• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.

Zapata, Juan Fernando Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
2

Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.

Juan Fernando Zapata Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
3

Um teorema tipo Berstein em R x Hn. / A Berstein theorem in R x Hn.

VIEIRA FILHO, Luis Gonzaga. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T14:32:06Z No. of bitstreams: 1 LUIZ GONZAGA VIEIRA FILHO - DISSERTAÇÃO PPGMAT 2012..pdf: 418239 bytes, checksum: 637639b6b00361fa99f7879c81c1a30c (MD5) / Made available in DSpace on 2018-08-06T14:32:06Z (GMT). No. of bitstreams: 1 LUIZ GONZAGA VIEIRA FILHO - DISSERTAÇÃO PPGMAT 2012..pdf: 418239 bytes, checksum: 637639b6b00361fa99f7879c81c1a30c (MD5) Previous issue date: 2012-12 / Neste trabalho, usando uma adequada aplicação do chamado princípio do máximo generalizado de Omori-Yau, obtemos um teorema tipo Bernstein para hipersuperfícies completas com curvatura média constante imersas no espaço produto R × Hn. Além disso, tratamos o caso em que tais hipersuperfícies são gráficos verticais. / In this work, as suitable application of the so-called Omori-Yau generalized maximum principle, we obtain a Bernstein type theorem concerning to complete hypersurfaces with constant mean curvature immersed in the product space R × Hn . Furthermore, we treat the case that such hypersurfaces are vertical graphs
4

Teoremas de Rigidez no espaço hiperbólico. / Theorems of Stiffness in hyperbolic space.

ROCHA, Jamilly Lourêdo. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T17:38:25Z No. of bitstreams: 1 JAMILLY LOURÊDO ROCHA - DISSERTAÇÃO PPGMAT 2014..pdf: 5707925 bytes, checksum: 8010cd451ac64c8a7fccc36a2f8313f6 (MD5) / Made available in DSpace on 2018-08-09T17:38:25Z (GMT). No. of bitstreams: 1 JAMILLY LOURÊDO ROCHA - DISSERTAÇÃO PPGMAT 2014..pdf: 5707925 bytes, checksum: 8010cd451ac64c8a7fccc36a2f8313f6 (MD5) Previous issue date: 2014-08 / Capes / Com uma aplicação adequada do conhecido princípio do máximo generalizado de Omori-Yau, obtemos resultados de rigidez com relação a hipersuperfícies imersas completascomcurvaturamédiadelimitadanoespaçohiperbólicoHn+1 (n+1)-dimensional. Em nossa abordagem exploramos a existência de uma dualidade natural entreHn+1 e a metade Hn+1 do espaço de SitterSn+11 , cujo modelo é chamado de steady state space. / As a suitable application of the well known generalized maximum principle of Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed with bounded mean curvature in the (n+1)-dimensional hyperbolic spaceHn+1. In our approach, we explore the existence of a natural duality betweenHn+1 and the half Hn+1 of the de Sitter spaceSn+11 , which models the so-called steady state space.

Page generated in 0.0515 seconds