• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 40
  • 38
  • 20
  • 20
  • 10
  • 7
  • 7
  • 6
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 410
  • 107
  • 62
  • 55
  • 48
  • 47
  • 45
  • 45
  • 44
  • 43
  • 41
  • 38
  • 38
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Multi-quadrant performance simulation for subsonic axial flow compressors / Werner van Antwerpen

Van Antwerpen, Werner January 2007 (has links)
The emergence of closed-loop Brayton cycle power plants, such as the PBMR, resulted in the need to simulate start-up transients for industrial multi-stage axial flow compressors operating at subsonic conditions. This implies that the delivery pressure and power requirements must be predicted for different mass flow rates and rotational speeds while operating in the first and fourth quadrants on the compressor performance charts. Therefore, an analytical performance prediction model for subsonic multi-stage axial flow compressors had to be developed that can be integrated into a generic network analysis software code such as Flownex. For this purpose, performance calculations based on one-dimensional mean-line analysis demonstrated good accuracy, provided that the correct models for losses, incidence and deviation are used. Such a model is therefore the focus of this study. A preliminary analytical performance prediction code, with the capability of interchanging between different deviation and loss models is presented. Reasonably complex loss models are integrated in association with the correct incidence and deviation models in a software package called "Engineering Equation Solver" (EES). The total pressure loss calculations are based on a superposition of theoretically separable loss components that include the following: blade profile losses, secondary losses and annulus losses. The fundamental conservation equations for mass, momentum and energy for compressible "rotating pipe" flow were implemented into the performance prediction code. Performance prediction models were validated against experimental data and evaluated according to their ease of implementation. Verification was done by comparing simulation results with experimental work done by Von Backstrom. This includes a calculation to determine the uncertainty in the experimental results. Furthermore, since the conventional definition of isentropic efficiency breaks down at the boundaries of quadrants on the performance charts, a new non-dimensional power formulation is presented that allows for the calculation of the compressor power in all of the relevant quadrants. Good comparison was found between simulation results and measurements in the first and fourth quadrant of operation. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2007.
152

On Stability and Surge in Turbocharger Compressors

Kerres, Bertrand January 2017 (has links)
Turbochargers are used on many automotive internal combustion engines to increase power density. The broad operating range of the engine also requires a wide range of the turbocharger compressor. At low mass flows, however, turbo compressor operation becomes unstable and eventually enters surge. Surge is characterized by large oscillations in mass flow and pressure. Due to the associated noise, control problems, and possibility of mechanical component damage, this has to be avoided. Different indicators exist to classify compressor operation as stable or unstable on a gas stand. They are based on pressure oscillations, speed oscillations, or inlet temperature increase. In this thesis, a new stability indicator is proposed based on the Hurst exponent of the pressure signal. The Hurst exponent is a number between zero and one that describes what kind of long-term correlations are present in a time series. Data from three cold gas stand experiments are analyzed using this criterion. Results show that the Hurst exponent of the compressor outlet pressure signal has good characteristics. Stable operation is being indicated by values larger than 0.5. As compressor operation moves towards the surge line, the Hurst exponent decreases towards zero. An additional distinction between the long-term correlations of small and large amplitude fluctuations by means of higher order Hurst exponents can be used as an early warning indicator. Further tests using compressor housing accelerometers show that the Hurst exponent is not a good choice for real-time surge detection on the engine. Reasons are the long required sampling time compared to competing methods, and the fact that other periodically repeating oscillations lead to Hurst exponents close to zero independent of compressor operation. / Turboladdare används ofta på förbränningsmotorer för att öka motorns effekttäthet. Motorns breda driftområde ställer krav på ett brett driftområde för turboladdarens kompressor. Vid låga massflöden blir kompressordriften dock mindre stabil, och surge kan uppträda. Surge innebär stora oscillationer i tryck och massflöde genom kompressorn. På grund av oljud, reglerproblem och risken för mekaniska skador vill man undvika surge. Det finns indikatorer för att bedöma kompressorns stabilitet på ett gas stand. Indikatorerna är baserade på tryckoscillationer, varvtalsoscillationer, eller temperaturökning i gasen i kompressorinloppet. I denna avhandling presenteras en ny indikator baserad på Hurst-exponenten, beräknad på trycksignalen. Hurst-exponenten är ett tal mellan noll och ett som beskriver vilka typer av långtidskorrelationer det finns i signalen. Mätningar från tre gas-stand-experiment har analyserats på detta sätt. Analyserna visar att Hurst-exponenten baserad på kompressorutloppstrycket fungerar bra som som surgeindikator. Stabil drift av kompressorn indikeras av att Hurst-exponenten är större än 0.5. När kompressordriftpunkten närmar sig surgelinjen faller Hurst-exponenten mot noll. En distinktion mellan oscillationer med små och stora amplituder kan används för att få en tidig varning. Analyser av vibrationsmätningar på kompressorhuset vid motorapplikation visar att Hurst-exponenten inte är lämplig som realtidsindikator på en motor. Detta kommer sig dels av att data behöver samlas in under en längre tid än med andra tänkbara indikatorer, dels av att andra periodiska oscillationer i signalen kopplade till motorns naturliga beteende leder till Hurst-exponenter nära noll även vid stabil kompressordrift. / <p>QC 20170510</p> / CCGEx - Compressor off-Design
153

