• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 678
  • 231
  • 110
  • 46
  • 42
  • 20
  • 20
  • 16
  • 11
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • Tagged with
  • 1737
  • 1737
  • 1737
  • 459
  • 399
  • 357
  • 227
  • 226
  • 195
  • 177
  • 174
  • 158
  • 155
  • 149
  • 148
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
771

Computational fluid dynamics modelling of unconfined gas mixing of wastewater sludge in a full scale anaerobic digester

Dapelo, Davide, Bridgeman, John January 2015 (has links)
Yes / In this paper, an Euler-Lagrange model for computational fluid dynamics was used to model a full-scale gas-mixed anaerobic digester. The flow profiles, local values of non-Newtonian viscosity and average shear rate were analysed. Recommendations to enhance the effectiveness of mixing were given. In particular, the gas mixing input power can be reduced without appreciable detrimental effects on the mixing effectiveness.
772

Estudio sobre el impacto de la geometría de toberas diesel en el desarrollo del chorro, la formación de la mezcla y la combustión

Martínez-Miracle Muñoz, Enrique Carlos 21 March 2024 (has links)
Tesis por compendio / [ES] El empuje actual de las normativas de emisiones y una conciencia social cada vez más crítica en este aspecto, ha llevado a la industria automotriz a elevar sus estándares en eficiencia a cimas nunca antes vistas. Con el mayor peso de las nuevas normativas puesto sobre los vehículos Diesel, la presión ejercida sobre esta tecnología es, si cabe, aún más crítica. Dada la necesidad de mantener este tipo de plantas propulsivas en determinadas aplicaciones, como son el transporte terrestre pesado, maquinaria o en el transporte marítimo, es también necesario mantener su desarrollo. Como parte fundamental de los motores Diesel, el sistema de inyección interviene directamente en la generación de la energía. La mejora y optimización de su funcionamiento repercute sobre la cadena de eficiencias del sistema. Esta tesis pretende contribuir al desarrollo de las plantas propulsivas Diesel en este aspecto y, concretamente, en el estudio de las geometrías de toberas Diesel de inyección directa. A lo largo del texto, este tipo de geometrías son estudiadas tanto desde la perspectiva del flujo interno como del flujo externo. Los estudios combinan modelos numéricos Eulerianos (para flujo interno o interno-externo acoplado), modelos Lagrangianos discretos (para el estudio del chorro), junto con medidas experimentales diversas que avalan los análisis ejecutados. La exploración de las geometrías propuestas no queda acotada solamente a formas circulares, más convencionales, sino que también se ha extendido a toberas de morfologías más innovadoras como son las elípticas. Las metodologías presentadas demuestran ser eficaces en el estudio de estos sistemas y una herramienta a tener en cuenta en la mejora de su diseño. Los distintos resultados obtenidos defienden, además, como la geometría de la tobera es un condicionante del desarrollo posterior de la mezcla y puede ser utilizada como elemento de optimización de la misma. / [CA] L'actual impuls de les normatives d'emissions i una consciència social cada vegada més crítica en aquest aspecte ha portat a la indústria automobilística a elevar els seus estàndards d'eficiència a cotes mai vistes abans. Amb el major pes de les noves normatives imposades als vehicles dièsel, la pressió exercida sobre aquesta tecnologia és, si cap, encara més crítica. Donada la necessitat de mantenir aquest tipus de plantes propulsives en determinades aplicacions, com el transport terrestre pesat, maquinària o el transport marítim, és també necessari mantenir el seu desenvolupament. Com a part fonamental dels motors dièsel, el sistema d'injecció intervé directament en la generació d'energia. La millora i optimització del seu funcionament repercuteix en la cadena d'eficiències del sistema. Aquesta tesi pretén contribuir al desenvolupament de les plantes propulsives dièsel en aquest aspecte i, concretament, en l'estudi de les geometries de bussons dièsel d'injecció directa. Al llarg del text, aquest tipus de geometries són estudiades tant des de la perspectiva del flux intern com del flux extern. Els estudis combinen models numèrics Eulerians (per a flux intern o intern-extern acoblat), models Lagrangians discrets (per a l'estudi del corrent), juntament amb mesures experimentals diverses que avalen els anàlisis realitzats. L'exploració de les geometries proposades no queda acotada només a formes circulars, més convencionals, sinó que també s'ha estès a bussons de morfologies més innovadores com les el·líptiques. Les metodologies presentades demostren ser eficaces en l'estudi d'aquests sistemes i una eina a tenir en compte en la millora del seu disseny. Els diferents resultats obtinguts també argumenten que la geometria del busó és un condicionant del desenvolupament posterior de la barreja i pot ser utilitzada com a element d'optimització de la mateixa. / [EN] The current push for emissions regulations and an increasingly critical social awareness in this regard has led the automotive industry to raise its efficiency standards to unprecedented heights. With greater emphasis on new regulations placed on Diesel vehicles, the pressure on this technology is even more critical. Given the need to maintain such propulsion systems in specific applications like heavy land transport, machinery, or maritime transportation, it is also necessary to continue their development. As a fundamental part of Diesel engines, the injection system directly affects energy generation. Improving and optimizing its operation has an impact on the overall efficiency of the system. This thesis aims to contribute to the development of Diesel propulsion systems in this regard, specifically in the study of direct injection Diesel nozzle geometries. Throughout the text, these types of geometries are examined from both internal and external flow perspectives. The studies combine Eulerian numerical models (for internal or coupled internal-external flow), discrete Lagrangian models (for jet analysis), along with various experimental measurements that support the conducted analyses. The exploration of proposed geometries is not limited to conventional circular shapes but has also extended to more innovative morphologies such as elliptical nozzles. The presented methodologies prove to be effective in studying these systems and serve as a valuable tool in improving their design. The different results obtained also argue that nozzle geometry is a determining factor in the subsequent mixture development and can be used as an optimization element for it. / Las investigaciones de esta tesis han sido respaldadas por el Ministerio de Ciencia, Innovación y Universidades el Gobierno de España y mis estudios de doctorado han sido financiados por la Agencia Estatal de Investigación del gobierno de España y el Fondo Social Europeo. Dichas ayudas se concretaron dentro del marco del proyecto "Desarrollo de modelos de combustión y emisiones HPC para el análisis de plantas propulsivas de transporte sostenibles" (TRA2017-89139-C2-1-R) a través del "Subprograma Estatal de Formación del Programa Estatal de Promoción del Talento y su Empleabilidad en I+D+i". / Martínez-Miracle Muñoz, EC. (2024). Estudio sobre el impacto de la geometría de toberas diesel en el desarrollo del chorro, la formación de la mezcla y la combustión [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203126 / Compendio
773

