• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maskinrums design och layout : Varför ett maskinrum ser ut som det gör och hur det går till vid planerandet?

Gustafsson, Niklas, Henningsson, Gustav January 2009 (has links)
<p>This report is founded in lack of knowledge concerning the design and layout procedureduring a new engine room construction.The prime question is how the engine room takes its form from idea to construction and whathappens in between. We want to give the reader a better understanding in how the work isdone and why it is designed the way it is concerning layout, ergonomics and safety. Duringthis report we will enhance the knowledge concerning regulations and rules that are of greatsubstance such as SOLAS, Swedish Sjöfartsverket and IMO.By contacting the parties involved in the process in newly designing a vessel and its engineroom, we will assume their approaches and experiences. We will study the work progressfrom planning to construction of a vessels machinery spaces. We will with the help ofinterviews with interested parties get an idea of the approach and also compare the finishedproduct a bit depending on company size and resources.The investigation resulted in a good basis for how a ship engine room design takes shape andwhich aspects are taken into account, however, we found that the existing rules concerningengine room layout was very vague and was seen as the most recommendations. For thecontrol room, there were however some points to consider. We believe that it would facilitatea more comprehensive legal framework relating to engine room design.</p> / <p>Denna studie grundar sig i en okunskap gällande maskinrums design och layout. Frågan viställde oss var hur ett fartygs maskinrum kom till från idé till ritning och slutligen beställning.Syftet med arbetet är att ge läsaren grundläggande kunskaper gällande maskinrums design,layout samt ergonomiska aspekter då detta är relevant gällande säkerhet och avhjälpandekring det dagliga arbetet ombord på ett fartyg. Vi kommer även ta upp information som rörregelverk så som (SOLAS, Sjöfartsverket och arbetsmiljöverket),riktlinjer (IMO) standarder (ISO).Genom att kontakta de parter som är inblandade i ett nykonstruerande av ett fartyg och dessmaskinrum kommer vi utgå ifrån deras tillvägagångssätt och erfarenheter. Vi kommer studeravägen från beställning och planering till konstruering. Vi kommer med hjälp av intervjuermed berörda parter skaffa oss en uppfattning om tillvägagångssättet vid planering avmaskinrums designen och även jämföra resultatet beroende på rederiets storlek och resurser.Undersökningen resulterade i ett bra underlag för hur ett fartygs maskinrums konstruktion tarform och vilka aspekter som det tas hänsyn till, dock upptäckte vi att reglerna gällandemaskinrummets utformning var mycket vaga och sågs mest som rekommendationer. Förkontrollrummet fanns det däremot en del punkter att ta hänsyn till. Vi anser att det skulleunderlätta med ett mer utförligt regelverk som rör maskinrummets utformning.</p>
2

Arbetsskador som drabbar marin maskinpersonal : En kartläggning av skaderiskerna för marin maskinpersonal ombord på svenska fartyg, samt en jämförelse av skaderisken med liknande arbeten iland / Occupational injuries suffered by marine engineering staff : A survey of the risks that marine engineering staff is exposed to on board Swedish ships, and a comparison of the risk of injury with similar work ashore

