknown Date (has links)
Ačkoliv můžeme v literatuře nalézt řadu příkladů prezentujících evoluční návrh jakožto zajímavou a slibnou alternativu k tradičním návrhovým technikám používaným v oblasti číslicových obvodů, praktické nasazení je často problematické zejména v důsledku tzv. problému škálovatelnosti, který se projevuje např. tak, že evoluční algoritmus je schopen poskytovat uspokojivé výsledky pouze pro malé instance řešeného problému. Vážný problém představuje tzv. problém škálovatelnosti evaluace fitness funkce, který je markantní zejména v oblasti syntézy kombinačních obvodů, kde doba potřebná pro ohodnocení kandidátního řešení typicky roste exponenciálně se zvyšujícím se počtem primárních vstupů. Tato disertační práce se zabývá návrhem několika metod umožňujících redukovat problem škálovatelnosti evaluace v oblasti evolučního návrhu a optimalizace číslicových systémů. Cílem je pomocí několika případových studií ukázat, že s využitím vhodných akceleračních technik jsou evoluční techniky schopny automaticky navrhovat inovativní/kompetitivní řešení praktických problémů. Aby bylo možné redukovat problém škálovatelnosti v oblasti evolučního návrhu číslicových filtrů, byl navržen doménově specifický akcelerátor na bázi FPGA. Tato problematika reprezentuje případ, kdy je nutné ohodnotit velké množství trénovacích dat a současně provést mnoho generací. Pomocí navrženého akcelerátoru se podařilo objevit efektivní implementace různých nelineárních obrazových filtrů. S využitím evolučně navržených filtrů byl vytvořen robustní nelineární filtr implusního šumu, který je chráněn užitným vzorem. Navržený filtr vykazuje v porovnání s konvenčními řešeními vysokou kvalitu filtrace a nízkou implementační cenu. Spojením evolučního návrhu a technik známých z oblasti formální verifikace se podařilo vytvořit systém umožňující výrazně redukovat problém škálovatelnosti evoluční syntézy kombinačních obvodů na úrovni hradel. Navržená metoda dovoluje produkovat komplexní a přesto kvalitní řešení, která jsou schopna konkurovat komerčním nástrojům pro logickou syntézu. Navržený algoritmus byl experimentálně ověřen na sadě několika benchmarkových obvodů včetně tzv. obtížně syntetizovatelných obvodů, kde dosahoval v průměru o 25% lepších výsledků než dostupné akademické i komerční nástroje. Poslední doménou, kterou se práce zabývá, je akcelerace evolučního návrhu lineárních systémů. Na příkladu evolučního návrhu násobiček s vícenásobnými konstantními koeficienty bylo ukázáno, že čas potřebný k evaluaci kandidátního řešení lze výrazně redukovat (defacto na ohodocení jediného testovacího vektoru), je-li brán v potaz charakter řešeného problému (v tomto případě linearita).
|
238 |
Simulation and Analysis of Analog Circuit and PCM (Process Control Monitor) Test Structures in Circuit DesignSobe, Udo, Rooch, Karl-Heinz, Mörtl, Dietmar 08 June 2007 (has links)
PCM test structures are commonly used to check the produced wafers from the standpoint of the technologist. In general
these structures are managed inside the FAB and are focused on standard device properties. Hence their development and
analysis is not driven by analog circuit blocks, which are sensitive or often used. Especially for DFM/Y of analog circuits
the correlation between design and technology has to be defined. The knowledge of electrical behavior of test structures
helps to improve the designer's sensitivity to technological questions.
This paper presents a method to bring the PCM methodology into the analog circuit design to improve design performance,
yield estimation and technology correlation. We show how both analog circuit and PCM blocks can be simulated and
analyzed in the design phase.
|
239 |
Model Checking Techniques for Design and Analysis of Future Hardware and Software SystemsMärcker, Steffen 12 April 2021 (has links)
Computer hardware and software laid the foundation for fundamental innovations in science, technology, economics and society. Novel application areas generate an ever-increasing demand for computation power and storage capacities. Classic CMOS-based hardware and the von Neumann architecture are approaching their limits in miniaturization, power density and communication speed. To meet future demands, researchers work on new device technologies and architecture approaches which in turn require new algorithms and a hardware/software co-design to exploit their capabilities. Since the overall system heterogeneity and complexity increases, the challenge is to build systems with these technologies that are both correct and performant by design.
Formal methods in general and model checking in particular are established verification methods in hardware design, and have been successfully applied to many hardware, software and integrated hardware/software systems. In many systems, probabilistic effects arise naturally, e.g., from input patterns, production variations or the occurrence of faults. Probabilistic model checking facilitates the quantitative analysis of performance and reliability measures in stochastic models that formalize this probabilism.
The interdisciplinary research project Center for Advancing Electronics Dresden, cfaed for short, aims to explore hardware and software technologies for future information processing systems. It joins the research efforts of different groups working on technologies for all system layers ranging from transistor device research over system architecture up to the application layer.
The collaborations among the groups showed a demand for new formal methods and enhanced tools to assist the design and analysis of technologies at all system layers and their cross-layer integration. Addressing these needs is the goal of this thesis.
