Spelling suggestions: "subject:"computação algébrica"" "subject:"computação algébricas""
11 |
Modelando evolução por endossimbiose / Modeling evolution by endosymbiosisCarlos Eduardo Hirakawa 13 July 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação é apresentada uma modelagem analítica para o processo evolucionário formulado pela Teoria da Evolução por Endossimbiose representado através de uma sucessão de estágios envolvendo diferentes interações ecológicas e metábolicas entre populações de bactérias considerando tanto a dinâmica populacional como os processos produtivos dessas populações. Para tal abordagem é feito uso do sistema de equações diferenciais conhecido como sistema de Volterra-Hamilton bem como de determinados conceitos geométricos envolvendo a Teoria KCC e a Geometria Projetiva. Os principais cálculos foram realizados pelo pacote de programação algébrica FINSLER, aplicado sobre o MAPLE. / This work presents an analytical approach for modeling the evolutionary process
formulated by the Serial Endosymbiosis Theory represented by a succession of stages involving
different metabolic and ecological interactions among populations of bacteria considering
both the population dynamics and production processes of these populations. In such approach
we make use of systems of differential equations known as Volterra-Hamilton systems
as well as some geometric concepts involving the KCC Theory and the Projective Geometry.
The main calculations were performed by the computer algebra software FINSLER based on
MAPLE.
|
12 |
Aritmética de corpos finitos : algoritmos para a fatoração polinomialNoriega Sagastegui, Ruth Noemi January 1996 (has links)
Este trabalho descreve algoritmos algébricos para computação em corpos de Galois GF(q), com q = pn onde pé a característica do corpo, que pode ser arbitrariamente grande. Para fundamentar esse estudo é condensada e apresentada Lo ela. a fena.menta algébrica necessári a. Os corpos ·finitos são caracterizados, é mostrado como construí-los e sua aritmética é analisada. Algoritmos determinísticos e probabilísticos são desenvolvidos para. o cálculo de raízes polinomiais e a. fatoração de polinômios sobre esses corpos. Este trabalho é materializado pela implementação de dois algoritmos, o de Cantor-Zassenhaus e o de Rabin, ambos implementados no Sistema de Computação Algébrica MAPLE V Release 3. / This work elescribes algebraic algorithms for computing in Galois Fielels GF(q), with q = pn, where p is the characteristic of the fielel anel may be arbitrar.ialy large. By justifying this work we give a colection of results about topics of Algebra. Dctcnninistics anel probabilistics a.lgorithms are clevelopeel to compute polynomials roots anel for polynornia.l factorization in OF(q).This work is materializccl by the implementation oi' t.wo algorithms, Cantor-Zasscnhaus's algorithm anel Rabin's algoril. hm, both implemented in MAPLE V Rclease 3 Computer Algebra System.
|
13 |
Modelando evolução por endossimbiose / Modeling evolution by endosymbiosisCarlos Eduardo Hirakawa 13 July 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação é apresentada uma modelagem analítica para o processo evolucionário formulado pela Teoria da Evolução por Endossimbiose representado através de uma sucessão de estágios envolvendo diferentes interações ecológicas e metábolicas entre populações de bactérias considerando tanto a dinâmica populacional como os processos produtivos dessas populações. Para tal abordagem é feito uso do sistema de equações diferenciais conhecido como sistema de Volterra-Hamilton bem como de determinados conceitos geométricos envolvendo a Teoria KCC e a Geometria Projetiva. Os principais cálculos foram realizados pelo pacote de programação algébrica FINSLER, aplicado sobre o MAPLE. / This work presents an analytical approach for modeling the evolutionary process
formulated by the Serial Endosymbiosis Theory represented by a succession of stages involving
different metabolic and ecological interactions among populations of bacteria considering
both the population dynamics and production processes of these populations. In such approach
we make use of systems of differential equations known as Volterra-Hamilton systems
as well as some geometric concepts involving the KCC Theory and the Projective Geometry.
The main calculations were performed by the computer algebra software FINSLER based on
MAPLE.
|
14 |
Aritmética de corpos finitos : algoritmos para a fatoração polinomialNoriega Sagastegui, Ruth Noemi January 1996 (has links)
Este trabalho descreve algoritmos algébricos para computação em corpos de Galois GF(q), com q = pn onde pé a característica do corpo, que pode ser arbitrariamente grande. Para fundamentar esse estudo é condensada e apresentada Lo ela. a fena.menta algébrica necessári a. Os corpos ·finitos são caracterizados, é mostrado como construí-los e sua aritmética é analisada. Algoritmos determinísticos e probabilísticos são desenvolvidos para. o cálculo de raízes polinomiais e a. fatoração de polinômios sobre esses corpos. Este trabalho é materializado pela implementação de dois algoritmos, o de Cantor-Zassenhaus e o de Rabin, ambos implementados no Sistema de Computação Algébrica MAPLE V Release 3. / This work elescribes algebraic algorithms for computing in Galois Fielels GF(q), with q = pn, where p is the characteristic of the fielel anel may be arbitrar.ialy large. By justifying this work we give a colection of results about topics of Algebra. Dctcnninistics anel probabilistics a.lgorithms are clevelopeel to compute polynomials roots anel for polynornia.l factorization in OF(q).This work is materializccl by the implementation oi' t.wo algorithms, Cantor-Zasscnhaus's algorithm anel Rabin's algoril. hm, both implemented in MAPLE V Rclease 3 Computer Algebra System.
|
15 |
Aritmética de corpos finitos : algoritmos para a fatoração polinomialNoriega Sagastegui, Ruth Noemi January 1996 (has links)
Este trabalho descreve algoritmos algébricos para computação em corpos de Galois GF(q), com q = pn onde pé a característica do corpo, que pode ser arbitrariamente grande. Para fundamentar esse estudo é condensada e apresentada Lo ela. a fena.menta algébrica necessári a. Os corpos ·finitos são caracterizados, é mostrado como construí-los e sua aritmética é analisada. Algoritmos determinísticos e probabilísticos são desenvolvidos para. o cálculo de raízes polinomiais e a. fatoração de polinômios sobre esses corpos. Este trabalho é materializado pela implementação de dois algoritmos, o de Cantor-Zassenhaus e o de Rabin, ambos implementados no Sistema de Computação Algébrica MAPLE V Release 3. / This work elescribes algebraic algorithms for computing in Galois Fielels GF(q), with q = pn, where p is the characteristic of the fielel anel may be arbitrar.ialy large. By justifying this work we give a colection of results about topics of Algebra. Dctcnninistics anel probabilistics a.lgorithms are clevelopeel to compute polynomials roots anel for polynornia.l factorization in OF(q).This work is materializccl by the implementation oi' t.wo algorithms, Cantor-Zasscnhaus's algorithm anel Rabin's algoril. hm, both implemented in MAPLE V Rclease 3 Computer Algebra System.
|
Page generated in 0.0543 seconds