• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel applications of nanotechnology in medicine and green energy

Hayden, Steven C. 10 January 2012 (has links)
The development of techniques for colloidal nanoparticle synthesis has allowed scientists to fabricate materials that can manipulate light on a scale that is small even compared to the wavelength of the light itself. This ability has led to the development of myriad and diverse applications of nanostructures in wide-ranging fields. This thesis focuses on the investigation and exploitation of nanoscale material properties in the fields of medicine and energy. The unique optical properties of nanoparticles arise from their size and their high surface area to volume ratios compared to bulk materials. As a result of this relationship, the surface characteristics of nanoparticles generally dominate their properties, whereas in bulk materials the surface atoms have very little bearing on the properties of the composite. Chapter 1 gives an introduction to nanoparticles and their optical properties, including a discussion of the plasmon resonance and the properties imbued upon nanoparticles possesing such a resonance as well as the applicability of these properties that will be explored in the subsequent chapters. Chapter 2 presents a study of the interaction of cationic, hydrophobic gold nanoparticles as probes to elucidate specific regions of interest on cell surfaces. The high imaging contrast of gold nanoparticles in electron microscopy allows for visual, macroscopic observation of the aggregation patterns formed by these nanoparticles on cell surfaces. Plasmon resonant coupling between proximal nanoparticles is exploited in order to monitor nanoprobe binding and localization over time with the use of extinction spectroscopy. The role of surface proteins in the nanoparticle-cell surface interaction is elucidated, generating composite data with relevance in pharmaceutical development and pharmacokinetics. Additionally, bacteria strain-dependent toxicity is observed and subsequently investigated for smaller gold nanoparticle probes, demonstrating a potential use for nanoparticles as strain-specific antibiotics. The development of affordable, effective antibiotic technology is one of the major scientific challenges of our time; infections from pathogen-infested drinking water alone account for millions of deaths each year worldwide. In Chapter 3, we investigate the use of titanium dioxide as an inexpensive method to harness solar energy to split water into reactive species and thereby decontamitate solutions of E. coli. Though titanium dioxide is an excellent catalyst for water splitting, it requires UV irradiation, which is fairly lacking in the solar emission spectrum. Further, recuperation of titanium dioxide nanoparticles from solution is non-trivial, and its immobilization into a film greatly limits its surface area and charge carrier efficiency, thereby limiting its activity. We treat both the poor visible light absorption capability as well as the surface area limitation in this study. CdS semiconductor nanocrystals are used to extend the absorption edge of TiO₂ further into the visible light region of the spectrum by providing for lower-energy photon absorption and charge injection into titanium dioxide. TiO₂ is also electrochemically anodized to generate TiO₂ nanotube arrays, which have greatly increased surface area as well as more efficient charge transfer properties compared to thin films of TiO₂ nanoparticles. The utility of nanoparticles in increasing the light absorption of other systems continues as a theme in the work presented in the next two chapters. Chapter 4 ex- amines the plasmonic enhancement of the solar energy conversion in a biomimetic system. In this endeavor, we enhance the photocurrent generated by a light-transducing, proton-pumping protein, bacteriorhodopsin, in a 3-dimensional wet electrochemical cell. First, we increase the overall charge carrier separation with the use of a proton- selective membrane in order to minimize ionic depolarization in the cell. We then use plasmonic nanoparticles to exploit an irregularity in the bacteriorhodopsin photocycle known as the blue light effect. This effect shortens the timescale of the photocyle by more than 99% via blue photon absorption, but it has a very low natural occurrence. Plasmonic nanoparticles tuned to the blue wavelength region increase the flux of blue photons on a local level and thereby increase the overall photocurrent generation. We first examine the importance of nanoparticle field strength to photocurrent enhancement using silver nanospheres with different capping shell thicknesses. We then consider the trade-off between (1) using a nanoparticle with a plasmon resonance tuned perfectly to the blue wavelength region and (2) using a nanoparticle with a stronger field intensity but weaker energetic presence in the blue. By minimizing ionic depolarization, minimizing shielding of the plasmon electromagnetic field, and maximizing the field strength while maintaining the plasmon frequency at the proper wavelength, we demonstrate an enhancement of 5,000-fold in the photocurrent production by bacteriorhodopsin. Chapter 5 explores a variation on the theme of Chapter 4 with an application in cancer therapeutics. Here, a photodynamic cancer drug, protoporphyrin IX (PpIX), is incorporated into complexes with silver nanospheres, gold nanospheres, and gold nanorods. Each of these nanoparticles displays a plasmon resonance in a different region of the spectrum, with consequent different overlap with the absorption or emission of the drug. Photodynamic therapeutic potential is measured in situ and in vivo, and the drug activity is shown to be strongest when drug absorption overlaps with plasmon resonance. Absorption by electronic excitations in the particle crystal lattice is shown to function as a competitive light filter and decrease drug activity. Additionally, the method of attachment of the drug to the nanoparticle is examined. Maximum enhancement of drug activity is shown to require the drug to remain bound close to the nanoparticle surface, where the electromagnetic field strength is highest. This plasmonic enhancement effect on drug activity is shown to outstrip the increase in drug activity seen when using the nanoparticle solely as a delivery platform. In Chapter 6, some synthetic techniques are presented for various nanomaterials. Included are syntheses for gold, silver, and semiconductor nanoparticles of a variety of shapes and sizes as well as for TiO₂ nanotube arrays. The relationship of the ratio of capping agent to metal salt is explored for gold nanospheres, and a method for facile tuning of the longitudinal plasmon resonance displayed by gold nanorods is presented. Synthetic techniques are also presented for the nanoparticles whose applications are explored in the preceding chapters.
2