Multi-Row Aerodynamic Interactions and Mistuned Forced Response of an Embedded Compressor Rotor

Li, Jing January 2016 (has links)
<p>This research investigates the forced response of mistuned rotor blades that can lead to excessive vibration, noise, and high cycle fatigue failure in a turbomachine. In particular, an embedded rotor in the Purdue Three-Stage Axial Compressor Research Facility is considered. The prediction of the rotor forced response contains three key elements: the prediction of forcing function, damping, and the effect of frequency mistuning. These computational results are compared with experimental aerodynamic and vibratory response measurements to understand the accuracy of each prediction.</p><p>A state-of-the-art time-marching computational fluid dynamic (CFD) code is used to predict the rotor forcing function. A highly-efficient nonlinear frequency-domain Harmonic Balance CFD code is employed for the prediction of aerodynamic damping. These allow the compressor aerodynamics to be depicted and the tuned rotor response amplitude to be predicted. Frequency mistuning is considered by using two reduced-order models of different levels of fidelity, namely the Fundamental Mistuning Model (FMM) and the Component Mode Mistuning (CMM) methods. This allows a cost-effective method to be identified for mistuning analysis, especially for probabilistic mistuning analysis.</p><p>The first topic of this work concerns the prediction of the forcing function of the embedded rotor due to the periodic passing of the neighboring stators that have the same vane counts. Superposition and decomposition methods are introduced under a linearity assumption, which states that the rotor forcing function comprises of two components that are induced by each neighboring stator, and that these components stay unchanged with only a phase shift with respect to a change in the stator-stator clocking position. It is found that this assumption captures the first-order linear relation, but neglects the secondary nonlinear effect which alters each stator-induced forcing functions with respect to a change in the clocking position.</p><p>The second part of this work presents a comprehensive mistuned forced response prediction of the embedded rotor at a high-frequency (higher-order) mode. Three steady loading conditions are considered. The predicted aerodynamics are in good agreement with experimental measurements in terms of the compressor performance, rotor tip leakage flow, and circumferential distributions of the stator wake and potential fields. Mistuning analyses using FMM and CMM models show that the extremely low-cost FMM model produces very similar predictions to those of CMM. The predicted response is in good agreement with the measured response, especially after taking the uncertainty in the experimentally-determined frequency mistuning into consideration. Experimentally, the characteristics of the mistuned response change considerably with respect to loading. This is not very well predicted, and is attributed to un-identified and un-modeled effects. A significant amplification factor over 1.5 is observed both experimentally and computationally for this higher-order mode.</p> / Dissertation
154

Etude expérimentale et numérique des écoulements dans un étage de compresseur axial à basse vitesse en régime de fonctionnement instable. / Experimental and numerical investigation of flows in a subsonic axial compressor stage in instady regime.