This work contributes to probabilistic model checking for Markovian models with new methods to compute two essential measures in the analysis of hardware/software systems and a method to tackle the state-space explosion problem: 1) Conditional probabilities are well known in stochastic theory and statistics, but efficient methods did not exist to compute conditional expectations in Markov chains and extremal conditional probabilities in Markov decision processes. This thesis develops new polynomial-time algorithms, and it provides a mature implementation for the probabilistic model checker PRISM. 2) Relativized long-run and relativized conditional long-run averages are proposed in this work to reason about probabilities and expectations in Markov chains on the long run when zooming into sets of states or paths. Both types of long-run averages are implemented for PRISM. 3) Symmetry reduction is an effective abstraction technique to tame the state-space explosion problem. However, state-of-the-art probabilistic model checkers apply it only after building the full model and offer no support for specifying non-trivial symmetric components. This thesis fills this gap with a modeling language based on symmetric program graphs that facilitates symmetry reduction on the source level. The new language can be integrated seamlessly into the PRISM modeling language.
This work contributes to the research on future hardware/software systems in cfaed with three practical studies that are enabled by the developed methods and their implementations. 1) To confirm relevance of the new methods in practice and to validate the results, the first study analyzes a well-understood synchronization protocol, a test-and-test-and-set spinlock. Beyond this confirmation, the analysis demonstrates the capability to compute properties that are hardly accessible to measurements. 2) Probabilistic write-copy/select is an alternative protocol to overcome the scalability issues of classic resource-locking mechanisms. A quantitative analysis verifies the protocol's principle of operation and evaluates the performance trade-offs to guide future implementations of the protocol. 3) The impact of a new device technology is hard to estimate since circuit-level simulations are not available in the early stages of research. This thesis proposes a formal framework to model and analyze circuit designs for novel transistor technologies. It encompasses an operational model of electrical circuits, a functional model of polarity-controllable transistor devices and algorithms for design space exploration in order to find optimal circuit designs using probabilistic model checking. A practical study assesses the model accuracy for a lab-device based on germanium nanowires and performs an automated exploration and performance analysis of the design space of a given switching function. The experiments demonstrate how the framework enables an early systematic design space exploration and performance evaluation of circuits for experimental transistor devices.:1. Introduction
1.1 Related Work
2. Preliminaries
3. Conditional Probabilities in Markovian Models
3.1 Methods for Discrete- and Continuous-Time Markov Chains
3.2 Reset Method for Markov Decision Processes
3.3 Implementation
3.4 Evaluation and Comparative Studies
3.5 Conclusion
4. Long-Run Averages in Markov Chains
4.1 Relativized Long-Run Average
4.2 Conditional State Evolution
4.3 Implementation
4.4 Conclusion
5. Language-Support for Immediate Symmetry Reduction
5.1 Probabilistic Program Graphs
5.2 Symmetric Probabilistic Program Graphs
5.3 Implementation
5.4 Conclusion
6. Practical Applications of the Developed Techniques
6.1 Test-and-Test-and-Set Spinlock: Quantitative Analysis of an Established Protocol
6.2 Probabilistic Write/Copy-Select: Quantitative Analysis as Design Guide for a Novel Protocol
6.3 Circuit Design for Future Transistor Technologies: Evaluating Polarity-Controllable Multiple-Gate FETs
7. Conclusion
Bibliography
Appendices
A. Conditional Probabilities and Expectations
A.1 Selection of Benchmark Models
A.2 Additional Benchmark Results
A.3 Comparison PRISM vs. Storm
B. Language-Support for Immediate Symmetry Reduction
B.1 Syntax of the PRISM Modeling Language
B.2 Multi-Core Example
C. Practical Applications of the Developed Techniques
C.1 Test-and-Test-and-Set Spinlock
C.2 Probabilistic Write/Copy-Select
C.3 Circuit Design for Future Transistor Technologies
|
240 |
Tunable broadband integrated circuits for adaptive optical interconnectsHenker, Ronny, Schoeniger, David, Belfiore, Guido, Szilagyi, Lazlo, Pliva, Jan, Khafaji, Mahdi, Ellinger, Frank, Nieweglowski, Krzysztof, Bock, Karlheinz, Tiedje, Tobias 06 September 2019 (has links)
To accommodate the growing demand on higher speeds, low latencies and low energy consumption, the interconnections within and between data centers are supposed to be implemented as optical fiber and waveguide interconnects in future. Optical fiber interconnects provide several advantages over their electrical counterparts as they enable higher bandwidth densities and lower losses at high frequencies over distances longer than few centimeters. However, nowadays optical fiber interconnects are usually not very energy-efficient. The systems in optical networks are mostly optimized for running at their peak performance to transmit the information with the highest available error-free data rate. But the work load of a processor system and hence of an optical link is not constant and varies over time due to the demand of the running applications and users. Therefore, optical interconnects consume the same high power at all times even if lower performance is required.
In this paper a new method for the tuning of optical interconnects for on-board and board-to-board optical communication is described. In this way the performance of the transceiver systems of the link is adapted to the present transmission workload and link requirements. If for example lower data rates are required, the bandwidth and therefore the power consumption of the systems can be reduced. This tuning is enabled by the integrated circuitry of the optical link. Different methods for such an adaptive tuning are described and several practical examples are reviewed. By using adaptive bandwidth reduction in the circuits, more than 50 % of the consumed power can be saved. These savings can result in tremendous reductions of the carbon footprint and of the operating costs produced by data centers.
|
Page generated in 0.0396 seconds