Hanson, Anton, Horck, Emma January 2013 (has links)
Syftet med undersökningen är att kartlägga skaderiskerna med att arbeta som marin maskinpersonal och jämföra skaderisken med anställda som har liknande arbeten iland. Undersökningen inbegriper även att kartlägga vilka typer av arbetsskador, som ger de mest allvarliga konsekvenserna för den anställde i förhållande till hur vanlig olyckan är. Undersökningen är en litteraturstudie där Arbetsmiljöverkets arbetsskadeanmälningar utgör grundmaterialet, där totalt 198 arbetsskador behandlades och kategoriserades. Transportstyrelsens statistik för ombordanställda jämfördes med Arbetsmiljöverket och Statistiska centralbyrån statistik över anställda iland. Detta för att se vilken yrkeskategori som hade högst skaderisk. Resultatet av undersökningen visar att arbetsolyckor under kategorierna ”Bära” och ”Halka/Snubbla/Trilla” och arbetssjukdomar under kategorin ”Tunga lyft/Arbetsställningar” är de arbetsskador, som ger de mest allvarliga konsekvenserna i förhållande till hur vanlig arbetsskadan är. Vid jämförelsen av skaderisken med liknande yrkeskategorier iland ligger maskinanställda till sjöss näst sämst till. Den yrkeskategori som är mest lik marin maskinpersonal har fyra gånger mindre skaderisk. / The aim with this thesis is to identify the risks of injury while working as marine engine staff and compare the risk of injury to employees who have similar jobs ashore. The thesis also includes identifying the types of work injuries, which leads to the most serious consequences for the employee in relation to how frequent the accident is. The thesis studied literature in which the Swedish Work Environment Authority's work injury reports are the base material, where a total of 198 injuries were treated and categorized. The Swedish Transport Agency’s statistics for employees at sea were compared with the Swedish Work Environment Authority’s and the Swedish Central Bureau of Statistics’ statistics for employees ashore. The result of the thesis show that work related accidents categorized as "Carry" and "Slip/Trip/Fall" and work related diseases categorized as "Heavy lifting/Working positions" are the injuries leading to the most serious consequences in relation to how frequent the accident is. When comparing the risk of injury with similar professions ashore, marine engine staff is the second worst. The profession most similar to marine engine staff has four times less risk of injury.
3

Maskinrums design och layout : Varför ett maskinrum ser ut som det gör och hur det går till vid planerandet?

Gustafsson, Niklas, Henningsson, Gustav January 2009 (has links)
This report is founded in lack of knowledge concerning the design and layout procedureduring a new engine room construction.The prime question is how the engine room takes its form from idea to construction and whathappens in between. We want to give the reader a better understanding in how the work isdone and why it is designed the way it is concerning layout, ergonomics and safety. Duringthis report we will enhance the knowledge concerning regulations and rules that are of greatsubstance such as SOLAS, Swedish Sjöfartsverket and IMO.By contacting the parties involved in the process in newly designing a vessel and its engineroom, we will assume their approaches and experiences. We will study the work progressfrom planning to construction of a vessels machinery spaces. We will with the help ofinterviews with interested parties get an idea of the approach and also compare the finishedproduct a bit depending on company size and resources.The investigation resulted in a good basis for how a ship engine room design takes shape andwhich aspects are taken into account, however, we found that the existing rules concerningengine room layout was very vague and was seen as the most recommendations. For thecontrol room, there were however some points to consider. We believe that it would facilitatea more comprehensive legal framework relating to engine room design. / Denna studie grundar sig i en okunskap gällande maskinrums design och layout. Frågan viställde oss var hur ett fartygs maskinrum kom till från idé till ritning och slutligen beställning.Syftet med arbetet är att ge läsaren grundläggande kunskaper gällande maskinrums design,layout samt ergonomiska aspekter då detta är relevant gällande säkerhet och avhjälpandekring det dagliga arbetet ombord på ett fartyg. Vi kommer även ta upp information som rörregelverk så som (SOLAS, Sjöfartsverket och arbetsmiljöverket),riktlinjer (IMO) standarder (ISO).Genom att kontakta de parter som är inblandade i ett nykonstruerande av ett fartyg och dessmaskinrum kommer vi utgå ifrån deras tillvägagångssätt och erfarenheter. Vi kommer studeravägen från beställning och planering till konstruering. Vi kommer med hjälp av intervjuermed berörda parter skaffa oss en uppfattning om tillvägagångssättet vid planering avmaskinrums designen och även jämföra resultatet beroende på rederiets storlek och resurser.Undersökningen resulterade i ett bra underlag för hur ett fartygs maskinrums konstruktion tarform och vilka aspekter som det tas hänsyn till, dock upptäckte vi att reglerna gällandemaskinrummets utformning var mycket vaga och sågs mest som rekommendationer. Förkontrollrummet fanns det däremot en del punkter att ta hänsyn till. Vi anser att det skulleunderlätta med ett mer utförligt regelverk som rör maskinrummets utformning.
4

CFD Analysis of Engine Room Temperature : CFD Analysis of Engine Room Temperature: Case study The Grange Castle Power Plant Project

