Spelling suggestions: "subject:"circuits anda lemsystems"" "subject:"circuits anda atemsystems""
41 |
Advanced Electro-Quasistatic Human Body Communication and Powering: From Theory to Application for Internet of BodiesArunashish Datta (19207768) 07 August 2024 (has links)
<p dir="ltr">Decades of semiconductor technology scaling and breakthroughs in communication technology have miniaturized computing, embedding it everywhere, enabling the development of smart things connected to the internet, forming the Internet of Things. Further miniaturization of devices has led to an exponential increase in the number of devices in and around the body in the last decade, forming a subset of IoT which is increasingly becoming popular as the Internet of Bodies (IoB). The gradual shift from the current form of human-electronics coexistence to human-electronics cooperation, is the vision of Internet of Bodies (IoB). This vision of a connected future with devices in and around our body talking to each other to assist their day-to-day functions demands energy efficient means of communication. Electro-Quasistatic Human Body Communication (EQS-HBC) has been proposed as an exciting alternative to traditional Radio Frequency based methodologies for communicating data around the body. In this dissertation, we expand the boundaries of wearable and implantable IoB nodes using Electro-Quasistatic Human Body Communication and Powering by developing advanced channel models and demonstrating novel applications.</p><p dir="ltr">Leveraging the advanced channel models developed for wearable EQS-HBC, we demonstrate wearable applications like ToSCom which extend the use cases of touchscreens to beyond touch detection and location to enable high-speed communication strictly through touch. We further demonstrate an application of EQS Resonant Human Body Powering to demonstrate Step-to-Charge, allowing mW-scale wireless power transfer to wearable devices. With increasing connected implanted healthcare devices becoming a part of the IoB space, we benchmark RF-based technologies for In-Body to Out-of-Body (IBOB) communication using novel in-vivo experiments. We then explore EQS-HBC in the realm of IBOB communication using advanced channel modeling, revealing its potential for low-power and physically secure data transfer from implantable devices to wearable nodes on the body, demonstrating its potential in extending the battery life span of implantable nodes. Finally, an overview of the potential of IoB devices is analyzed with the use of EQS-HBC where we propose a human-inspired distributed network of IoB nodes which brings us a step closer to the potential for perpetually operable devices in and around the body.</p>
|
42 |
Device-Circuit Co-Design Employing Phase Transition Materials for Low Power ElectronicsAhmedullah Aziz (7025126) 12 August 2019 (has links)
<div>
<div>
<p>Phase
transition materials (PTM) have garnered immense interest in concurrent
post-CMOS electronics, due to their unique properties such as - electrically
driven abrupt resistance switching, hysteresis, and high selectivity. The phase
transitions can be attributed to diverse material-specific phenomena, including-
correlated electrons, filamentary ion diffusion, and dimerization. In this
research, we explore the application space for these materials through
extensive device-circuit co-design and propose new ideas harnessing their unique
electrical properties. The abrupt transitions and high selectivity of PTMs
enable steep (< 60 mV/decade) switching characteristics in Hyper-FET, a
promising post-CMOS transistor. We explore device-circuit co-design methodology
for Hyper-FET and identify the criterion for material down-selection. We evaluate
the achievable voltage swing, energy-delay trade-off, and noise response for
this novel device. In addition to the application in low power logic device,
PTMs can actively facilitate non-volatile memory design. We propose a PTM
augmented Spin Transfer Torque (STT) MRAM that utilizes selective phase
transitions to boost the sense margin and stability of stored data,
simultaneously. We show that such selective transitions can also be used to
improve other MRAM designs with separate read/write paths, avoiding the possibility
of read-write conflicts. Further, we analyze the application of PTMs as
selectors in cross-point memories. We establish a general simulation framework for
cross-point memory array with PTM based <i>selector</i>.
We explore the biasing constraints, develop detailed design methodology, and
deduce figures of merit for PTM selectors. We also develop a computationally
efficient compact model to estimate the leakage through the sneak paths in a
cross-point array. Subsequently, we present a new sense amplifier design utilizing
PTM, which offers built-in tunable reference with low power and area demand.