Veglio, Monica 02 December 2015 (has links)
La réduction de l’impact environnemental est aujourd’hui l’un des défis cruciaux de l’industrie aéronautique. La poursuite d’une moindre consommation des aéronefs a conduit à concevoir des systèmes propulsifs en géneral, et des étages de compression en particulier, toujours plus compacts et chargés. Cette tendance dans la conception des moteurs est directement responsable de l’accentuation du caractère instationnaire des écoulements internes ainsi que de la favorisation dans l’émergence de phénomènes entrainant la perte de stabilité. L’étude expérimentale, conduite pendant ce projet de thèse, porte sur la caractérisation des écoulements dans un étage de compresseur axial en phase émergente et stabilisée du décrochage tournant, grâce à des mesures instationnaires de pression pariétale et de vitesse. L’étude doit son originalité à l’utilisation et au développement de techniques de post-traitement non-standard. La transformée par ondelettes se révèle être un outil particulièrement intéressant à la détection de structures cohérentes de brève durée, telles que le précurseur de type « spike » ainsi que les caractéristiques instantanées d’une cellule de décrochage tournant. A côté de cette approche d’analyse d’un signal localisé, différentes procédures de calcul de champs en moyenne de phase ont été mises au point, chacune adaptée aux spécificités du phénomène étudié et de la procédure expérimentale suivie. Il a été ainsi possible de suivre l’évolution des caractéristiques du champ de pression du régime nominal jusqu’à l’installation du décrochage tournant. L’alignement de la trajectoire du tourbillon de jeu avec la section d’entrée du rotor est associé au déclenchement du décrochage par précurseur de type « spike ». La comparaison entre les champs en phase transitoire et en décrochage établi, amène à affirmer que le précurseur n’est que le stade embryonnaire d’évolution du phénomène du décrochage. L’approche a, en outre, permis d’apprécier la complexité de la structure « interne » de la cellule qui apparait comme la succession d’une phase de propagation de décollement, une zone fortement débitante à charge presque nulle et une phase de ré-attachement de l’écoulement. / The reduction of the environmental impact is nowadays one of the crucial challenges of the aeronautic industry. The quest to lower the consumption of aircrafts has led to more compact and higher loaded engines in general, and especially compressor stages. This leads an increase of the internal flow unsteadiness and to the occurrence of unstable phenomena. The experimental study, performed during this work, concerns the characterization of flows in an axial compressor stage during both the emergence of rotating stall and its stabilized phase, by means of unsteady pressure and velocity measurements. The originality of the work proposed resides in the use and the development of non-standard data processing methods. The wavelets transform reveals to be an interesting tool for the detection of short coherent structures, like the spike-type precursor as well as the instantaneous features of a rotating stall cell. Beside this local approach, different procedures for phase-locked field measurements were developed, according to the specification of each studied phenomenon and the experimental proceedings. Thanks to these methods, it was possible to highlight the pressure field evolution until the development of the rotating stall regime. The alignment of the tip leakage vortex with the rotor inlet section forecasts a spike type stall onset. The comparison between transitional phase and fully developed stall fields conducts to assert that the precursor represent only the embryonic stage of the rotating stall evolution. This approach led to appreciate the complexity of the internal structure of the cell that appears to be the succession of stall propagation phase, zero-loaded high flow rate region and reattachment phase
155

A branch-and-price algorith, for a compressor scheduling problem

Friske, Marcelo Wuttig January 2016 (has links)
O presente trabalho realiza o estudo e aplicação de um algoritmo de branch-and-price para a resolução de um problema de escalonamento de compressores. O problema é ligado à produção petrolífera, o qual consiste em definir um conjunto de compressores a serem ativados para fornecer gas de elevação a um conjunto de poços, atendendo toda demanda e minimizando os custos envolvidos. O problema é caracterizado por uma função objetivo não-convexa que é linearizada por partes de forma a ser formulada como um problema de programação inteira mista. A abordagem de geração de colunas é baseada na decomposição de Dantzig-Wolfe e apresenta melhores limitantes inferiores em relação à relaxação linear da formulação compacta. O branch-and-price é comparado ao solver CPLEX, sendo capaz de encontrar a solução ótima em menor tempo para um conjunto de instâncias, bem como melhores soluções factíveis para instâncias maiores em um período de tempo limitado. / This work presents the study and application of a branch-and-price algorithm for solving a compressor scheduling problem. The problem is related to oil production and consists of defining a set of compressors to be activated, supplying the gas-lift demand of a set of wells and minimizing the associated costs. The problem has a non-convex objective function, to which a piecewise-linear formulation has been proposed. This dissertation proposes a column generation approach based on the Dantzig-Wolfe decomposition, which achieves tighter lower bounds than the straightforward linear relaxation of the piecewise-linear formulation. The column generation was embedded in a branch-and-price algorithm and further compared with CPLEX, obtaining optimal solutions in lesser time for a set of instances. Further, the branch-and-price algorithm can find better feasible solutions for large instances under a limited processing time.
156

Computational Investigation of Cavity Leakage Flow and Windage Heating Within an Axial Compressor Stator Well

