11 |
RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell IdentityBuchholz, Frank, Nitzsche, Anja, Paszkowski-Rogacz, Maciej, Matarese, Filomena, Janssen-Megens, Eva M., Hubner, Nina C., Schulz, Herbert, de Vries, Ingrid, Ding, Li, Huebner, Norbert, Mann, Matthias, Stunnenberg, Hendrik G. 18 January 2016 (has links) (PDF)
For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21 - pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program.
|
12 |
RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell IdentityBuchholz, Frank, Nitzsche, Anja, Paszkowski-Rogacz, Maciej, Matarese, Filomena, Janssen-Megens, Eva M., Hubner, Nina C., Schulz, Herbert, de Vries, Ingrid, Ding, Li, Huebner, Norbert, Mann, Matthias, Stunnenberg, Hendrik G. 18 January 2016 (has links)
For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21 - pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program.
|
13 |
Elucidation of subcellular regulation of voltage-dependent calcium channel functions via β subunit interacting molecules / 電位依存性Ca2+チャネルβサブユニット相互作用タンパク質による、細胞内局所的なCa2+チャネル機能調節機構の解明に関する研究Mitsuru, Hirano 24 July 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20633号 / 工博第4371号 / 新制||工||1679(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 森 泰生, 教授 浜地 格, 教授 跡見 晴幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
14 |
Étude du réseau d'interactions entre les protéines du Virus de l'Hépatite CRacine, Marie-Eve January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
15 |
Impact de SRP72 sur le facteur de transcription ETV6 dans la leucémie aiguë lymphoblastiqueFuchs, Claire 07 1900 (has links)
No description available.
|
16 |
Molekulare Charakterisierung des COPS5-Gens und seines Genproduktes als Kandidat für die Spastische Spinalparalyse / Molecular characterisation of the COPS5 Gen and its Gen Product as a candidate for the spastic paraplegiaEisenberg, André 07 March 2011 (has links)
No description available.
|
17 |
Étude du réseau d'interactions entre les protéines du Virus de l'Hépatite CRacine, Marie-Eve January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
18 |
Involvement of the Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF) in the Hepatitis Delta Virus (HDV) RNA-Templated TranscriptionZhang, Da Jiang 13 May 2014 (has links)
Hepatitis delta virus (HDV) is the smallest known mammalian RNA virus, containing a genome of ~ 1700 nt. Replication of HDV is extremely dependent on the host transcription machinery. Previous studies indicated that RNA polymerase II (RNAPII) directly binds to and forms an active preinitiation complex on the right terminal stem-loop fragment (R199G) of HDV genomic RNA, and that the polypyrimidine tract-binding protein-associated splicing factor (PSF) directly binds to the same region. Further studies demonstrated that PSF also binds to the carboxyl-terminal domain (CTD) of RNAP II. In my thesis, co-immunoprecipitation assays were performed to show that PSF stimulates the interaction of RNAPII with R199G. Results of co-immunoprecipitation experiments also suggest that both the RNA recognition motif 2 (RRM2) and N-terminal proline-rich region (PRR) of PSF are required for the interaction between PSF and RNAPII, while the two RNA recognition motifs (RRM1 and RRM2) might be required for the interaction of PSF with R199G. Furthermore, in vitro run-off transcription assays suggest that PSF facilitates the HDV RNA transcription from the R199G template. Together, the above experiments suggest that PSF might act as a transcription factor for the RNAPII transcription of HDV RNA by linking the CTD of RNAPII and the HDV RNA promoter. My experiments provide a better understanding of the mechanism of HDV RNA-dependent transcription by RNAP II.