Finally, we show that the hysteretic characteristics of unipolar PTMs can be
utilized to achieve highly efficient rectification. We validate the idea by demonstrating
significant design improvements in a <i>Cockcroft-Walton
Multiplier, </i>implemented with TS
based rectifiers. We emphasize the need to explore other PTMs with high
endurance, thermal stability, and faster switching to enable many more
innovative applications in the future.</p></div></div>
|
43 |
Integration of UAVS with Real Time Operating Systems and Establishing a Secure Data TransmissionNIRANJAN RAVI (7013471) 16 October 2019 (has links)
In today’s world, the applications of Unmanned Aerial Vehicle (UAV) systems
are leaping by extending their scope from military applications on to commercial and
medical sectors as well. Owing to this commercialization, the need to append external
hardware with UAV systems becomes inevitable. This external hardware could aid in
enabling wireless data transfer between the UAV system and remote Wireless Sensor
Networks (WSN) using low powered architecture like Thread, BLE (Bluetooth Low
Energy). The data is being transmitted from the flight controller to the ground
control station using a MAVlink (Micro Air Vehicle Link) protocol. But this radio
transmission method is not secure, which may lead to data leakage problems. The
ideal aim of this research is to address the issues of integrating different hardware with
the flight controller of the UAV system using a light-weight protocol called UAVCAN
(Unmanned Aerial Vehicle Controller Area Network). This would result in reduced
wiring and would harness the problem of integrating multiple systems to UAV. At
the same time, data security is addressed by deploying an encryption chip into the
UAV system to encrypt the data transfer using ECC (Elliptic curve cryptography)
and transmitting it to cloud platforms instead of radio transmission.
|
44 |
Energy-efficient interfaces for vibration energy harvestingDu, Sijun January 2018 (has links)
Ultra low power wireless sensors and sensor systems are of increasing interest in a variety of applications ranging from structural health monitoring to industrial process control. Electrochemical batteries have thus far remained the primary energy sources for such systems despite the finite associated lifetimes imposed due to limitations associated with energy density. However, certain applications (such as implantable biomedical electronic devices and tire pressure sensors) require the operation of sensors and sensor systems over significant periods of time, where battery usage may be impractical and add cost due to the requirement for periodic re-charging and/or replacement. In order to address this challenge and extend the operational lifetime of wireless sensors, there has been an emerging research interest on harvesting ambient vibration energy. Vibration energy harvesting is a technology that generates electrical energy from ambient kinetic energy. Despite numerous research publications in this field over the past decade, low power density and variable ambient conditions remain as the key limitations of vibration energy harvesting. In terms of the piezoelectric transducers, the open-circuit voltage is usually low, which limits its power while extracted by a full-bridge rectifier. In terms of the interface circuits, most reported circuits are limited by the power efficiency, suitability to real-world vibration conditions and system volume due to large off-chip components required. The research reported in this thesis is focused on increasing power output of piezoelectric transducers and power extraction efficiency of interface circuits. There are five main chapters describing two new design topologies of piezoelectric transducers and three novel active interface circuits implemented with CMOS technology. In order to improve the power output of a piezoelectric transducer, a series connection configuration scheme is proposed, which splits the electrode of a harvester into multiple equal regions connected in series to inherently increase the open-circuit voltage generated by the harvester. This topology passively increases the rectified power while using a full-bridge rectifier. While most of piezoelectric transducers are designed with piezoelectric layers fully covered by electrodes, this thesis proposes a new electrode design topology, which maximizes the raw AC output power of a piezoelectric harvester by finding an optimal electrode coverage. In order to extract power from a piezoelectric harvester, three active interface circuits are proposed in this thesis. The first one improves the conventional SSHI (synchronized switch harvesting on inductor) by employing a startup circuitry to enable the system to start operating under much lower vibration excitation levels. The second one dynamically configures the connection of the two regions of a piezoelectric transducer to increase the operational range and output power under a variety of excitation levels. The third one is a novel SSH architecture which employs capacitors instead of inductors to perform synchronous voltage flip. This new architecture is named as SSHC (synchronized switch harvesting on capacitors) to distinguish from SSHI rectifiers and indicate its inductorless architecture.
