• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 32
  • 8
  • 1
  • 1
  • Tagged with
  • 159
  • 159
  • 96
  • 94
  • 28
  • 24
  • 23
  • 16
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Matériaux lasers dopés à l'ion ytterbium : Performances lasers en pompage par diodes lasers et étude des propriétés thermo-optiques à des températures cryogéniques

Cardinali, Vanessa 10 May 2011 (has links) (PDF)
Dans les lasers, les gradients de température dans les milieux à gain provoquent des déformations de l'onde laser qui s'y propage. Le but de ma thèse est de mesurer les propriétés thermo-optiques (conductivité thermique, coefficient thermo-optique dn/dT, coefficient de dilatation) de nouveaux matériaux lasers permettant d'atteindre des énergies élevées à de hautes cadences de tir. Ces matériaux sont des céramiques sesquioxydes de scandium Sc2O3, de lutétium Lu2O3 et d'yttrium Y2O3 dopées ytterbium. Les mesures se font à basse température (température de l'azote liquide, 77 K) car les propriétés thermiques sont améliorées lorsque la température du matériau diminue. Ces matériaux ont également été testés en configuration d'oscillateur laser relaxé, montrant ainsi tout l'intérêt de travailler à basse température. Les mesures de ces propriétés représentent un enjeu majeur pour le développement des lasers de forte puissance, d'autant plus que les données de la littérature concernant ces matériaux, dans ces domaines de température, sont quasiment inexistantes. D'autres matériaux comme des cristaux et des céramiques de YAG, des cristaux de fluorure de calcium CaF2 dopés ytterbium, et des verres phosphates dopés néodyme ont également été testés.
52

Extraction de modèles thermiques simplifiés des machines électriques à partir d'un calcul du champ de températures

Idoughi, Mohand Laïd 09 December 2011 (has links) (PDF)
L'élévation de la température est l'un des principaux paramètres limitant la puissance nominale des machines électriques. La température atteinte au niveau des bobinages, peut avoir de graves conséquences sur le système d'isolation des enroulements et peut ainsi réduire la durée de vie des machines électriques. Le travail de recherche effectué dans cette thèse s'attache à l'extraction de modèles thermiques simplifiés permettant la prédiction des niveaux d'échauffement. