• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 12
  • 12
  • 1
  • 1
  • 1
  • Tagged with
  • 113
  • 113
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Deformačně-napěťová analýza patologického kyčelního kloubu / Strain-stress analysis of pathological hip joint

Stodola, Martin January 2008 (has links)
This work deals with stress-strain analysis pathological hip joint. In its introduction a research study from accessible literature sources is carried out. It covers contemporary state of scientific studies, anatomy of single components hip joint, their material properties, ways and magnitudes of loadings and most often FE model used. With use of all these informations, computational system ANSYS and gained CT scans, a model of geometry of pelvis and femur is created. Subsequently, the complete computational model o pathological hip point is compiled. On this model computational solution is executed stress-strain and sensitivity analysis. Subsequently, surgery operation is simulated on this model and it is executed stress-strain analysis. These analyses are compared with analysis of physiological hip joint.
42

Modélisation numérique des distorsions post usinage pour les pièces aéronautiques en alliage d’aluminium : application aux parois minces / Computational modelling of post machining distortions of aluminium aeronautical parts : application to thin walls

Rambaud, Pierrick 23 September 2019 (has links)
La fabrication de grandes pièces structurelles aéronautiques en alliage d’aluminium nécessite la réalisation de multiples étapes de mise en forme (laminage, matriçage, forgeage…), de traitements thermiques et usinage. Pendant ces étapes de fabrication, les différents chargements thermomécaniques subis par la pièce avant son usinage induisent des déformations plastiques ainsi que des modifications de la microstructure qui sont sources de contraintes résiduelles. A ces contraintes résiduelles issues de l’histoire thermomécanique de la pièce, viennent s’ajouter celles issues directement de l'étape d'usinage. En effet lors de cette étape jusqu’à 90% de la matière initiale d'une pièce peut être retirée en utilisant des conditions de coupe parfois sévères. Les pièces aéronautiques présentent parfois des géométries complexes avec des parois minces. Ainsi, pendant et à l’issue de l’usinage, la géométrie de la pièce usinée se trouve fortement modifiée et une redistribution des contraintes résiduelle est alors à l’œuvre. Ces contraintes résiduelles qu’elles soient héritées ou induites par le procédé, influencent fortement la géométrie finale obtenue et sont une des causes principales de non-conformité des pièces avec les tolérances dimensionnelles du produit fini. Engendrant une perte conséquente pour les industries manufacturières. Au cours de ce travail de thèse, nous nous sommes concentrés sur la prise en compte de ces deux types de contraintes résiduelles dans un modèle numérique de prédiction des distorsions. Nous nous sommes uniquement focalisés sur les pièces en aluminium issues de l’aéronautique. Nous avons ainsi couplé des modèles numériques avancés d’immersion et de remaillage avec un logiciel industriel existant afin de proposer une nouvelle solution numérique, rapide et robuste. En se basant sur les hypothèses de la littérature nous avons décidé de simuler l’usinage comme un enlèvement de matière massif où la trajectoire de l’outil et les machine seront négligées. L’objectif numérique est donc de proposer une méthode qui puisse rendre compte de la redistribution des contraintes résiduelles au sein de la pièce. Chaque étape de la gamme d’usinage est ainsi représentée par une étape de remaillage où le « volume usiné » sera supprimé du maillage pour céder ensuite sa place à un calcul mécanique permettant de rendre compte de la réorganisation des contraintes et les déformations qu’elle induisent. Ce processus itératif, réalisé dans un environnement parallèle a nécessité de nombreux développements numériques. Ainsi une nouvelle stratégie de remaillage et de repartitionnement a été proposée pour pouvoir obtenir un maillage à même de capturer les contraintes résiduelles issues de l’usinage en proche surface ainsi que pour réduire de manière significative les temps de calcul liés aux modifications de la géométrie par la découpe. Un modèle d’élasticité linéaire simplifié a aussi été ajouté au programme pour réduire le coût numérique des calculs mécaniques et permettre de traiter des problèmes de taille plus conséquente sur des ordinateurs de puissance raisonnable. Afin de confirmer les résultats obtenus par ces calculs, les simulations ont été comparées à des résultats expérimentaux tirés de la littérature et réalisés spécifiquement pour ce travail de thèse. / The manufacture of large aeronautical structural parts made of aluminium alloys requires multiple forming steps (rolling, die forging, forging, etc.), heat treatment and machining. During these manufacturing steps, the various thermomechanical loads suffered by the part before its machining induce plastic deformations as well as modifications of the microstructure which are sources of residual stresses. In addition to these residual stresses resulting from the thermomechanical history of the part, others result directly from the machining step. Indeed, during this step, up to 90% of the raw material of a part can be removed using sometimes severe cutting conditions. Aeronautical parts sometimes have complex geometries with thin walls. Thus, during and after machining, the geometry of the machined part is significantly modified by the redistribution of residual stresses at work. These residual stresses, whether inherited or induced by the process, strongly influence the final geometry obtained and are one of the main causes of non-conformity of the parts with the dimensional tolerances of the finished product. This results in a significant loss for manufacturing industries. In this thesis work, we focused on considering these two types of residual stresses in a numerical model predicting distortions. We focused only on aluminium parts from the aeronautics industry. We have thus coupled advanced numerical fitting and remeshing models with existing industrial software to provide a new numerical solution, fast and efficient. Based on the assumptions in the literature, we decided to model machining as a massive material removal where tool path and interaction with the machine will be neglected. The numerical objective is therefore to propose a method that can account for the redistribution of residual stresses within the part. Each step of the machining plan is thus represented by a remeshing step where the "machined volume" will be removed from the mesh followed by a mechanical computation to account for the reorganization of stresses and the deformations they induce. This iterative process, carried out in a parallel environment, required many numerical developments. Thus, a new remeshing and repartitioning strategy has been proposed to obtain a mesh capable of capturing the residual stresses resulting from near-surface machining and to significantly reduce the calculation times associated with changes in geometry through cutting. A simplified linear elasticity model has also been added to the approach to reduce the numerical cost of mechanical computation and allow for larger problems to be addressed on computers of reasonable power. In order to confirm the results obtained by these computations, the simulations were compared with experimental results from the literature and carried out specifically for this thesis work.
43