|
45 |
A Data Requisition Treatment Instrument For Clinical Quantifiable Soft Tissue ManipulationAbhinaba Bhattacharjee (6640157) 26 April 2019 (has links)
<div>Soft tissue manipulation is a widely used practice by manual therapists from a variety of healthcare disciplines to evaluate and treat neuromusculoskeletal impairments using mechanical stimulation either by hand massage or specially-designed tools. The practice of a specific approach of targeted pressure application using distinguished rigid mechanical tools to breakdown adhesions, scar tissues and improve range of motion for affected joints is called Instrument-Assisted Soft Tissue Manipulation (IASTM). The efficacy of IASTM has been demonstrated as a means to improve mobility of joints, reduce pain, enhance flexibility and restore function. However, unlike the techniques of ultrasound, traction, electrical stimulation, etc. the practice of IASTM doesn't involve any standard to objectively characterize massage with physical parameters. Thus, most IASTM treatments are subjective to practitioner or patient subjective feedback, which essentially addresses a need to quantify therapeutic massage or IASTM treatment with adequate treatment parameters to document, better analyze, compare and validate STM treatment as an established, state-of-the-art practice.</div><div><br></div><div>This thesis focuses on the development and implementation of Quantifiable Soft Tissue Manipulation (QSTM™) Technology by designing an ergonomic, portable and miniaturized wired localized pressure applicator medical device (Q1), for characterizing soft tissue manipulation. Dose-load response in terms of forces in Newtons; pitch angle of the device with respect to treatment plane; stroke frequency of massage measured within stipulated time of treatment; all in real-time has been captured to characterize a QSTM session. A QSTM PC software (Q-WARE©) featuring a Treatment Record System subjective to individual patients to save and retrieve treatment diagnostics and a real-time graphical visual monitoring system has been developed from scratch on WINDOWS platform to successfully implement the technology. This quantitative analysis of STM treatment without visual monitoring has demonstrated inter-reliability and intra-reliability inconsistencies by clinicians in STM force application. While improved consistency of treatment application has been found when using visual monitoring from the QSTM feedback system. This system has also discriminated variabilities in application of high, medium and low dose-loads and stroke frequency analysis during targeted treatment sessions.</div>
|
46 |
Efficient Minimum Cycle Mean Algorithms And Their ApplicationsSupriyo Maji (9158723) 23 July 2020 (has links)
<p>Minimum cycle mean (MCM) is an important concept in directed graphs. From clock period optimization, timing analysis to layout optimization, minimum cycle mean algorithms have found widespread use in VLSI system design optimization. With transistor size scaling to 10nm and below, complexities and size of the systems have grown rapidly over the last decade. Scalability of the algorithms both in terms of their runtime and memory usage is therefore important. </p>
<p><br></p>
<p>Among the few classical MCM algorithms, the algorithm by Young, Tarjan, and Orlin (YTO), has been particularly popular. When implemented with a binary heap, the YTO algorithm has the best runtime performance although it has higher asymptotic time complexity than Karp's algorithm. However, as an efficient implementation of YTO relies on data redundancy, its memory usage is higher and could be a prohibitive factor in large size problems. On the other hand, a typical implementation of Karp's algorithm can also be memory hungry. An early termination technique from Hartmann and Orlin (HO) can be directly applied to Karp's algorithm to improve its runtime performance and memory usage. Although not as efficient as YTO in runtime, HO algorithm has much less memory usage than YTO. We propose several improvements to HO algorithm. The proposed algorithm has comparable runtime performance to YTO for circuit graphs and dense random graphs while being better than HO algorithm in memory usage. </p>
<p><br></p>
<p>Minimum balancing of a directed graph is an application of the minimum cycle mean algorithm. Minimum balance algorithms have been used to optimally distribute slack for mitigating process variation induced timing violation issues in clock network. In a conventional minimum balance algorithm, the principal subroutine is that of finding MCM in a graph. In particular, the minimum balance algorithm iteratively finds the minimum cycle mean and the corresponding minimum-mean cycle, and uses the mean and cycle to update the graph by changing edge weights and reducing the graph size. The iterations terminate when the updated graph is a single node. Studies have shown that the bottleneck of the iterative process is the graph update operation as previous approaches involved updating the entire graph. We propose an improvement to the minimum balance algorithm by performing fewer changes to the edge weights in each iteration, resulting in better efficiency.</p>