Wanli, William January 2023 (has links)
Computational Fluid Dynamics (CFD) has emerged as an indispensable tool in various engineering fields, particularly in the design and optimization of HVAC systems in complex environments, such as engine rooms. This paper presents a comprehensive overview of CFD applications and focuses on the engine rooms of the Grange Castle Power Plant in Dublin, Ireland. Sustainable Development Capital LLP (SDCL) is constructing a state-of-the-art power plant at Grange Castle Business Park in Dublin, featuring six MAN 18V51/60DF engine generators and a total net export capacity of 111 MW. The plant uses pioneering dualfuel technology and serves as a contingency facility to stabilize the power grid amidst increasing integration of renewable energy. It functions as a responsive backup power generator and a peak load reducer, aiding the Irish government's goal of sourcing 80% of power from renewables by 2030. The initiative is part of a wider strategy including MAN Energy Solutions and Greener Ideas Limited, contributing to three new power plants in Ireland with a combined capacity of 311 MW.This study utilizes steady-state CFD simulations, employing the widely adopted k-epsilon turbulence model. Known for its robustness and computational efficiency, the k-epsilon turbulence model is utilized to analyse one engine cell at the Grange Castle Power Plant. As a two-equation model, it involves solving two additional transport equations alongside the Navier-Stokes equations to simulate fluid flow.Commonly applied in engineering applications, this model will be utilized to provide predictions of airflow and temperatures within the cell during standby and running states over the course of the year. By leveraging the strengths of the k-epsilon turbulence model, the study seeks to gain valuable insights into the complex fluid dynamics within the engine cell, ultimately helping to optimize its performance and efficiency. The analysis focused on one engine cell, with the setup and geometry for each cell being identical.Specifically, the research investigates maintaining the temperature within the cell, temperature distributions, airflow comparisons to design specifications and requirements, heating load and adequate airflow calculations, and potential benefits of optimizing the design and operation of the engine cell.The dimensions and characteristics of the engine room, along with the engines themselves and the heat they generate, play a significant role in the design process. In this study, there are several essential factors to consider, including a negative pressure ventilation system, as well as combustion and cooling air provided through air intake units that draw air from outside the engine hall and exhaust it using fans mounted on the roof. The ventilation system must be designed to maintain the room temperature within the range of 9 °C to 45°C at different points in the room. Since the engine combustion air will be drawn from inside the engine hall, the ventilation system must provide the required volumes of combustion air at all times, along with the necessary ventilation. The CFD analysis conducted in this study provides the groundwork for designing an effective ventilation system that can maintain optimal temperature conditions in the engine room. Using the simulation results, the ventilation system will be optimized to ensure the required temperature is maintained while also preventing the formation of explosive atmospheres.iiAlso, the simulation study presented in this report showcases the ability of CFD simulations to predict airflow and temperature fields in the engine room of a power plant. It is essential to understand the different scenarios' conditions to design a reliable and efficient engine room system. Furthermore, CFD simulations have proven to be an effective tool for optimizing HVAC installations to meet specific building requirements even before installing any equipment. CFD takes into account all factors influencing airflow and temperature, ensuring finely tuned designs even in confined spaces.To accurately analyse and simulate the environment, a 3D model of the engine and room is created using Inventor and AutoCAD software. However, for complex systems like the engine room, simplifying the geometry is necessary when preparing a CFD model. This is because including every detail can result in an excessive number of mesh elements, leading to longer simulation times and higher computational costs. Therefore, striking a balance between geometric complexity and computational efficiency is important for an optimal CFD model. By creating a simplified model, the CFD simulation can be more computationally efficient while still accurately capturing important flow features. The 3D model allows for seamless integration with the CFD software, enabling accurate representation of the environment for analysis.The study conducted simulations for a high-power diesel &amp; gas engine room under four different scenarios, covering various seasonal and load conditions. The results indicated that a heating coil with a 250 kW capacity is required to preheat the airflow of 25.5 m³/s by 8 °C to maintain the required temperature above 9 °C during winter. Similarly, during summer, fans with an airflow rate of 60 m³/s are necessary to keep the engine room temperature below 45 °C. This analysis is critical for designing an optimal ventilation system in engine rooms, ensuring sufficient airflow and maintaining appropriate engine temperature to prevent engine start failure. The simulation results provide invaluable information for HVAC engineers to design an efficient and reliable engine room system.Through the utilization of CFD simulations, engineers can simulate and analyse the performance of the HVAC system under various conditions, providing them with the necessary information to make well-informed decisions to ensure that the system meets the required performance criteria. Implementing CFD in the early stages of HVAC design provides valuable insights, saving engineers time and money associated with real-life testing and validation. By leveraging CFD simulations, engineers can virtually test and evaluate multiple design alternatives, ventilation strategies, and system configurations prior to actual implementation. This proactive approach helps engineers pinpoint potential issues, optimize system design for enhanced efficiency and effectiveness, and minimize the need for expensive post-installation modifications and adjustments.
5