Computational modelling studies of FeAl-X ALLOYS(X: Pt, Ru, Pd and Ag)

Mkhonto, Chrestinah Surrender January 2020 (has links)
Thesis (M. Sc. ( Physics)) -- University of Limpopo, 2020 / In this work, we present first-principles calculation on the structural, thermodynamic, mechanical and electronic stabilities of Fe-Al and FeAl-X (X: Pt, Pd, Ru and Ag) alloys at lower and high temperatures. These systems have recently attracted a lot of attention for both scientific and possible technological application in turbines, Steel-It coating, energy sector, boilers, pipes and automotive parts as a potential replacement of steel due to their excellent resistance to oxidation at high temperatures. However, they suffer limited room temperature ductility and a sharp drop in strength above 873 K. We determined the lattice parameters, heats of formation, elastic constants, bulk to shear moduli, density of states, phonon dispersion curve and X-ray diffraction pattern for binary and ternary system at various concentrations between 0 ≤ x ≤ 10. Furthermore, the lattice expansion, elastic constants, Gibbs free energy, X-ray diffraction pattern and radial distribution function were done on the most stable systems to determine the melting point of FeAl-X ternary systems. A systematic investigation was performed on the stability of the Fe-Al alloys at zero K. We employed CASTEP code to evaluate the thermodynamic, elastic and electronic stability. Virtual crystal approximation was used to determine various atomic concentrations (0 ≤ x ≤ 5) of both Pt and Ru; this allowed more precise predictions on the materials’ behaviour. Further analysis was done on the density of states to describe the behaviour of each phase near the Fermi level; these phases were observed at different percentage compositions. A supercell approach, DMol3 was also used to evaluate these systems at a larger scale (0 ≤ x ≤ 50). VASP and LAMMPS codes were used to determine the stability of these FeAl-X ternary systems at concentrations (0 ≤ x ≤ 10). It was found that the equilibrium lattice parameters of the binary systems are in good agreement to within 2% with the available experimental data. The heats of formation showed that β2 FeAl phase was the most energetically stable system since it displayed the lowest value compared to all other binary systems. This observation accord well with the experimental phase diagram. It was also confirmed from the corresponding electronic DOS behaviour near the Fermi level. Furthermore, the shear modulus (C’) of these Fe-Al binary systems, i.e. FeAl, Fe2Al5, Fe4Al13, Fe5Al8, Fe2Al and FeAl3 were found to be positive fulfilling the condition of stability. The Fe2Al5 system was found to be the second most stable phase, followed by the monoclinic structure Fe4Al13. This observation was confirmed from the total DOS (where the Fermi level falls in the pseudogap, condition of stability). We further employed virtual crystal approximation and supercell approaches to model various atomic compositions at 0 ≤ x ≤1 and 0 ≤ x ≤ 50 for Ag, Pt, Pd and Ru. The heats of formation, density of states and elastic constants were determined to describe the structural, thermodynamic and mechanical stability of these systems. It was found that the addition of Ag, Pt, Pd and Ru enhances the stability at lower atomic percentage composition below 0.5%. Interestingly, the addition of Pt and Ru was found to significantly improve the ductility of the ternary FeAl-X compound for 0.2 and 0.5 at. % compositions. These systems showed that the Fe-sublattice was the preferred doping site with promising improvement in strength on the properties. It was further deduced that Ag and Pd stabilize the FeAl-X system at atomic percentage compositions of 0.5 and 0.7 respectively. Furthermore, a molecular dynamics-based LAMMPS-EAM was employed to model Fe50-XXXAl doped systems with either Ag, Pt or Pd. The lattice site preferences of the dopant were deduced from their energy landscape. More importantly, Ag and Pd doped systems gave comparable transition temperatures to experimental findings of 1273 K and 1073 K, respectively. Their thermodynamic and mechanical stability trends showed promising properties for industrial applications, displaying stability at a high temperature below 1300 K. This was evident for Ag, Pt (0.5 at %) and Pd (0.7 at %) doping as was the most stable systems with respect to Cij, ΔG, and RDF’s which indicated to influence the elastic instability above 1200 K as well as the ductility of these systems. The XRD confirmed that the doped systems preserved the structural symmetry as expected.
44

