• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 7
  • 2
  • 1
  • Tagged with
  • 84
  • 84
  • 65
  • 61
  • 21
  • 16
  • 16
  • 14
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Optimization of Pseudo-Rigid-Body Models for Accurately and Efficiently Predicting Dynamics of Compliant Mechanisms

She, Yu January 2018 (has links)
No description available.
42

Articulated Spine for a Robot to Assist Children with Autism

Norton, Brandon M 01 July 2014 (has links) (PDF)
Autism spectrum disorder (ASD) affects about 1.5 million individuals in the US alone. The consequences of ASD affect families, caregivers, and social structures. This thesis adds to a growing group of people performing research on mitigating the effects of autism through robotics. Children with ASD tend to interact with robots more easily than with other humans. The goal of robotic therapy is not to help children interact with robots, but to generalize the behavior to humans. An articulated spine is a key to human emotional expression through shaping, weight shifting, and flow. Despite this importance, this feature is all but lacking in robots. The primary contribution of this work is a novel 3-link planar spine with compliant, partial-gravity-compensating springs, capable of reproducing simple emotion-conveying poses for use in robot-based therapy for children with ASD. The design was based on the movements of expression experts using motion tracking markers. This information was used to optimize the number of links in the spine and their corresponding lengths. It is the goal of this research to make robotic therapy more effective for the children, raising the potential for life-changing results.
43

Predicting the Effects of Dimensional and Material Property Variations in Micro Compliant Mechanisms

Wittwer, Jonathan W. 25 July 2001 (has links) (PDF)
Surface micromachining of micro-electro-mechanical systems (MEMS), like all other fabrication processes, has inherent variation that leads to uncertain material and dimensional parameters. To obtain accurate and reliable predictions of mechanism behavior, the effects of these variations need to be analyzed. This thesis expands already existing tolerance and uncertainty analysis methods to apply to micro compliant mechanisms. For simple compliant members, explicit equations can be used in uncertainty analysis. However, for a nonlinear implicit system of equations, the direct linearization method may be used to obtain sensitivities of output parameters to small changes in known variables. This is done by including static equilibrium equations and pseudo-rigid-body model relationships with the kinematic vector loop equations. Examples are used to show a comparison of this method to other deterministic and probabilistic methods and finite element analysis.
44

Development of In-Plane Compliant Bistable Microrelays

Gomm, Troy Alan 17 June 2003 (has links) (PDF)
Bistable microrelays have many possible applications and have the potential to reduce the size, weight, power consumption, and cost of products in which they are used. This research outlines the current state of microrelays, presents three new compliant bistable micromechanisms, and characterizes their performance as microrelays. The characterization includes a treatment of a new force-tester, a preliminary contact resistance study, contact-force measurements, switching time measurements, insertion loss, AC isolation, breakdown voltage, and DC isolation. This document also includes recommendations for further research.
45

A Self-Retracting Fully-Compliant Bistable Micromechanism

Masters, Nathan D. 24 June 2003 (has links) (PDF)
The purpose of this research is to present a class of Self-Retracting Fully-compliant Bistable Micromechanisms (SRFBM). Fully-compliant mechanisms are needed to overcome the inherent limitations of microfabricated pin joints, especially in bistable mechanisms. The elimination of the clearances associated with pin joints will allow more efficient bistable mechanisms with smaller travel. Small travel, in a linear path facilitates integration with efficient on-chip actuators. Tensural pivots are developed and used to deal with the compressive loading to which the mechanism is subject. SRFBM are modeled using the Pseudo-Rigid-Body Model and finite element analysis. Suitable configurations of the SRFBM concept have been identified and fabricated using the MUMPs process. Complete systems, including external actuators and electrical contacts are 1140 μm by 625 μm (individual SRFBM are less than 300 μm by 300 μm). These systems have been tested, demonstrating on-chip actuation of bistable mechanisms. Power requirements for these systems are approximately 150 mW. Testing with manual force testers has also been completed and correlates well with finite element modeling. Actuation force is approximately 500 μN for forward actuation. Return actuation can be achieved either by external actuators or by thermal self-retraction of the mechanism. Thermal self-retraction is more efficient, but can result in damage to the mechanism. Fatigue testing has been completed on a single device, subjecting it to approximately 2 million duty cycles without failure. Based on the SRFBM concept a number of improvements and adaptations are presented, including systems with further power and displacement reductions and a G-switch for LIGA fabrication.
46