<p><br></p>
<p>We also apply the minimum cycle mean algorithm in latency insensitive system design. Timing violations can occur in high performance communication links in system-on-chips (SoCs) in the late stages of the physical design process. To address the issues, latency insensitive systems (LISs) employ pipelining in the communication channels through insertion of the relay stations. Although the functionality of a LIS is robust with respect to the communication latencies, such insertion can degrade system throughput performance. Earlier studies have shown that the proper sizing of buffer queues after relay station insertion could eliminate such performance loss. However, solving the problem of maximum performance buffer queue sizing requires use of mixed integer linear programming (MILP) of which runtime is not scalable. We formulate the problem as a parameterized graph optimization problem where for every communication channel there is a parameterized edge with buffer counts as the edge weight. We then use minimum cycle mean algorithm to determine from which edges buffers can be removed safely without creating negative cycles. This is done iteratively in the similar style as the minimum balance algorithm. Experimental results suggest that the proposed approach is scalable. Moreover, quality of the solution is observed to be as good as that of the MILP based approach.</p><p><br></p>
|
47 |
Design of Intelligent Internet of Things and Internet of Bodies Sensor NodesShitij Tushar Avlani (11037774) 23 July 2021 (has links)
<div>Energy-efficient communication has remained the primary bottleneck in achieving fully energy-autonomous IoT nodes. Several scenarios including In-Sensor-Analytics (ISA), Collaborative Intelligence (CI) and Context-Aware-Switching (CAS) of the cluster-head during CI have been explored to trade-off the energies required for communication and computation in a wireless sensor network deployed in a mesh for multi-sensor measurement. A real-time co-optimization algorithm was developed for minimizing the energy consumption in the network for maximizing the overall battery lifetime of individual nodes.</div><div><br></div><div>The difficulty of achieving the design goals of lifetime, information accuracy, transmission distance, and cost, using traditional battery powered devices has driven significant research in energy-harvested wireless sensor nodes. This challenge is further amplified by the inherent power intensive nature of long-range communication when sensor networks are required to span vast areas such as agricultural fields and remote terrain. Solar power is a common energy source is wireless sensor nodes, however, it is not reliable due to fluctuations in power stemming from the changing seasons and weather conditions. This paper tackles these issues by presenting a perpetually-powered, energy-harvesting sensor node which utilizes a minimally sized solar cell and is capable of long range communication by dynamically co-optimizing energy consumption and information transfer, termed as Energy-Information Dynamic Co-Optimization (EICO). This energy-information intelligence is achieved by adaptive duty cycling of information transfer based on the total amount of energy available from the harvester and charge storage element to optimize the energy consumption of the sensor node, while employing event driven communication to minimize loss of information. We show results of continuous monitoring across 1Km without replacing the battery and maintaining an information accuracy of at least 95%.</div><div><br></div><div>Decades of continuous scaling in semiconductor technology has resulted in a drastic reduction in the cost and size of unit computing. This has enabled the design and development of small form factor wearable devices which communicate with each other to form a network around the body, commonly known as the Wireless Body Area Network (WBAN). These devices have found significant application for medical purposes such as reading surface bio-potential signals for monitoring, diagnosis, and therapy. One such device for the management of oropharyngeal swallowing disorders is described in this thesis. Radio wave transmission over air is the commonly used method of communication among these devices, but in recent years Human Body Communication has shown great promise to replace wireless communication for information exchange in a WBAN. However, there are very few studies in literature, that systematically study the channel loss of capacitive HBC for <i>wearable devices</i> over a wide frequency range with different terminations at the receiver, partly due to the need for <i>miniaturized wearable devices</i> for an accurate study. This thesis also measures and explores the channel loss of capacitive HBC from 100KHz to 1GHz for both high-impedance and 50Ohm terminations using wearable, battery powered devices; which is mandatory for accurate measurement of the HBC channel-loss, due to ground coupling effects. The measured results provide a consistent wearable, wide-frequency HBC channel loss data and could serve as a backbone for the emerging field of HBC by aiding in the selection of an appropriate operation frequency and termination.