Numerical Modelling of Subcooled Nucleate Boiling for Thermal Management Solutions Using OpenFOAM

Rabhi, Achref January 2021 (has links)
Two-phase cooling solutions employing subcooled nucleate boiling flows e.g. thermosyphons, have gained a special interest during the last few decades. This interest stems from their enhanced ability to remove extremely high heat fluxes, while keeping a uniform surface temperature. Consequently, modelling and predicting boiling flows is very important, in order to optimise the two-phase cooling operation and to increase the involved heat transfer coefficients.  In this work, a subcooled boiling model is implemented in the open-source code OpenFOAM to improve and extend its existing solver reactingTwoPhaseEulerFoam dedicated to model boiling flows. These flows are modelled using Computational Fluid Dynamics (CFD) following the Eulerian two-fluid approach. The simulations are used to evaluate and analyse the existing Active Nucleation Site Density (ANSD) models in the literature. Based on this evaluation, the accuracy of the CFD simulations using existing boiling sub-models is determined, and features leading to improve this accuracy are highlighted. In addition, the CFD simulations are used to perform a sensitivity analysis of the interfacial forces acting on bubbles during boiling flows. Finally, CFD simulation data is employed to study the Onset of Nucleate Boiling (ONB) and to propose a new model for this boiling sub-model, with an improved prediction accuracy and extended validity range. It is shown in this work that predictions associated with existing boiling sub-models are not accurate, and such sub-models need to take into account several convective boiling quantities to improve their accuracy. These quantities are the thermophysical properties of the involved materials, liquid and vapour thermodynamic properties and the heated surface micro-structure properties. Regarding the interfacial momentum transfer, it is shown that all the interfacial forces have considerable effects on boiling, except the lift force, which can be neglected without influencing the simulations' output. The new proposed ONB model takes into account convective boiling features, and it able to predict the ONB with a very good accuracy with a standard deviation of 2.7% or 0.1 K. This new ONB model is valid for a wide range of inlet Reynolds numbers, covering both regimes, laminar and turbulent, and a wide range of inlet subcoolings and applied heat fluxes.
774

Computational Tools for Modeling and Simulation of Sooting Turbulent Non-Premixed Flames

Stephens, Victoria B. 14 December 2022 (has links)
Turbulent combustion systems are physically complex processes that involve many interdependent phenomena---including turbulent fluid dynamics, multi-component mass transfer, convective and radiative heat transfer, and multiphase flow---that occur over a wide range of length and time scales. Modeling and simulation studies complement experimental work by implementing and validating models and providing predictive capabilities, but current software tools are often limited by a lack of standardization and best practices, non-robust implementation, or over-specialization. Some topics in combustion CFD research, notably radiative heat transfer and soot modeling, are critically underrepresented in simulation studies as a result of software limitations. This project establishes and develops three computational tools designed for use in combustion CFD: the ODT code implements the one-dimensional turbulence (ODT) model in its most reliable form, increasing its potential for application to turbulent flow problems of interest to engineers; RadLib is a standalone library of validated radiative property models intended for application to combustion systems; and SootLib is a library of validated models for soot chemistry and particle size distribution treatments, including four moment methods and one sectional model. All three tools are open-source, cross-platform model implementations that incorporate aspects of modern software design intended to make them flexible, consistent, and easy to use and expand upon. The tools developed in this project provide researchers with convenient access to modeling tools for complex phenomena that might otherwise require significant investments of time and resources to implement individually. They also provide established frameworks on which new models can be developed and communicated, offering unparalleled potential for comparative and parametric studies of combustion processes.
775

Numerical Study on Flame-Wall Interaction in Gas and Spray Combustion / ガスおよび噴霧燃焼における火炎-壁相互作用に関する数値解析による研究

Kai, Reo 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23880号 / 工博第4967号 / 新制||工||1776(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 黒瀬 良一, 教授 中部 主敬, 教授 岩井 裕 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
776

EFFECT OF CYLINDER-WALL JUNCTURE CONFIGURATION IN SUPERSONIC FLOW

Girish Ganesh (17295625) 01 November 2023 (has links)
<p dir="ltr">This thesis examined the effect of variations in the geometry of the juncture of a cylinder at a flat plate. The effect on the pressure and skin friction on the face and surroundings were examined. When compared to the experimental data obtained under similar conditions, the computational cases had a slightly higher pressure, with a qualitatively similar profile. Four cases were considered: a simple baseline configuration, a pedestal, a gap, and a fairing. The results of the pedestal case displayed this behavior to an extreme, exaggerating all the jumps and dips in the experiment. The RMS pressure was examined to investigate the shock foot locations and again the experiment and computation matched very closely. When looking at the flow visualizations and spectra, the gap case showed a larger concentration of skin friction magnitude at the base as well as the highest intensity of the low frequencies at separation and reattachment, as well as an observed higher frequency activity like Liu observed in his computations. For the new fairing case that was introduced, very similar properties to the pedestal case were observed when looking at the pressure, skin friction, and even spectra, but the flow visualization in the wake showed that it was much closer in structure to the baseline case. The small differences between the computational and experimental data could be attributed to the turbulence model used as well as the uncertainty in the pressure sensitive paint technique used in the experiments. In this thesis it was found that the gap case had higher fluctuations and skin friction, the new fairing case was very similar to the pedestal and baseline case, and the experimental data matched well for most of the computations.</p>
777

CFD Analysis of Engine Room Temperature : CFD Analysis of Engine Room Temperature: Case study The Grange Castle Power Plant Project

Wanli, William January 2023 (has links)
Computational Fluid Dynamics (CFD) has emerged as an indispensable tool in various engineering fields, particularly in the design and optimization of HVAC systems in complex environments, such as engine rooms. This paper presents a comprehensive overview of CFD applications and focuses on the engine rooms of the Grange Castle Power Plant in Dublin, Ireland. Sustainable Development Capital LLP (SDCL) is constructing a state-of-the-art power plant at Grange Castle Business Park in Dublin, featuring six MAN 18V51/60DF engine generators and a total net export capacity of 111 MW. The plant uses pioneering dualfuel technology and serves as a contingency facility to stabilize the power grid amidst increasing integration of renewable energy. It functions as a responsive backup power generator and a peak load reducer, aiding the Irish government's goal of sourcing 80% of power from renewables by 2030. The initiative is part of a wider strategy including MAN Energy Solutions and Greener Ideas Limited, contributing to three new power plants in Ireland with a combined capacity of 311 MW.This study utilizes steady-state CFD simulations, employing the widely adopted k-epsilon turbulence model. Known for its robustness and computational efficiency, the k-epsilon turbulence model is utilized to analyse one engine cell at the Grange Castle Power Plant. As a two-equation model, it involves solving two additional transport equations alongside the Navier-Stokes equations to simulate fluid flow.Commonly applied in engineering applications, this model will be utilized to provide predictions of airflow and temperatures within the cell during standby and running states over the course of the year. By leveraging the strengths of the k-epsilon turbulence model, the study seeks to gain valuable insights into the complex fluid dynamics within the engine cell, ultimately helping to optimize its performance and efficiency. The analysis focused on one engine cell, with the setup and geometry for each cell being identical.Specifically, the research investigates maintaining the temperature within the cell, temperature distributions, airflow comparisons to design specifications and requirements, heating load and adequate airflow calculations, and potential benefits of optimizing the design and operation of the engine cell.The dimensions and characteristics of the engine room, along with the engines themselves and the heat they generate, play a significant role in the design process. In this study, there are several essential factors to consider, including a negative pressure ventilation system, as well as combustion and cooling air provided through air intake units that draw air from outside the engine hall and exhaust it using fans mounted on the roof. The ventilation system must be designed to maintain the room temperature within the range of 9 °C to 45°C at different points in the room. Since the engine combustion air will be drawn from inside the engine hall, the ventilation system must provide the required volumes of combustion air at all times, along with the necessary ventilation. The CFD analysis conducted in this study provides the groundwork for designing an effective ventilation system that can maintain optimal temperature conditions in the engine room. Using the simulation results, the ventilation system will be optimized to ensure the required temperature is maintained while also preventing the formation of explosive atmospheres.iiAlso, the simulation study presented in this report showcases the ability of CFD simulations to predict airflow and temperature fields in the engine room of a power plant. It is essential to understand the different scenarios' conditions to design a reliable and efficient engine room system. Furthermore, CFD simulations have proven to be an effective tool for optimizing HVAC installations to meet specific building requirements even before installing any equipment. CFD takes into account all factors influencing airflow and temperature, ensuring finely tuned designs even in confined spaces.To accurately analyse and simulate the environment, a 3D model of the engine and room is created using Inventor and AutoCAD software. However, for complex systems like the engine room, simplifying the geometry is necessary when preparing a CFD model. This is because including every detail can result in an excessive number of mesh elements, leading to longer simulation times and higher computational costs. Therefore, striking a balance between geometric complexity and computational efficiency is important for an optimal CFD model. By creating a simplified model, the CFD simulation can be more computationally efficient while still accurately capturing important flow features. The 3D model allows for seamless integration with the CFD software, enabling accurate representation of the environment for analysis.The study conducted simulations for a high-power diesel &amp; gas engine room under four different scenarios, covering various seasonal and load conditions. The results indicated that a heating coil with a 250 kW capacity is required to preheat the airflow of 25.5 m³/s by 8 °C to maintain the required temperature above 9 °C during winter. Similarly, during summer, fans with an airflow rate of 60 m³/s are necessary to keep the engine room temperature below 45 °C. This analysis is critical for designing an optimal ventilation system in engine rooms, ensuring sufficient airflow and maintaining appropriate engine temperature to prevent engine start failure. The simulation results provide invaluable information for HVAC engineers to design an efficient and reliable engine room system.Through the utilization of CFD simulations, engineers can simulate and analyse the performance of the HVAC system under various conditions, providing them with the necessary information to make well-informed decisions to ensure that the system meets the required performance criteria. Implementing CFD in the early stages of HVAC design provides valuable insights, saving engineers time and money associated with real-life testing and validation. By leveraging CFD simulations, engineers can virtually test and evaluate multiple design alternatives, ventilation strategies, and system configurations prior to actual implementation. This proactive approach helps engineers pinpoint potential issues, optimize system design for enhanced efficiency and effectiveness, and minimize the need for expensive post-installation modifications and adjustments.
778