Design and Analysis of End-Effector Systems for Scribing on Silicon

Cannon, Bennion Rhead 06 August 2003 (has links) (PDF)
This thesis investigates end-effector systems used in a chemomechanical scribing process. Chemomechanical scribing is a method of patterning silicon to selectively deposit a monolayer of material on the surface of the silicon. This thesis details the development of a unique end-effector for chemomechanical scribing using a compliant mechanism solution. The end-effector is developed to scribe lines that have uniform geometry and produce less chipping on the surface of the silicon. The resulting scribing mechanism is passively controlled, has high lateral stiffness, and low axial stiffness. The mechanism is analyzed using the pseudo-rigid-body model and linear-elastic beam method to determine the axial stiffness, finite element methods to determine the lateral stiffness, and fatigue analysis to determine mechanism cycle life. This thesis also investigates the significance of mechanical factors on the chemomechanical scribing process using the compliant end-effector. The factors examined are scribing force, scribing speed, tip geometry, wafer orientation, and wetting liquid. The factors are analyzed using a two-step approach: first, an analysis of the influence of the mechanical factors on line characteristics and second, an analysis of the influence of line characteristics on line performance.
47

Design of Piezoresistive MEMS Force and Displacement Sensors

Waterfall, Tyler Lane 01 September 2006 (has links) (PDF)
MEMS (MicroElectroMechanical Systems) sensors are used in acceleration, flow, pressure and force sensing applications on the micro and macro levels. Much research has focused on improving sensor precision, range, reliability, and ease of manufacture and operation. One exciting possibility for improving the capability of micro sensors lies in exploiting the piezoresistive properties of silicon, the material of choice in many MEMS fabrication processes. Piezoresistivity—the change of electrical resistance due to an applied strain—is a valuable material property of silicon due to its potential for high signal output and on-chip and feedback-control possibilities. However, successful design of piezoresistive micro sensors requires a more accurate model of the piezoresistive behavior of polycrystalline silicon. This study sought to improve the existing piezoresistive model by investigating the piezoresistive behavior of compliant polysilicon structures subjected to tensile, bending and combined loads. Experimental characterization data showed that piezoresistive sensitivity is greatest and mostly linear for silicon members subject to tensile stresses and nonlinear for beams in bending and combined stress states. The data also illustrated the failure of existing piezoresistance models to accurately account for bending and combined loads. Two MEMS force and displacement sensors, the integral piezoresistive micro-Force And Displacement Sensor (FADS) and Closed-LOop sensor (CLOO-FADS), were designed and fabricated. Although limited in its piezoresistive sensitivity and out-of-plane stability, the FADS design showed promise of future application in microactuator characterization. Similarly, the CLOO-FADS exhibited possible feedback control capability, but was limited by control circuit complexity and implementation challenges. The piezoresistive behavior exhibited by the Thermomechanical In-plane Microactuator (TIM) led to a focused effort to characterize the TIM's behavior in terms of force, displacement, actuation current and mechanism resistance. The gathered data facilitated the creation of an empirical, temperature-dependent model for the specific TIM. Based on the assumption of a nearly constant temperature for each current level, the model predicted the force and displacement for a given fractional change in resistance. Despite the success of the empirical model for the test TIM device, further investigation revealed the necessity of a calibration method to enable the model's application to other TIM devices.
48

Development of a Strain Energy Storage Mechanism Using Tension Elements to Enhance Golf Club Performance