Nitya Kamdar (6012222) 04 January 2019 (has links)
<p>The fundamental design of axial compressors has matured to an exceptional level of performance due to a century of research. With the improvements in efficiency becoming increasingly difficult, attention continues to be channeled towards understanding and reducing secondary losses such as hub or tip clearance leakages, seal leakages, etc. Studies detailing the impact of seal leakages are relatively scarce due to difficulties of obtaining data in the complex rotating geometries of a high-speed compressor cavity. While the impact of seal leakages on primary passage is readily available, details inside the cavity geometry is scarce in open literature because majority of the investigations have been performed on linear cascades with slots machined as cavities or standalone labyrinth seals that fail to provide a wholesome understanding of the leakage flow and windage heating in the rotating geometries.<br></p> <p> Therefore, the principal objective of this work is to investigate flow physics in the stator cavity wells for understanding the flow path of the leakage fluid and windage heating within the cavity. A parametric model of the Purdue 3-Stage Compressor (P3S) is used to allow for rapid geometric modifications to the seal clearances in a coupled stator-cavity system. The investigations presented here consist of a series of numerical simulations using ANSYS CFX as the primary Computational Fluid Dynamics (CFD) tool. Measurements performed by previous investigators are utilized to define the boundary conditions of this model. This study’s goal is to characterize the interdependence of parameters such as cavity leakage flow rate, circumferential velocity, and windage heating for understanding the flow structure inside the cavity wells and their impact on cavity temperatures. Data acquired is intended to reveal mechanisms through which cavity leakage flows affect the stator passage aerodynamics and the windage heating, both regarding their effect on the compressor performance and the details of the flow path within the cavity. Consequently, this will provide insight into how the complex cavity leakage flow influences the design considerations for optimizing stator passage aerodynamics and minimizing stator cavity heating.</p> <p>The compressor operating conditions of Nominal Loading (NL) is the focus of this CFD work since the flow field at High Loading (HL) has significant boundary layer separation. NL is closest to both the design and peak efficiency conditions where the compressor would spend the majority of its time in operation, understanding cavity flow physics at this operating condition would have a direct impact on enhancing the overall compressor performance. A CFD model of the standalone primary passage is developed first using the dataset available from experiments performed by previous investigators for establishing confidence in the primary passage flow physics. Therefore, detailed total pressure, total temperature, velocity, and flow angle data collected behind each blade row is utilized for validating the primary passage flow in the CFD model. After validating the primary passage model, measurements in the coupled cavity model are acquired to understand the flow variations as well as temperature development in the cavity due to the varying labyrinth seal clearance.</p> <p>The investigations in this work are divided into two distinct branches. First, to aid the aerodynamic research community, the flow structure inside the cavity wells is investigated to understand the impact cavity leakage flow has on the compressor efficiency and on its interactions with the primary flow path. Secondly, for understanding the development and rise of temperature in the cavity wells, i.e., the windage effect, are performed to aid the thermo-mechanical research community so that the material choices and stress analysis of the cavity components can be optimized. Hence, the trends in the data acquired provide the aerodynamic, mechanical, and secondary flow system designers an indication of the complexities of the flow within shrouded stator cavities and provide insight into designing and optimizing more complex geometries.</p><p>Results from this investigation describe how increasing seal clearance deteriorates the stator performance and enables the cross-passage migration of low momentum fluid to worsen hub corner separation. The simulations also state the case for re-ingestion at tight seal clearances as the 3D streamlines show heated efflux emerges from the upstream cavity interface, dwells near the hub, and gets recirculated back into the cavity inlet well. Radial variations inside the cavity wells show high cavity temperatures with excessive cavity due to re-ingestion, while the cases that avoid re-ingestion are observed at the lowest temperatures. These radial variations also identify the cavity leakage flow path and the development of circumferential velocity. Lastly, the total pressure loss, total temperature rise and windage heating, all show a strong dependence on circumferential velocity development, which is inherently dependent on the labyrinth seal clearances.<br></p>
157

Étude d’un système tritherme intégrant une compression thermique originale, destiné au marché du chauffage résidentiel / Study of a trithermal system with a new thermal compression process of the working fluid, for the residential heating