Cognitive control modulates pain during effortful goal-directed behaviour

Heydari, Sepideh 10 September 2020 (has links)
Many theories of decision-making consider pain, monetary loss, and other forms of punishment to be interchangeable quantities that are processed by the same neural system. For example, standard reinforcement learning models utilize a single reinforcement term to represent both monetary losses and pain signals. By contrast, I propose that 1) pain signals present unique computational challenges, 2) these challenges are addressed in humans and other animals by anterior cingulate cortex (ACC), and 3) pain is regulated by cognitive control during goal-directed tasks, using principles of the hierarchical reinforcement learning model of the ACC (HRL-ACC). To show this, I conducted 3 studies. In Study 1, I conducted an electrophysiological study to investigate the effect of task goals on event-related brain potentials (ERPs) during conditions where pain and reward are used. Specifically, I investigated whether feedback stimuli predicting forthcoming pain would elicit the reward positivity, an ERP component that is more positive-going to positive feedback than to negative feedback, when the goal of the task is to find electrical shocks. Contrary to my predictions, a standard reward positivity was not elicited by pain feedback in this task. In Study 2, I conducted three behavioral experiments wherein the subjective costs of mild electrical shocks were equated with monetary losses for each individual participant using a calibration procedure. I hypothesized that decision-making behavior in face of painful events and decision making behavior in the face of monetary losses would be different from each other despite the outcomes (pain vs. monetary loss) being equated for their subjective costs. This prediction was confirmed, demonstrating that the costs associated with pain and monetary losses differ in more than just magnitude. In Study 3, to explain these results, I developed an extension to an existing computational framework, the HRL-ACC model. The present model provides insight into choice behaviour in the pain and monetary loss (ML) conditions by showing that cognitive control levels converge to an average level across trials. In the pain condition, cognitive control fluctuates from trial to trial in a systematic fashion, causing trials with low shock levels to be over-valued and shocks with high-shock levels to be undervalued. By contrast, in the ML condition cognitive wanes across trials because it is not needed and the model displays normative behavior. These findings are in line with psychological approaches to pain treatment and provide neuro-cognitive explanations that underlie their mechanisms. In line with the HRL-ACC theory, I propose that the ACC regulates pain by motivating good performance in the face of physical punishments (but not monetary losses) in order to achieve long-term goals that are produced by ACC. / Graduate / 2021-08-18
45

Computational and neural models of oculomotor control.