The development of a green energy sector model for the Southern African Development Community (SADC)

Ramagoma, Mbavhalelo Justice January 2016 (has links)
The Southern African Development Community (SADC) region, like most parts of the African continent, faces significant modern energy services access challenges. It is estimated that less than 45% of the SADC region’s populace have access to reliable modern energy forms and the situation is worse in rural areas where access is approximately 30%. Poor energy security is exacerbated by electricity power cuts and load shedding in almost all of the member states in the region. With the advent of battery storage, all forms of green energy have the potential to contribute to the shortfall in the supply of peaking power required to meet the daily (morning and evenings) and seasonal (winter) peaks when most power is required on the grid network. The region is endowed with vast green (renewables/low carbon or clean) energy resources. The purpose of this study is to expand the empirical body of research and knowledge on factors that contribute to widespread access success to green energy in the SADC region. Investments into green energy resources require an understanding of the unique characteristics of the energy sector in the region. In order to achieve this, a conceptual theoretical model was developed and tested empirically. Factors that influence green energy access success were identified through literature reviews and discussions with energy practitioners. All identified factors were then operationalised by carefully defining them in the context of the study. In order to test the proposed theoretical model and the hypothesised relationships, a structured questionnaire was developed and sent to energy practitioners from various sections of the energy sector in the region. STATISTICA 12 was employed to analyse relationships between variables and responses between identified groups. Pearson Product Moment Correlation (Pearson r) was employed to determine correlations between variables. Conclusions about hypotheses six (6) to fifteen (15) were made based on correlations between variables. T-tests were employed to make inferences about the views of various categories of respondents with regard to the twelve (12) identified variables. Multivariate analysis of variance (MANOVA) and Analysis of variance (ANOVA) examined associations between the dependent and independent variables with the identified categories of respondents and conclusions about hypotheses one (1) to five (5) and sixteen (16) were also made. The study finds that policy and the regulatory environment are still the main driving force behind energy access in the region. Power generation is managed by authorities’ power utility companies. Unbundling of power utilities supported by new energy business and operating models to accommodate mini and off grid power plants is found to be a key to green energy access in the region. The energy market is transforming in favour of independent power producers (IPPs) and consumers will significantly influence energy access decisions in the future. Green energy power storage to overcome intermittency will feature prominently in the success of green energy access in the region. Widespread access success to green energy will be attained when green energy access is reliable, affordable, efficient, and socially acceptable, meet the demand and reduces environmental pollution. The study recommends that strategic green energy planning must incorporate green energy infrastructure development, projects finance and human capacity development as priorities amongst SADC region’s member countries. Regional energy access enabling institutions must be strengthened; energy policies implemented with vigour and private sector participation enhanced in an integrated energy market.
3