</div><div><br></div><div>Lastly, the power and security benefits of human body communication is demonstrated by extending it to animals (animal body communication). A sub-inch^3, custom-designed sensor node is built using off the shelf components which is capable of sensing and transmitting biopotential signals, through the body of the rat at significantly lower powers compared to traditional wireless transmissions. In-vivo experimental analysis proves that ABC successfully transmits acquired electrocardiogram (EKG) signals through the body with correlation accuracy >99% when compared to traditional wireless communication modalities, with a 50x reduction in power consumption.</div>
|
48 |
Advanced EM/Power Side-Channel Attacks and Low-overhead Circuit-level CountermeasuresDebayan Das (11178318) 27 July 2021 (has links)
<div>The huge gamut of today’s internet-connected embedded devices has led to increasing concerns regarding the security and confidentiality of data. To address these requirements, most embedded devices employ cryptographic algorithms, which are computationally secure. Despite such mathematical guarantees, as these algorithms are implemented on a physical platform, they leak critical information in the form of power consumption, electromagnetic (EM) radiation, timing, cache hits and misses, and so on, leading to side-channel analysis (SCA) attacks. Non-profiled SCA attacks like differential/correlational power/EM analysis (DPA/CPA/DEMA/CEMA) are direct attacks on a single device to extract the secret key of an encryption algorithm. On the other hand, profiled attacks comprise of building an offline template (model) using an identical device and the attack is performed on a similar device with much fewer traces.</div><div><br></div><div>This thesis focusses on developing efficient side-channel attacks and circuit-level low-overhead generic countermeasures. A cross-device deep learning-based profiling power side-channel attack (X-DeepSCA) is proposed which can break the secret key of an AES-128 encryption engine running on an Atmel microcontroller using just a single power trace, thereby increasing the threat surface of embedded devices significantly. Despite all these advancements, most works till date, both attacks as well as countermeasures, treat the crypto engine as a black box, and hence most protection techniques incur high power/area overheads.</div><div><br></div><div>This work presents the first white-box modeling of the EM leakage from a crypto hardware, leading to the understanding that the critical correlated current signature should not be passed through the higher metal layers. To achieve this goal, a signature attenuation hardware (SAH) is utilized, embedding the crypto core locally within the lower metal layers so that the critical correlated current signature is not passed through the higher metals, which behave as efficient antennas and its radiation can be picked up by a nearby attacker. Combination of the 2 techniques – current-domain signature suppression and local lower metal routing shows >350x signature attenuation in measurements on our fabricated 65nm test chip, leading to SCA resiliency beyond 1B encryptions, which is a 100x improvement in both EM and power SCA protection over the prior works with comparable overheads. Moreover, this is a generic countermeasure and can be utilized for any crypto core without any performance degradation.</div><div><br></div><div>Next, backed by our physics-level understanding of EM radiation, a digital library cell layout technique is proposed which shows >5x reduction in EM SCA leakage compared to the traditional digital logic gate layout design. Further, exploiting the magneto-quasistatic (MQS) regime of operation for the present-day CMOS circuits, a HFSS-based framework is proposed to develop a pre-silicon EM SCA evaluation technique to test the vulnerability of cryptographic implementations against such attacks during the design phase itself.</div><div><br></div><div>Finally, considering the continuous growth of wearable and implantable devices around a human body, this thesis also analyzes the security of the internet-of-body (IoB) and proposes electro-quasistatic human body communication (EQS-HBC) to form a covert body area network. While the traditional wireless body area network (WBAN) signals can be intercepted even at a distance of 5m, the EQS-HBC signals can be detected only up to 0.15m, which is practically in physical contact with the person. Thus, this pioneering work proposing EQS-HBC promises >30x improvement in private space compared to the traditional WBAN, enhancing physical security. In the long run, EQS-HBC can potentially enable several applications in the domain of connected healthcare, electroceuticals, augmented and virtual reality, and so on. In addition to these physical security guarantees, side-channel secure cryptographic algorithms can be augmented to develop a fully secure EQS-HBC node.</div>
|
49 |