Ibsaine, Rabah 12 November 2015 (has links)
L’innovation technologique dans les filières énergétiques est une manière pertinente de réaliser des économies d’énergie et de répondre aux préoccupations environnementales. Le chauffage représente la principale consommation d’énergie dans le secteur de l’habitat en France et contribue fortement aux rejets de gaz à effet de serre. Un nouveau conceptde compresseur thermique a été développé par la société boostHEAT. Il est destiné à remplacer le compresseur mécanique conventionnel d’un système de pompe à chaleur au CO2 pour former un système “tritherme”. Ce compresseur thermique est constitué d’un cylindre muni d’un piston déplaceur, d’un échangeur réchauffeur, d’un régénérateur etd’un échangeur refroidisseur. Le réchauffeur est connecté à la partie chaude du cylindre d’une part, et au régénérateur, d’autre part. Le refroidisseur est connecté au régénérateur d’une part, et à la partie froide du cylindre d’autre part. Cette dernière est connectée à la branche basse pression (évaporateur) de la pompe à chaleur par un clapet d’admission, età la branche haute pression de la pompe à chaleur (échangeur haute pression) par l’intermédiaire d’un clapet de refoulement. Après avoir exposé le principe de fonctionnement du compresseur thermique, la conception de ses principaux composants et le banc d’essai expérimental, nous présentons un modèle détaillé permettant de décrire le fonctionnementdu compresseur thermique et d’étudier l’influence de différents paramètres sur ses performances énergétiques. Le modèle développé est validé par comparaison avec les résultats de l’expérience. Enfin, le cycle de pompe à chaleur au CO2 supercritique, muni de deux étages du compresseur thermique, est étudié et optimisé. / Technological innovation in energy systems is a good way to improve energy efficiencies and respond to environmental preoccupations. Heating accounts for the primary energy consumption in the housing sector and contributes significantly to emissions of greenhouse gas. A new concept of thermal compressor was developed by the boostHEAT company. It is intended to replace the conventional mechanical compressor of a CO2 heat pump system to form a "trithermal" system.This compressor is made up of a cylinder with a displacer piston, a heater, a regenerator and a cooler. The heater is connected to the hot part of the cylinder on the one hand and to the regenerator on the other hand. The cooler is connected to the regenerator on the one hand and to the cold part of the cylinder on the other hand. The cold part of the cylinder is connected to the low pressure branch of the heat pump (evaporator) through an automatic inlet valve, and to the high pressure branch of the heat pump (gas cooler) through an automatic exhaust valve. After explaining the operating principle of the thermal compressor, the design of its main components and the experimental test bench, we present a detailed model for describing the operation of the thermal compressor. This model allows the study of the influence of several parameters on the energy performance of the thermal compressor. The model is then validated by comparison with experimental results. Finally, the supercritical CO2 heat pump cycle with two stages of thermal compressor is studied and optimized.
158

Design and Development of a Lubrication Pump for a Horizontally Mounted Air-Conditioning Compressor.

Gilbert, Kenneth T. 01 December 2003 (has links)
Horizontally mounted compressors offer the advantage of reduced height in central air-conditioning units but prove difficult to produce economically due to costs associated with the manufacture of acceptable lubrication systems for the compressors. This study develops an effective, affordable oil pump for use on a horizontal compressor. Concepts are proven through testing of prototype assemblies. Test results drive modifications for future prototypes, and prototypes demonstrating adequate performance are modified for ease of manufacture. Research in this study proves that the most suitable design results from a modification of a rotating vane pump. The pump’s modifications enable it to pump oil in the same direction, regardless of the direction of shaft rotation and to prime itself when totally dry of oil. However, extensive use of horizontal compressors hinges upon the development of a satisfactory suspension system.
159

Investigation of ZrNi, ZrMn<sub>2</sub> and Zn(BH<sub>4</sub>)<sub>2</sub> Metal/Complex Hydrides for Hydrogen Storage