|
19 |
Involvement of the Polypyrimidine Tract-Binding Protein-Associated Splicing Factor (PSF) in the Hepatitis Delta Virus (HDV) RNA-Templated TranscriptionZhang, Da Jiang January 2014 (has links)
Hepatitis delta virus (HDV) is the smallest known mammalian RNA virus, containing a genome of ~ 1700 nt. Replication of HDV is extremely dependent on the host transcription machinery. Previous studies indicated that RNA polymerase II (RNAPII) directly binds to and forms an active preinitiation complex on the right terminal stem-loop fragment (R199G) of HDV genomic RNA, and that the polypyrimidine tract-binding protein-associated splicing factor (PSF) directly binds to the same region. Further studies demonstrated that PSF also binds to the carboxyl-terminal domain (CTD) of RNAP II. In my thesis, co-immunoprecipitation assays were performed to show that PSF stimulates the interaction of RNAPII with R199G. Results of co-immunoprecipitation experiments also suggest that both the RNA recognition motif 2 (RRM2) and N-terminal proline-rich region (PRR) of PSF are required for the interaction between PSF and RNAPII, while the two RNA recognition motifs (RRM1 and RRM2) might be required for the interaction of PSF with R199G. Furthermore, in vitro run-off transcription assays suggest that PSF facilitates the HDV RNA transcription from the R199G template. Together, the above experiments suggest that PSF might act as a transcription factor for the RNAPII transcription of HDV RNA by linking the CTD of RNAPII and the HDV RNA promoter. My experiments provide a better understanding of the mechanism of HDV RNA-dependent transcription by RNAP II.
|
20 |
Caractérisation et généralisation de l’implication de la voie NOTCH cytoplasmique au cours des processus de transition épithélio-mésenchymateuse chez l’embryon de poulet / Enforcement of cytoplasmic Notch pathway implication in epithelio-mesenchymal transition and cell differentiation in chicken embryosLebrun, Diane 08 June 2018 (has links)
La transition épithélio-mésenchymateuse (EMT) est un processus incontournable dans de nombreux contextes normaux et pathologiques, tels que gastrulation, organogenèse, fibroses et cancers. Cette transformation de cellule épithéliale en cellule mésenchymateuse est indissociable de l'acquisition de propriétés migratoires et est généralement associée à un changement de destin cellulaire. Différentes voies moléculaires sont impliquées selon le contexte de l'EMT concernée. Récemment, notre laboratoire a mis en évidence que la voie Notch cytoplasmique contrôle l'EMT des cellules de la lèvre dorso-médiale du somite (DML). Les crêtes neurales exprimant DLL1 activent « en passant » le récepteur NOTCH, liberant ainsi le domaine intra-cytoplasmique de NOTCH (NICD). Dans le cytoplasme, NICD inhibe la kinase GSK3ß, conduisant à la stabilisation de SNAIL, un gène maître de la transition épithélio-mésenchymateuse. Il en résulte une libération de la βcaténine des jonctions adhérentes qui, après translocation dans le noyau, active la transcription des gènes de la myogénèse (Myf5). Ainsi, l'activation de la voie Notch cytoplasmique permet une induction concomitante de l'EMT et de la myogénèse. La fonction cytoplasmique de Notch reste controversée et le mécanisme par lequel NICD inhibe GSK3ß reste obscur. Au cours de ma thèse j'ai cherché à élucider le mécanisme par lequel NICD inhibe l'activité kinase de GSK3ß. J'ai confirmé l'interaction de GSK3ß et de NICD en démontrant leur interaction via CoIP. Après avoir démontré l'implication de la sérine-thréonie kinase AKT dans la myogenèse des cellules de la DML, j'ai mis en évidence, via CoIP et électroporation, que l'inhibition GSK3ß par NICD est très certainement médiée par AKT, connue pour être impliquée dans l'EMT et inhiber GSK3ß par phosphorylation. En comparant le NICD1 de poulet et les 4 NICD de souris, j'ai montré que l'expression exogène de ces 5 molécules induit l'EMT et la différenciation myogénique de manière similaire. J'ai aussi montré que parmi des différents domaines de NICD, le domaine RAM, connu pour se lier à l'ADN (via RBPJ), est nécessaire et suffisant à l'inhibition de GSK3ß. Un second axe de ma thèse a été de tester l'implication de la voie Notch cytoplasmique dans d'autres contextes d'EMT. Pour ce faire, j'ai mis en évidence que cette voie est impliquée dans les autres lèvres du dermomyotome mais aussi dans les crêtes neurales qui délaminent du toit du tube neural. J'ai en particulier mis en évidence une co-activation des voies Wnt et Notch, une inhibition de la kinase GSK3ß par NICD cytoplasmique ainsi qu'une inhibition de la différenciation en présence d'une ß-caténine mutée, retenue à la