Simulation of Flow in a Solid Fuel Ramjet Cavity

Arnold, Charles Ridgely 16 May 2023 (has links)
Cold flow inside a Solid Fueled Ramjet (SFRJ) is simulated using large eddy simulations (LES). A finite element method using a Discontinuous Galerkin bases has been implemented in the open-sourced multi-physics software SU2. Novel LES formulations of the fuel-gas boundary conditions and the heat release due to mixing are obtained using integration by parts over the discontinuous Galerkin bases. The Smagorisnki and wall-adapted subgrid stress model for the scalar variance have been implemented and investigated in twodimensions. Spectral Proper Orthogonal Decomposition is used to analyze CFD results to determine acoustic modes in the ramjet. Peak acoustic frequencies are compared between between numerical and experimental results. Comparisons are made between simulations performed with a 2D axisymmetric domain and full 3D domain. Cold-flow LES simulations show that there are two dominant acoustic modes (St ≡ f/f0 = {3, 18}) in the ramjet and their frequency appears to be invariant to the cavity configuration. The first peak corresponds to a longitudinal mode associated to the chamber fundamental oscillations (with length scale Lc). The second is characterized with radial fluctuations in the mixing chamber and features the maximum chamber radius of the ramjet as its scaling length. Mixed (radial and axial) modes in the intermediate frequency range reveal the effect of a slanted aft wall on the acoustics. Three-dimensional cold flow simulations predicted weak non-symmetric (azimuthal) modes. Hot-flow simulations show a substantial increase in the mean chamber pressure with the addition of the cavity, indicating that it enhances flame-holding in solid-fuel ramjets, in agreement with the experiments. The analysis of the ramjet acoustic modes shows the emergence of low frequency modes in the cavity cases, in agreement with the experiments. Using SPOD, these modes were associated with low frequency breathing of the recirculation region at the nozzle throat. Perturbations are localized in the throat region because of the Mach number pressure scaling. These modes do not seem to affect the pressure fluctuation and thus combustion in the chamber. Together with the emergence of low frequency vortical modes, the cavity supports a decrease in the high-wave number harmonics of the ramjet chamber acoustic mode. These fluctuations are supported by non-linear amplification of the fundamental mode, which is enhanced by the thermo-acoustic coupling. / Master of Science / Novel propulsion designs, such as solid fuel ramjets, present the opportunity of optimizing cavity shapes using additive manufacturing and three-dimensional printing to improve fuelair mixing and lowering the thermo-acoustic feedback. In this work a computational model for solid fuel ramjets is developed and applied to laboratory firing tests performed by Prof Young's group at the advanced propulsion laboratory at Virginia Tech. In order to capture the fine mixing scales a novel discretization of the reactive Navier-Stokes using discontinuous Galerkin bases is implemented in an open source CFD code popular with aerospace graduate students and researchers. Subgrid modelling is implemented to determine the effect of small scales on the PMMA combustion mechanism developed at Virginia Tech. Numerical methods are used to simulate the turbulent flow of air through an axisymmetric cavity.
779