Wilming, Niklas 09 March 2015 (has links)
Seeing is more than sight: it is the entire action-perception loop involved in taking in the world around us. Unlike a camera, our eyes can only resolve a small part of the environment sharply. Therefore, we must constantly move our eyes to scrutinise the parts of our environment that seem most worthy of our highest visual acuity. Eye movements are thus the observable consequences of a complex and crucial decision-making process that is fundamental to how we interact with the world. This thesis investigates properties and the neural basis of eye-movement behavior in humans and monkeys. In the interdisciplinary tradition of cognitive science, the thesis spans fields and utilizes computational models as explanatory vehicles. A central theme is the so-called saliency map model of attention, the de facto computational model of viewing behavior. The saliency map model assumes that attention is directed at the peaks of a map that encodes the saliency of locations in the visual field. Saliency can roughly be thought of as how worthy a location is of attention. It forms a common currency that allows different processes to influence the distribution of attention. The four different studies in this thesis provide four different perspectives on viewing behavior and the saliency map model. The first study establishes a methodology to evaluate the predictive power of models of viewing behavior, and determines which properties of viewing behavior are important for this evaluation. Applying this methodological foundation to the saliency map model reveals that state-of-the-art models do not provide satisfactory explanations of viewing behavior. The second study investigates spatio-temporal properties of eye-movements, finding that observers often re-fixate locations in pictures and that their eye movements possess a rich spatio-temporal structure. These results speak directly against a causal role of "inhibition of return", which is a popular component of many saliency map models. The third study shifts focus to the neural basis of the oculomotor behaviour. fMRI is used to probe the relationship between the computation of saliency and actual processing in the brain. Our results, in contrast to those of other studies, suggest that early visual areas do not compute saliency, but instead compute visual features upon which the saliency map operates. Much of what we know about the neural basis of oculomotor control comes from invasive studies in animals, but it is unclear to what extent saliency computations are comparable between species. Thus, the fourth study compares the viewing behavior of monkeys and humans, to look for evidence of the same underlying processes. We find a strong similarity between the species in saliency-driven viewing behavior. The many saliency-processing areas that have been identified in monkeys therefore likely have a role in saliency processing in the human brain as well. This thesis contributes to our understanding of oculomotor control on multiple levels. The results in this thesis suggest that models of viewing behavior should treat saccade-target selection as a dynamic process where past decisions influence future decisions and where saliency varies over time. This selection process likely takes place in a distributed network in the brain which receives bottom-up input from early visual areas. Encouraged by these results, we speculate that normative and embodied models of cognition offer an explanation of oculomotor control that takes these results into account. In turn, explaining oculomotor control is an important part of the much deeper question of how our mind interacts with the world.
46

Design, Synthesis and Biological Evaluation of Chemical Probes Incorporating Aldehyde Dehydrogenase (ALDH) Recognition Motifs and Fluorescent Properties. An Investigation Towards the Development of ALDH-Affinic Fluorophores for Hypoxia Cell Tracking

Ibrahim, Ali I.M. January 2017 (has links)
The full text will be available at the end of the extended embargo: 21st Feb 2026
47

Polarization and Hyperspectral Imaging for Synthetic Scene Rendering

Junjie Wang (17130997) 27 November 2023 (has links)
<p dir="ltr">Polarization and spectral imaging technology has wide application prospects and economic value in environmental detection, target recognition, remote sensing detection and industrial detection. However, the acquisition of hyperspectral or spectro-polarimetric imaging data is difficult and expensive in general. This study aims to develop a synthetic thermal imaging dataset using computer simulation. The study seeks to explore the simulation performance of Monte-Carlo path tracing algorithm in the fields of spectroscopy and thermal imaging. The goal is to provide a novel tool for effective and accurate dataset generation for thermal imaging neural networks training.</p>
48

Interpreting random forest models using a feature contribution method

Palczewska, Anna Maria, Palczewski, J., Marchese-Robinson, R.M., Neagu, Daniel January 2013 (has links)
No
49

Crowd formal modelling and simulation: The Sa'yee ritual

Sakellariou, I., Kurdi, O., Gheorghe, Marian, Romano, D.M., Kefalas, P., Ipate, F., Niculescu, I.M. January 2014 (has links)
No / There is an increasing interest in modelling of agents interacting as crowd and a simulation of such scenarios that map to real-life situations. This paper presents a generic state-based abstract model for crowd behaviour that can be mapped onto different agent-based systems. In particular, the abstract model is mapped into the simulation framework NetLogo. We have used the model to simulate a real-life case study of high density diverse crowd such as the Hajj ritual at the mosque in Mecca (Makkah). The computational model is based on real data extracted from videos of the ritual. We also present a methodology for extracting significant data, parameters, and patterns of behaviour from real-world videos that has been used as an early stage validation to demonstrate that the obtained simulations are realistic.
50

Modelling and stochastic simulation of synthetic biological Boolean gates

Sanassy, D., Fellerman, H., Krasnogor, N., Konur, Savas, Mierla, L.M., Gheorghe, Marian, Ladroue, C., Kalvala, S. January 2014 (has links)
No / Synthetic Biology aspires to design, compose and engineer biological systems that implement specified behaviour. When designing such systems, hypothesis testing via computational modelling and simulation is vital in order to reduce the need of costly wet lab experiments. As a case study, we discuss the use of computational modelling and stochastic simulation for engineered genetic circuits that implement Boolean AND and OR gates that have been reported in the literature. We present performance analysis results for nine different state-of-the-art stochastic simulation algorithms and analyse the dynamic behaviour of the proposed gates. Stochastic simulations verify the desired functioning of the proposed gate designs.

Page generated in 0.0947 seconds