Solar cell device simulations from ab initio data and the implementation of efficiency enhancing techniques

Mokgosi, Itumeleng Siphiwe January 2018 (has links)
A research report submitted in partial fulfilment to the degree of Master of Science in the School of Physics, University of the Witwatersrand, 2018 / With the global energy consumption at an all-time high and the demand for energy estimated to triple by 2050, renewable energy sources such as solar are pivotal in an addressing this global energy demand. Solar power generation by photovoltaic cells enjoys several advantages compared to other forms of electricity generation such as a reduced fossil fuel dependence, modularity, easy and flexible installation, and scalability. The development of novel solar cells that offer increased efficiencies is an integral component of the process of addressing the global energy needs. Solar cell device simulations offer a cost-effective means to explore the impact of different material properties on the overall efficiency of the solar cell. The use of ab initio calculated material properties that serve as an import for the device simulations offers a means to easily study and estimate the typical solar cell efficiencies of different types of solar cells. The implementation of new light harnessing features, like frequency conversion layers or plasmonic nanoparticles, and the integration of these futures into existing device simulation codes serves as a useful tool that aids solar cell development. This work explores the theoretical and numerical background for the simulation of solar cell devices. A brief explanation of how ab initio calculated parameters can be used, together with the implementation of frequency conversion techniques in existing simulation codes is given. It is shown that the solar cell performance parameters can be well approximated using ab intio parameters. Also, the positive effect of frequency conversion techniques is demonstrated with examples of how this tool can be implemented in existing solar cell device simulation codes. The approaches discussed in this work can serve as a good framework for the modeling of novel solar cell devices / MT 2019
4

Investigating the introduction of e-mobility in South Africa

Otto, Willem Liebrecht 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: See PDF for abstract. / AFRIKAANSE OPSOMMING: Sien die PDF vir die opsomming.
5

Economic Resilience, Disasters, and Green Jobs: An Institutional Collective Action Framework

Ismayilov, Orkhan M. 12 1900 (has links)
This dissertation is about economic resilience of local governments to natural disasters. Specifically, the dissertation investigates resilience on regional level. Moreover, the dissertation also investigates growth in the green job sector in local governments. The findings indicate that local governments working with each other helps green job creation. In addition, the dissertation finds that green jobs, following disasters, experience three percent growth. This dissertation is important because it investigates the relationship between climate- related disasters and green jobs, which is an area that is under-investigated.
6

Clean technology transition potential in South Africa's gold mining sector : case of Harmony's Kusasalethu Mine

Chavalala, Bongani 03 July 2014 (has links)
Countries and governments around the world have accepted the scientific argument on the prevalence and the possible effect of global warming and climate change on the environment, world economy and ultimately human life (Nhamo, 2011). Amongst all industrial corporations, the mining industry is the biggest environmental polluter due to its extractive nature and energy intensive operations. However because of its economic importance, it cannot be abandoned, instead it needs to find a win-win situation, where it continues to succeed but minimizes environmental damage. This thesis aims to examine the possible impact of clean technology on the sustainability of South African gold mining sector. Specifically, the study aims to determine the drivers behind the move towards clean technologies and methods, identify challenges and opportunities associated with this transition at Harmony Gold’s Kusasalethu mine. This was achieved through using Kusasalethu as a case study to which investigations of the effectiveness of clean technology and methods were carried out. The case study was multidimensional; exploring the effect of clean technology on energy consumption, greenhouse gas emission (GHG), water consumption, cyanide management and Kusasalethu’s financial performance. While the case study was largely qualitative it involved quantitative data analysis that had to be triangulated with other data sources and data gathering instruments to achieve legitimacy. This meant that the study had to adopt the mixed research methods. The instruments used included; key informant interviews, and document analysis, structured questionnaire and a set of open ended questions that served as interview guide. The qualitative data were analyzed by means of coding, descriptions, typologies, taxonomies and visual representations, whilst quantitative data were processed through Microsoft Excel to generate various forms of descriptive statistics. The findings indicate that resource consumption (energy, water, cyanide) depends on the mine design and gold output rate. Clean technology implementation at Kusasalethu helped the mine reduce energy consumption and GHG emissions. However scope 2 (indirect GHG emissions associated with energy consumption) is also determined by coal production technologies and methods used by coal mines. Although data on Kusasalethu water and cyanide management and related technologies was not available, the aggregate data for all Harmony Gold mines indicated higher annual water and cyanide consumption during 2010 and 2012. In terms of Kusasalethu’s financial performance and clean technology adaptation, acquisition of clean technologies increased capital expenditure temporarily. However, the positive effects of the clean technology transition and implementation minimized operational cost and increased operational profit greatly. Although adopting clean technologies calls for increased capital expenditure, this study reveals that this expenditure pays off in lower operation costs for the mine and the environment benefits through lower GHG emission. However, clean technologies are yet to impact significantly in lowering water and cyanide consumption levels as they do with energy consumption. The study concluded that clean technology and methods played a positive role on Kusasalethu’s environmental impact and financial performance by reducing energy consumption and GHG emissions. Though, more need to be done in terms of water and cyanide management. / Environmental Sciences / M. Sc. (Environmental Management)
7