Klimatizace lékárny / Air-conditioning of pharmacy

Martincová, Lenka January 2013 (has links)
Diploma thesis is focused on air-conditioning and hot air ventilation of the pharmacy. The pharmacy is a part of a supermarket building. The pharmacy has its own engine room and air-conditioning. Solution is focused with the calculation of the flow rate, thermal losses and profit of pharmacy. Power of heater, cooler and humidifier are calculated according to psychrometric evaluation. Distribution elements and distribution of a duct are designed according to the flow rate of air. Total pressure losses in the duct are calculated according to the distribution in the conclusion. Units are designed for hot air ventilation and air conditioning and the engine room. In appendix there are calculations of thermal losses and gain, output from programme of CLIMACAL, drawing documentation and material specifications.
6

Headsetkommunikation för maskinbesättning : En kvalitativ studie om hur headsetkommunikation upplevs påverka personlig säkerhet och arbetseffektivitet för maskinbesättningen.

Petersen, Daniel January 2014 (has links)
Detta är en kvalitativ intervjustudie som undersöker maskinpersonalens upplevelser av att använda headsetkommunikation i arbetet ombord. Totalt sex stycken maskinbesättningsmedlemmar intervjuades om deras upplevelser av hur headsetkommunikation har påverkat utförandet av arbetet, personlig säkerhet och tidseffektivitet. Resultaten som framkom av intervjuerna visar på att kommunikationen förbättrats med headsetkommunikation genom att talkommunikationen inte begränsas av höga bullernivåer vilket leder till minskad röstbelastning. De intervjuade vittnade om att den förbättrade kommunikationen underlättade i arbetet och ökade den personliga säkerheten genom att risken för missförstånd minskade samt att maskinbesättningens situationsmedvetenhet ökade. Förbättrad ergonomi vid svåra arbetsställningar i trånga utrymmen jämfört med handburna radioapparater upplevdes även det som en fördel med headsetkommunikation. Tidsåtgången i arbetet upplevdes minska när tillgängligheten till andra besättningsmedlemmar på kommunikationsradio ökade eftersom det minskade behovet av att förflytta sig för att kommunicera samtidigt som det kan leda till snabbare responstider. Den ökade tillgängligheten upplevdes även kunna leda till att olyckor inom maskinrummet upptäcks snabbare till följd av att ett uteblivet svar på radioanrop kan ses som ett avvikande beteende. / This is a qualitative interview study researching the experience engine room personnel have with using headset communication in their work onboard. A total of six crewmembers were interviewed about their experiences and how headset communication had affected their ability to perform their work, personal safety and time efficiency. The results showed that communication had improved with the use of headsets and that speech communication where no longer limited by high noise levels which in turn leads to less strain on the voice. The interviewed crew members testified that the improved communication facilitated their work and enhanced the personal safety by decreasing the risk for misunderstandings and increasing their situational awareness. Increased ergonomics in situations with difficult working postures and limited space in comparison with hand held radios were also observed as an advantage with headset communication. Time efficiency was perceived to improve since the availability of other crewmembers on the radio increased and decreased the need for moving to another area to communicate which at the same time lead to faster response times. Increased availability of crewmembers on the radio could also shorten the time before an accident in the engine room is detected since a failure to answer a radio call would be seen as irregular behavior.
7

Ocelové konstrukce objektů kotelny a strojovny / Steel structures of boiler and engine rooms