Escobar, Diego 23 March 2007 (has links)
The demand for efficient and clean fuel alternatives has been increasing in recent years and is expected to become more pronounced in the future. Utilization of hydrogen as a fuel is one of the most promising energy resources due to its easy production, abundance, regeneration and not creation of greenhouse gases during its combustion. Although gaseous hydrogen has a very high energy content per unit weight, its volumetric energy density is rather low. The large scale use of hydrogen as a fuel crucially depends on the development of compact hydrogen storage materials with a high mass content of hydrogen relative to total mass and to volume. Certain metals and alloys are capable of reversibly absorbing large amounts of hydrogen to form metal hydrides. They exhibit the highest volumetric densities of hydrogen and are very promising for hydrogen storage because of their efficiency, cost and safety. Some of the metal hydride families can also be used in hydrogen compressors. The objective of this work is to investigate the synthesis and characterization behavior of intermetallic alloys (ZrMn2, ZrNi) for hydrogen compression and of complex hydrides (Zn(BH4)2 ) for on-board hydrogen storage. An overview of hydrogen as a fuel and its storage means is provided, synthesis and characterization methods of metal hydrides are presented and the effect of mechanical milling and the catalytic doping of metal/complex hydrides are investigated in detail. The hydrogen storage alloys (hydrides) are extensively characterized using various analytical tools such as: XRD, SEM, EDS, TCD, FTIR and GC/MS. The thermal (heat flow and weight loss) and volumetric (storage capacity, kinetics, cycle life, etc) analysis have been carried out via DSC/TGA and high pressure PCT apparatus. Finally conclusions and recommendations for future work are provided to improve the absorption/desorption cycle of hydrogen storage in the compounds under investigation.
160

Control of an ultrahigh speed centrifugal compressor for the air management of fuel cell systems / Commande d'un compresseur centrifuge à vitesse ultra-haute pour la gestion de l'air du système de piles à combustible

Zhao, Dongdong 10 December 2013 (has links)
Le compresseur d'air alimentant en oxygène la pile est un élément important dans les systèmes pile à combustible. Le compresseur peut consommer jusqu'à 20% de l'électricité produite dans les cas les plus défavorables. Le choix et le dimensionnement du compresseur, ainsi que son système de contrôle associé, sont directement liés à la performance du système global. La taille et le poids du système de compression d'air doivent être réduits pour le rendre plus adapté aux applications automobiles. En outre, le contrôle du système de compression d'air est également une problématique importante car il affecte l'efficacité et la sécurité de fonctionnement de la pile à combustible. Pour éviter une sous-alimentation en oxygène de la pile, le débit massique d’air fourni doit être géré de façon appropriée en fonction de la demande de la charge électrique. Pendant ce temps, la pression ne doit pas montrer de trop grandes variations ou ondulations qui peuvent endommager la membrane de la pile.Un contrôle à découplage proposé récemment dans la littérature, nommé contrôle à découplage de perturbation (DDC), est utilisé pour le système de compression centrifuge. Le DDC traite les interactions internes comme une perturbation, puis les éliminent dans le contrôle. Les performances du DDC sont comparées à un dispositif de commande en mode glissant décentralisé. Grâce à la comparaison de ces deux contrôleurs, les résultats montrent que le DDC proposé est performant tant pour des cas stables que dynamiques. Le compresseur centrifuge est donc utilisable pour les systèmes pile à combustible automobiles. Sur un banc d'essai hardware-in-the-loop (HIL), le contrôleur proposé est validé avec un modèle de pile à combustible de 10 kW avec des demandes de charge variables. En outre, une méthode d'évitement d’instabilité, à savoir un limiteur de référence, est proposé pour empêcher le dépassement de la ligne de pompage du compresseur. Les résultats expérimentaux montrent que, dans tous les cas, la zone d’utilisation du compresseur est bien cantonnée à droite de la ligne de pompage. / Air compressor supplying the oxygen to the stack is an important component in the fuel cell systems. The compressor can consumes up to 20 % of the generated power in the most severe cases. The selecting of the compressor and corresponding control are directly related to the performance of the fuel cell. The size and weight of the air compressor has to be reduced to make them more feasible for automotive applications. Moreover, the control of the air compression system is also an important issue, which affects the efficiency and the safety of the fuel cell. To avoid oxygen starvation of the stack, the mass flow of the supplied air has to be controlled appropriately according to the load demand. Meanwhile, the pressure should not have large deviations or ripples which may damage the stack membrane.A recently proposed disturbance decoupling control (DDC) is used for the centrifugal compression system. DDC treats the internal interactions as a disturbance and then eliminates them in the control. The performance of the DDC is compared with a decentralized sliding mode controller. Through the comparison of those two controllers, the results show that the proposed DDC performs better in both the steady state and dynamic conditions, making the centrifugal compressor is capable of applying to the fuel cell in automotive applications. On a hardware-in-the-loop (HIL) testbench, the proposed controller is validated with a 10 kW fuel cell model under varied load demands. Moreover, a surge avoidance method, namely reference limiter, is proposed to prevent the compressor from surging. The experimental results show that the operation is restricted to the right of the surge line.

Page generated in 0.0427 seconds