Whitezell, Marc A. 23 March 2006 (has links) (PDF)
The development of current golf club designs has followed an evolutionary process starting with the original wooden heads of a hundred years ago, to the thin-walled, hollow body titanium heads of today. Current designs utilize what has become known as the trampoline effect to increase the efficiency of the ball-club impact, which has a number of limiting factors that restrict clubhead performance. These limitations provided the motivation for this research to explore new mechanisms by which the efficiency of the ball club impact could be increased. In particular this research focuses on the development of compliant mechanisms to increase club performance. The results of this research, from concept development to initial prototype plans, are included in this study. A discussion of past and current research in the area of golf club design is presented. A new list of performance metrics for golf clubs and a number of new golf club concepts is also presented. This is followed by a static and dynamic analysis of the most promising golf club configuration. The study is concluded with a concept validation analysis and a presentation of possible prototype configurations for a new golf club design.
49

Integrated Piezoresistive Sensing for Feedback Control of Compliant MEMS

Messenger, Robert K. 12 October 2007 (has links) (PDF)
Feedback control of MEMS devices has the potential to significantly improve device performance and reliability. One of the main obstacles to its broader use is the small number of on-chip sensing options available to MEMS designers. A method of using integrated piezoresistive sensing is proposed and demonstrated as another option. Integrated piezoresistive sensing utilizes the inherent piezoresistive property of polycrystalline silicon from which many MEMS devices are fabricated. As compliant MEMS structures flex to perform their functions, their resistance changes. That resistance change can be used to transduce the structures' deflection into an electrical signal. This dissertation addresses three topics associated with integrated piezoresistive sensing: developing an empirical model describing the piezoresistive response of polycrystalline-silicon flexures, designing compliant MEMS with integrated piezoresistive sensing using the model, and implementing feedback control using integrated piezoresistive sensing. Integrated piezoresistive sensing is an effective way to produce small, reliable, accurate, and economical on-chip sensors to monitor compliant MEMS devices. A piezoresistive flexure model is presented that accurately models the piezoresistive response of long, thin flexures even under complex loading conditions. The model facilitates the design of compliant piezoresistive MEMS devices, which output an electrical signal that directly relates to the device's motion. The piezoresistive flexure model is used to design a self-sensing long displacement MEMS device. Motion is achieved through contact-aided compliant rolling elements that connect the output shaft to kinematic ground. Self-sensing is achieved though integrated piezoresistive sensing. An example device is tested that demonstrates 700 micrometers of displacement with a sensing resolution of 2 micrometers. The piezoresistive microdisplacement transducer (PMT) is a structure that uses integrated piezoresistive sensing to monitor the output displacement of a thermomechanical inplane microacutator (TIM). Using the PMT as a feedback sensor for closed-loop control of the TIM reduced the system's response time from 500~$mu$s to 190~$mu$s, while maintaining a positioning accuracy of $pm$29~nm. Feedback control of the TIM also increased its robustness and reliability by allowing the system to maintain its performance after it had been significantly damaged.
50

Off-axis Stiffness and Piezroresistive Sensing in Large-displacement Linear-motion Microelectromechanical Systems

Smith, David G. 10 August 2009 (has links) (PDF)
Proper positioning of Microelectromechanical Systems (MEMS) components influences the functionality of the device, especially in devices where the motion is in the range of hundreds of micrometers. There are two main obstacles to positioning: off-axis displacement, and position determination. This work studies four large-displacement devices, their axial and transverse stiffness, and piezoresistive response. Methods for improving the device characteristics are described. The folded-beam suspension, small X-Bob, large X-Bob and double X-Bob were characterized using non-dimensional metrics that measure the displacement with regard to the size of the device, and transverse stiffness with regard to axial stiffness. The stiffness in each direction was determined using microprobes to induce displacement, and microfabricated force gauges to determine the applied force. The large X-Bob was optimized, increasing the transverse stiffness metric by 67%. Four-point resistance testing and microprobes were used to determine the piezoresistive response of the devices. The piezoresistive response of the X-Bob was maximized using an optimization routine. The resulting piezoresistive response was over seven times larger than that of the initial design. Piezoresistive encoders for ratcheting actuation of large-displacement MEMS are introduced. Four encoders were studied and were found to provide information on the performance of the ratcheting actuation system at frequencies up to 920 Hz. The PMT encoder produced unique signals corresponding to distinct ideal and non-ideal operation of the ratchet wheel actuation system. Encoders may be useful for future applications which require position determination.

Page generated in 0.0528 seconds