Krompolc, František January 2014 (has links)
A steel construction, divided into two parts, was designed for the building object of a production block of a bio power plant. The two parts separate the boiler room and the engine room. Due to the specific load caused by the operation equipment, also several plateaus, consoles, footbridges and technological constructions were designed. A system of principal pillars HEB, transversely frame-connected with plane solid girders IPE, forms the hall construction. Pillars in rows 1 and 4 are rigidly jointed to foundations. A bearing structure of the roof deck is imposed on the girders. It is composed of a system of purlins – rolled profiles type UPE. The rigidity of the roof is secured by horizontal bracing between the purlins. The construction of the boiler room is attached to the construction of the engine room, which is formed of frame-connected principal pillars HEB in rows 4,7 and 8. The roof truss IPE is designed for 12 900 mm span between rows 4 and 7 and for 4 800 mm between rows 7 and 8. The spatial rigidity of the structure is not only secured by the rigid connection of pillars and foundation combined with the frame-connected roof rungs. It is mainly maintained thanks to the system of vertical wall bracings interacting with the horizontal bracing of the roof. Between the pillar rows B, C, D, E, F and G and 8 to 9 a construction of a substation is attached. In the engine room is situated technological structure. The construction is formed by supporting frames consisting of pillars type HEA, rungs type IPE and HEA and vertical bracing of rolled profiles. Pillars type HEA are connected to foundation using articulated connection. The rigidity of the structure is secured both ways by vertical bracing and by the connection of the plateau beams with the hall girders.
8

Horský hotel / Mountain hotel

Sibilla, Luboš January 2013 (has links)
Diploma thesis is focused on design of a new hotel in mountain surrounding with one underground floor and five stories. The hotel has 53rooms for guests from the second to the fifth floor and two rooms for employees of hotel on the fifth floor, what means 106 beds for guests. The hotel is equipped indoor swimming pool 25x10meters, its own kitchen, dining hall, sauna, massages and Conference hall. The object consists of four dilatation units – accommodation sides and common central part and swimming pool. Roof construction is created by huge wooden truss from the second floor to the fifth floor, which sequentially subsides and formed by 70 dormers. Angle of the roof is 46° and 23°, and surface coating is smooth titanium zinc sheet. Load bearing system of whole object is designed as irregular reinforced concrete monolithic skeleton from concrete C30/37 with prestressed elements and based on prestressed reinforced concrete slab. The cladding is designed from ceramic bricks with inner additional insulation and additional insulation on outer surface, which is covered by facade with ventilated air gap, designed from cement-fibers boards, which are by color and structure imitating natural stone. Each accommodation floor is divided into two accommodation sides, central part with central stairs and two personal elevators. Each accommodation side has two protected escape routes and one fire evacuation lift. On the Ground floor, there is the reception, the dining hall, the pool hall and offices. On the underground floor, there is wellness center for guests of the hotel, technologies for the pool, HVAC engine room and kitchen. In all object, there are designed different types of hanging ceilings, because of attendance of stabile sprinkler system. In the pool hall, there will be acoustic hanging ceiling. Heating will be procured by combination of biomass boiler and heat pumps, which will be used mainly for deck heating in rooms in accommodation floors.
9

Relaxační centrum ve Velkém Meziříčí / Relaxation center in Velké Meziříčí

Prudek, Michal January 2016 (has links)
This thesis describes design of new relaxation centre building in town of Velké Meziříčí and creation of blueprints for building construction. Blueprints are furthermore supplemented by extensions for heating and concrete structures. The relaxation centre houses a wellness centre, a café, a hair and make-up salon with possibility of massage and an outdoor shop. The building is located in southern part of Velké Meziříčí – an urban area of both residential and industrial buildings. The centre is a three storey building with partial basement, flat single-layered roof and stairway, which serves as an access point for ventilation engine room located on top of the roof structure. This last element is distinguished from the rest of the building by different coloured façade panelling and serves as a dominant. Wellness centre covers the whole of ground floor and is interfaced with the first floor by additional wellness centre spaces and staff spaces. The first floor also includes the outdoor shop. Café and hair salon are situated on the second floor. Architectonic design is created in similarity to surrounding buildings and in relation to cardinal direction. Land lot is utilized for wellness centre purposes.

Page generated in 0.083 seconds