Multiscale Simulations and Pharmacokinetic Modeling of Long-Acting Injectable Delivery Systems

Clairissa D Corpstein (16520130) 11 July 2023 (has links)
<p>Long-acting injectables (LAI) offer many practical benefits for patients in improving drug adherence to therapies for chronic diseases. LAI, administered either subcutaneously (SC) or intramuscularly (IM), can improve drug bioavailability, and reduce frequency of administration as well as regimen complexity. SC also has additional benefits over IM injections as being safer, less painful, and able to be administered at home. However, development and translation of these products into the clinic is often limited because of physiological complexity at injection site, such that absorption rate mechanisms are not well understood. Common predictive and correlative methods used in oral formulations, such as <em>in vitro-in vivo </em>correlations, are not well suited for SC physiology and are only capable of measuring a few parameters at a time, meaning relationships between parameters cannot be discriminately measured.</p> <p><br></p> <p>This project seeks to address this gap in knowledge by using computation to bridge the gap between suboptimal preclinical testing methods and human pharmacokinetic data. A Multiscale framework was developed by integrating a first-principles Multiphysics model of the SC space to experimental plasma concentration profiles using simulated absorption rates. First, our lab’s previous framework for lymphatic absorption of monoclonal antibodies (mAbs) was converted into small molecule absorption into the capillaries. Drug and formulation critical quality attributes (CQA) were determined for a solution injection of methotrexate, and a nanocrystal formulation of medroxyprogesterone acetate (MPA, Depo-SubQ Provera). Two dissolution models were incorporated to compare the difference between using average particle size (Noyes-Whitney) and particle size distributions (Population Balance Model, PBM) as CQA for nanocrystal LAI specifically. Absorption rates were validated using compartmental pharmacokinetic models, and sensitivity analyses were conducted to determine model parametric sensitivity. Overall, the modeling framework was able to determine the importance of and discriminate the effect of parameters on SC absorption rates. </p>
780

Aerodynamics simulations of Scania trucks using OpenFOAM

Liu, Ziyi January 2024 (has links)
In the field of heavy-duty vehicles, fuel efficiency and environmental protection are factors that need to be focused on, while the aerodynamic drag generated during vehicle travelling is one of the most influential aspects. This thesis delves into the aerodynamic simulation of Scania trucks using the open-source Computational Fluid Dynamics (CFD) tool, OpenFOAM v2206. This study rigorously investigates the aerodynamics of two Scania truck models under different operating conditions, including scenarios with different crosswind environments at high speeds.The core of this study is to compare and analyse the computational results of OpenFOAM v2206 and its predecessor OpenFOAM v3.0+ in a number of aspects, in order to elucidate the evolution and improvement of CFD techniques and their practical impact on vehicle simulation performance. In order to save computational resources, the RANS method was used for the steady-state simulations. Preliminary comparisons were also made with results from PowerFLOW, another CFD software widely used within the Scania group.Another important part of this thesis is the exploration of an alternative meshing method (ANSA Hextreme Mesh) in CFD simulations. As a widely used pre-processing software in the Scania group today, analysing and comparing the advantages and disadvantages of ANSA and OpenFOAM in terms of meshing, such as the ease of meshing and the accuracy of aerodynamic predictions, can help to provide valuable guidance for the application of truck shape design and aerodynamic simulation.The results indicate that OpenFOAM v2206 excels in predicting aerodynamics and has utility in optimising truck design. Compared to OpenFOAM v3.0+, OpenFOAM v2206 shows smaller discrepancies in results with PowerFLOW. Further exploration is required regarding transient simulations using OpenFOAM. In terms of meshing methods, a simplified model (Allan Body) was investigated, and there is further research to be done on meshing the complete truck.In conclusion, this thesis presents a comprehensive and in-depth exploration of truck aerodynamics using advanced CFD tools. The results not only deepen the understanding of airflow dynamics around heavy vehicles, but also pave the way for the development of more aerodynamically efficient and environmentally friendly truck designs.

Page generated in 0.1578 seconds