membrane, ou en présence d'une molécule SNAIL2 dominant-négative. Le dernier axe de ma thèse a consisté à élucider le mécanisme de régulation de l'induction de l'EMT et de la myogenèse via l'activation de NICD. Il a été mis en évidence que toutes les cellules de la DML peuvent être activées via DLL1 et que la surexpression massive de NICD dans la DML provoque une différenciation massive et une déplétion du groupe de cellules progénitrices. Afin de déterminer si la régulation de cette initiation se fait avant ou après induction de NICD, j'ai créé un plasmide permettant de répondre à cette question et afin de visualiser son expression in vivo, j'ai initié une collaboration avec une équipe de l'ILM afin de créer un microscope vertical SPIM biphoton permettant l'observation d'embryon de poulets vivants [etc...] / The epithelio-mesenchymal transition (EMT) is a well-known mechanism by which epithelial cells lose their adherent connections and gain migratory properties, associated with a gain of a mesenchymal phenotype. This EMT is required in numerous processes as gastrulation, organogenesis, fibrosis and cancers. Various molecular pathways orchestrate the EMT depending on the EMT biological context. Recently, our laboratory highlighted the implication of the cytoplasmic Notch pathway in the dorso-medial lip (DML) EMT. In the DML tissue, theEMT is synchronized with differentiation pathways, to generate cells forming the primary myotome. Our laboratory showed that neural crests cells expressing DLL1 activate NOTCH receptor of the DML cells, via a “kiss and run” model. This leads to NOTCH cleavage, releasing an activated intra-cytoplasmic NOTCH domain (NICD). In the cytoplasm, NICD inhibits the GSK3ß kinase, leading to the stabilization of SNAIL and the free cytoplasmic ßcatenin. These molecules translocate into the nucleus and lead to the activation of MRF as Myf5 (ß-catenin) and to the repression of adherent genes (SNAIL). Therefore, Notch cytoplasmic pathway allows a synergized induction of both, the EMT and myogenic programs. This pathway remains controversial and the precise mechanism how NICD inhibits GSK3ß needs to be elucidated. Therefore, the aim of my thesis project was to clarify how NICD inhibits GSK3ß activity. First, I confirmed that NICD and GSK3ß physically interact by CoIP. Moreover, I demonstrated that the serin-threonin kinase AKT, known to inhibit GSK3ß by phosphorylation and also to mediate EMT in cancer, can physically interact with NICD in the cytoplasm. I have also shown that AKT mediates the induction of the myogenic program through the inhibitory phosphorylation of GSK3ß and that SNAIL is downstream of AKT. Together, these experiments indicate that AKT mediates, through phosphorylation, the cytoplasmic NICD inhibition of GSK3ß leading to myogenesis. A comparison of the chicken NICD1 and the 4 isoforms of mouse NICD highlighted that these 5 proteins induce EMT and myogenesis similarly. The dissection of the different conserved domains in the 5 different NICD proteins demonstrated that the RAM domain, known to activate transcription by binding to RBPJ, is necessary and sufficient for GSK3ß inhibition. A second axis of the thesis has been to test the involvment of the cytoplasmic Notch pathway in other EMT contexts. First, I highlighted that this pathway induces myogenesis, showing that NICD inhibits GSK3ß activity in the ventro-lateral lip. I further demonstrated that the cytoplasmic Notch pathway is implicated in the EMT and differentiation of the neural crests cells delaminating from the dorsal neural tube. Particularly, I have shown a co-activation of the Wnt and Notch pathway in premigratory and migratory neural crests. Moreover, I demonstrated a cytoplasmic inhibition of the kinase activity of GSK3ß by NICD, as well as the induction of the differentiation by cytoplasmic ß-catenin or SNAIL2. In a third axis of my thesis, I tried to clarify the regulatory mechanism involved in Notch activation. Previously it has been demonstrated that in all the DML cells Notch can be activated by an overexpression of DLL1 and that an ectopic expression of NICD in the DML cells induce a massive differentiation and depletion of the progenitor pool. To determine if the regulation of this initiation of the myogenic program occurs before or after Notch activation, I designed a plasmid to visualize Notch activation in vivo. In order to be able to follow the DLM cells and Notch activation in vivo, I initiated a collaboration with an ILM team to create a vertical SPIM biphoton microscope. In the future, this microscope will allow us to follow cells in living chicken embryos [etc...]
|
Page generated in 0.0875 seconds