• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis for dissipative Maxwell-Bloch type models

Eichenauer, Florian 13 December 2016 (has links)
Die vorliegende Dissertation befasst sich mit der mathematischen Modellierung semi-klassischer Licht-Materie-Interaktion. Im semiklassischen Bild wird Materie durch eine Dichtematrix "rho" beschrieben. Das Konzept der Dichtematrizen ist quantenmechanischer Natur. Auf der anderen Seite wird Licht durch ein klassisches elektromagnetisches Feld "(E,H)" beschrieben. Wir stellen einen mathematischen Rahmen vor, in dem wir systematisch dissipative Effekte in die Liouville-von-Neumann-Gleichung inkludieren. Bei unserem Ansatz sticht ins Auge, dass Lösungen der resultierenden Gleichung eine intrinsische Liapunov-Funktion besitzen. Anschließend koppeln wir die resultierende Gleichung mit den Maxwell-Gleichungen und erhalten ein neues selbstkonsistentes, dissipatives Modell vom Maxwell-Bloch-Typ. Der Fokus dieser Arbeit liegt auf der intensiven mathematischen Studie des dissipativen Modells vom Maxwell-Bloch-Typ. Da das Modell Lipschitz-Stetigkeit vermissen lassen, kreieren wir eine regularisierte Version des Modells, das Lipschitz-stetig ist. Wir beschränken unsere Analyse im Wesentlichen auf die Lipschitz-stetige Regularisierung. Für regularisierte Versionen des dissipativen Modells zeigen wir die Existenz von Lösungen des zugehörigen Anfangswertproblems. Der Kern des Existenzbeweises besteht aus einem Resultat von ``compensated compactness'''', das von P. Gérard bewiesen wurde, sowie aus einem Lemma vom Rellich-Typ. In Teilen folgt dieser Beweis dem Vorgehen einer älteren Arbeit von J.-L. Joly, G. Métivier und J. Rauch. / This thesis deals with the mathematical modeling of semi-classical matter-light interaction. In the semi-classical picture, matter is described by a density matrix "rho", a quantum mechanical concept. Light on the other hand, is described by a classical electromagnetic field "(E,H)". We give a short overview of the physical background, introduce the usual coupling mechanism and derive the classical Maxwell-Bloch equations which have intensively been studied in the literature. Moreover, We introduce a mathematical framework in which we state a systematic approach to include dissipative effects in the Liouville-von-Neumann equation. The striking advantage of our approach is the intrinsic existence of a Liapunov function for solutions to the resulting evolution equation. Next, we couple the resulting equation to the Maxwell equations and arrive at a new self-consistent dissipative Maxwell-Bloch type model for semi-classical matter-light interaction. The main focus of this work lies on the intensive mathematical study of the dissipative Maxwell-Bloch type model. Since our model lacks Lipschitz continuity, we create a regularized version of the model that is Lipschitz continuous. We mostly restrict our analysis to the Lipschitz continuous regularization. For regularized versions of the dissipative Maxwell-Bloch type model, we prove existence of solutions to the corresponding Cauchy problem. The core of the proof is based on results from compensated compactness due to P. Gérard and a Rellich type lemma. In parts, this proof closely follows the lines of an earlier work due to J.-L. Joly, G. Métivier and J. Rauch.
2

Stability and Convergence of High Order Numerical Methods for Nonlinear Hyperbolic Conservation Laws

Mehmetoglu, Orhan 2012 August 1900 (has links)
Recently there have been numerous advances in the development of numerical algorithms to solve conservation laws. Even though the analytical theory (existence-uniqueness) is complete in the case of scalar conservation laws, there are many numerically robust methods for which the question of convergence and error estimates are still open. Usually high order schemes are constructed to be Total Variation Diminishing (TVD) which only guarantees convergence of such schemes to a weak solution. The standard approach in proving convergence to the entropy solution is to try to establish cell entropy inequalities. However, this typically requires additional non-homogeneous limitations on the numerical method, which reduces the modified scheme to first order when the mesh is refined. There are only a few results on the convergence which do not impose such limitations and all of them assume some smoothness on the initial data in addition to L^infinity bound. The Nessyahu-Tadmor (NT) scheme is a typical example of a high order scheme. It is a simple yet robust second order non-oscillatory scheme, which relies on a non-linear piecewise linear reconstruction. A standard reconstruction choice is based on the so-called minmod limiter which gives a maximum principle for the scheme. Unfortunately, this limiter reduces the reconstruction to first order at local extrema. Numerical evidence suggests that this limitation is not necessary. By using MAPR-like limiters, one can allow local nonlinear reconstructions which do not reduce to first order at local extrema. However, use of such limiters requires a new approach when trying to prove a maximum principle for the scheme. It is also well known that the NT scheme does not satisfy the so-called strict cell entropy inequalities, which is the main difficulty in proving convergence to the entropy solution. In this work, the NT scheme with MAPR-like limiters is considered. A maximum principle result for a conservation law with any Lipschitz flux and also with any k-monotone flux is proven. Using this result it is also proven that in the case of strictly convex flux, the NT scheme with a properly selected MAPR-like limiter satisfies an one-sided Lipschitz stability estimate. As a result, convergence to the unique entropy solution when the initial data satisfies the so-called one-sided Lipschitz condition is obtained. Finally, compensated compactness arguments are employed to prove that for any bounded initial data, the NT scheme based on a MAPR-like limiter converges strongly on compact sets to the unique entropy solution of the conservation law with a strictly convex flux.
3