Clean technology transition potential in South Africa's gold mining sector : case of Harmony's Kusasalethu Mine

Chavalala, Bongani 03 July 2014 (has links)
Countries and governments around the world have accepted the scientific argument on the prevalence and the possible effect of global warming and climate change on the environment, world economy and ultimately human life (Nhamo, 2011). Amongst all industrial corporations, the mining industry is the biggest environmental polluter due to its extractive nature and energy intensive operations. However because of its economic importance, it cannot be abandoned, instead it needs to find a win-win situation, where it continues to succeed but minimizes environmental damage. This thesis aims to examine the possible impact of clean technology on the sustainability of South African gold mining sector. Specifically, the study aims to determine the drivers behind the move towards clean technologies and methods, identify challenges and opportunities associated with this transition at Harmony Gold’s Kusasalethu mine. This was achieved through using Kusasalethu as a case study to which investigations of the effectiveness of clean technology and methods were carried out. The case study was multidimensional; exploring the effect of clean technology on energy consumption, greenhouse gas emission (GHG), water consumption, cyanide management and Kusasalethu’s financial performance. While the case study was largely qualitative it involved quantitative data analysis that had to be triangulated with other data sources and data gathering instruments to achieve legitimacy. This meant that the study had to adopt the mixed research methods. The instruments used included; key informant interviews, and document analysis, structured questionnaire and a set of open ended questions that served as interview guide. The qualitative data were analyzed by means of coding, descriptions, typologies, taxonomies and visual representations, whilst quantitative data were processed through Microsoft Excel to generate various forms of descriptive statistics. The findings indicate that resource consumption (energy, water, cyanide) depends on the mine design and gold output rate. Clean technology implementation at Kusasalethu helped the mine reduce energy consumption and GHG emissions. However scope 2 (indirect GHG emissions associated with energy consumption) is also determined by coal production technologies and methods used by coal mines. Although data on Kusasalethu water and cyanide management and related technologies was not available, the aggregate data for all Harmony Gold mines indicated higher annual water and cyanide consumption during 2010 and 2012. In terms of Kusasalethu’s financial performance and clean technology adaptation, acquisition of clean technologies increased capital expenditure temporarily. However, the positive effects of the clean technology transition and implementation minimized operational cost and increased operational profit greatly. Although adopting clean technologies calls for increased capital expenditure, this study reveals that this expenditure pays off in lower operation costs for the mine and the environment benefits through lower GHG emission. However, clean technologies are yet to impact significantly in lowering water and cyanide consumption levels as they do with energy consumption. The study concluded that clean technology and methods played a positive role on Kusasalethu’s environmental impact and financial performance by reducing energy consumption and GHG emissions. Though, more need to be done in terms of water and cyanide management. / Environmental Sciences / M. Sc. (Environmental Management)

Page generated in 0.1016 seconds