Digital Signal Processing Architecture Design for Closed-Loop Electrical Nerve Stimulation SystemsJui-wei Tsai (9356939) 14 September 2020 (has links)
<div>Electrical nerve stimulation (ENS) is an emerging therapy for many neurological disorders. Compared with conventional one-way stimulations, closed-loop ENS approaches increase the stimulation efficacy and minimize patient's discomfort by constantly adjusting the stimulation parameters according to the feedback biomarkers from patients. Wireless neurostimulation devices capable of both stimulation and telemetry of recorded physiological signals are welcome for closed-loop ENS systems to improve the quality and reduce the costs of treatments, and real-time digital signal processing (DSP) engines processing and extracting features from recorded signals can reduce the data transmission rate and the resulting power consumption of wireless devices. Electrically-evoked compound action potential (ECAP) is an objective measure of nerve activity and has been used as the feedback biomarker in closed-loop ENS systems including neural response telemetry (NRT) systems and a newly proposed autonomous nerve control (ANC) platform. It's desirable to design a DSP engine for real-time processing of ECAP in closed-loop ENS systems. </div><div><br></div><div>This thesis focuses on developing the DSP architecture for real-time processing of ECAP, including stimulus artifact rejection (SAR), denoising, and extraction of nerve fiber responses as biomedical features, and its VLSI implementation for optimal hardware costs. The first part presents the DSP architecture for real-time SAR and denoising of ECAP in NRT systems. A bidirectional-filtered coherent averaging (BFCA) method is proposed, which enables the configurable linear-phase filter to be realized hardware efficiently for distortion-free filtering of ECAPs and can be easily combined with the alternating-polarity (AP) stimulation method for SAR. Design techniques including folded-IIR filter and division-free averaging are incorporated to reduce the computation cost. The second part presents the fiber-response extraction engine (FREE), a dedicated DSP engine for nerve activation control in the ANC platform. FREE employs the DSP architecture of the BFCA method combined with the AP stimulation, and the architecture of computationally efficient peak detection and classification algorithms for fiber response extraction from ECAP. FREE is mapped onto a custom-made and battery-powered wearable wireless device incorporating a low-power FPGA, a Bluetooth transceiver, a stimulation and recording analog front-end and a power-management unit. In comparison with previous software-based signal processing, FREE not only reduces the data rate of wireless devices but also improves the precision of fiber response classification in noisy environments, which contributes to the construction of high-accuracy nerve activation profile in the ANC platform. An application-specific integrated circuit (ASIC) version of FREE is implemented in 180-nm CMOS technology, with total chip area and core power consumption of 19.98 mm<sup>2</sup> and 1.95 mW, respectively. </div><div><br></div>
|
50 |
Smart Sensing System for a Lateral Micro Drilling RobotJose Alejandro Solorio Cervantes (11191893) 28 July 2021 (has links)
The oil and gas industry
faces a lack of compact drilling devices capable of performing horizontal
drilling maneuvers in depleted or abandoned wells in order to enhance oil
recovery. The purpose of this project was to design and develop a smart sensing
system that can be later implemented in compact drilling devices used to
perform horizontal drilling to enhance oil recovery in wells. A smart sensor is
the combination of a sensing element (sensor) and a microprocessor. Hence, a
smart sensing system is an arrangement that consists of different sensors,
where one or more have smart capabilities. The sensing system was built and
tested in a laboratory setting. For this, a test bench was used as a case study
to simulate the operation from a micro-drilling device. The smart sensing
system integrated the sensors essential for the direct operational measurements
required for the robot. The focus was on selecting reliable and sturdy
components that can handle the operation Down the Hole (DTH) on the final
lateral micro-drilling robot. The sensing system's recorded data was sent to a
microcontroller, where it was processed and then presented visually to the
operator through a User Interface (UI) developed in a cloud-based framework.
The information was filtered, processed, and sent to a controller that executed
commands and sent signals to the test bench’s actuators. The smart sensing
system included novel modules and sensors suitable for the operation in a harsh
environment such as the one faced in the drilling process. Furthermore, it was
designed as an independent, flexible module that can be implemented in test
benches with different settings and early robotic prototypes. The outcome of
this project was a sensing system able to provide robotic drilling devices with
flexibility while providing accurate and reliable measurements during their
operation.
|
Page generated in 0.0591 seconds