Hyperbolic problems in fluids and relativity

Schrecker, Matthew January 2018 (has links)
In this thesis, we present a collection of newly obtained results concerning the existence of vanishing viscosity solutions to the one-dimensional compressible Euler equations of gas dynamics, with and without geometric structure. We demonstrate the existence of such vanishing viscosity solutions, which we show to be entropy solutions, to the transonic nozzle problem and spherically symmetric Euler equations in Chapter 4, in both cases under the simple and natural assumption of relative finite-energy. In Chapter 5, we show that the viscous solutions of the one-dimensional compressible Navier-Stokes equations converge, as the viscosity tends to zero, to an entropy solution of the Euler equations, again under the assumption of relative finite-energy. In so doing, we develop a compactness framework for the solutions and approximate solutions to the Euler equations under the assumption of a physical pressure law. Finally, in Chapter 6, we consider the Euler equations in special relativity, and show the existence of bounded entropy solutions to these equations. In the process, we also construct fundamental solutions to the entropy equations and develop a compactness framework for the solutions and approximate solutions to the relativistic Euler equations.
4

Analysis of several non-linear PDEs in fluid mechanics and differential geometry

Li, Siran January 2017 (has links)
In the thesis we investigate two problems on Partial Differential Equations (PDEs) in differential geometry and fluid mechanics. First, we prove the weak L<sup> p</sup> continuity of the Gauss-Codazzi-Ricci (GCR) equations, which serve as a compatibility condition for the isometric immersions of Riemannian and semi-Riemannian manifolds. Our arguments, based on the generalised compensated compactness theorems established via functional and micro-local analytic methods, are intrinsic and global. Second, we prove the vanishing viscosity limit of an incompressible fluid in three-dimensional smooth, curved domains, with the kinematic and Navier boundary conditions. It is shown that the strong solution of the Navier-Stokes equation in H<sup> r+1</sup> (r &GT; 5/2) converges to the strong solution of the Euler equation with the kinematic boundary condition in H<sup> r</sup>, as the viscosity tends to zero. For the proof, we derive energy estimates using the special geometric structure of the Navier boundary conditions; in particular, the second fundamental form of the fluid boundary and the vorticity thereon play a crucial role. In these projects we emphasise the linkages between the techniques in differential geometry and mathematical hydrodynamics.
5

Espaços de Hardy e compacidade compensada

Souza, Osmar do Nascimento 13 March 2014 (has links)
Made available in DSpace on 2016-06-02T20:28:30Z (GMT). No. of bitstreams: 1 6065.pdf: 865751 bytes, checksum: 22466d8659637f2282b6be8b0adb5a33 (MD5) Previous issue date: 2014-03-13 / Financiadora de Estudos e Projetos / This work is divided into two parts. In the first part, our goal is to present the theory of Hardy Spaces Hp(Rn), which coincides with the Lebesgue space Lp(Rn) for p > 1, is strictly contained in Lp(Rn) if p = 1, and is a space of distributions when 0 < p < 1. When 0 < p ^ 1, the Hardy spaces offers a better treatment involving harmonic analysis than the Lp spaces. Among other results, we prove the maximal characterization theorem of Hp, which gives equivalent definitions of Hp, based on different maximal functions. We will proof the atomic decom¬position theorem for Hp, which allow decompose any distribution in Hp to be written as a sum of Hp-atoms (measurable functions that satisfy certain properties). In this step, we use the strongly the of Whitney decomposition and generalized Calderon-Zygmund decomposition. In the second part, as a application, we will prove that nonlinear quantities (such as the Jacobian, divergent and rotational defined in Rn) identied by the compensated compactness theory belong, under natural conditions, the Hardy spaces. To this end, in addition to the results seen in the first part, will use the results as Sobolev immersions theorems ans the inequality Sobolev-Poincare. Furthermore, we will use the tings and results related to the context of differential forms. / Esse trabalho está dividido em duas partes.Na primeira, nosso objetivo e apresentar os espaços de Hardy Hp(Rn), o qual coincide com os espaços Lp(Rn), quando p > 1, esta estritamente contido em Lp(Rn) se p = 1, e e um espaço de distribuições quando 0 < p < 1. Quando 0 < p < 1, os espaços de Hardy oferecem um melhor tratamento envolvendo analise harmônica do que os espaços Lp(Rn). Entre outros resultados, provamos o teorema da caracterização maximal de Hp, o qual fornece varias, porem equivalentes, formas de caracterizar Hp, com base em diferentes funcões maximais. Demonstramos o teorema da decomposição atômica para Hp, 0 < p < 1, que permite decompor qualquer distribuição em Hp como soma de Hp-atomos (funções mensuráveis que satisfazem certas propriedades). Nessa etapa, usamos fortemente a de- composição de Whitney e a decomposto de Calderon-Zygmund generalizada. Na segunda parte, como uma aplicação, provamos que quantidades não-lineares (como o jacobiano, divergente e o rotacional definidos em Rn), identificadas pela teoria compacidade compensada pertencem, em condições naturais, aos espaços de Hardy. Para tanto, além dos resultados visto na primeira parte, usamos outros como os Teoremas de Imersões de Sobolev, a desigualdade de Sobolev-Poincaré. Usamos ainda, definições e resultados referentes ao contexto de formas diferenciais.

Page generated in 0.0679 seconds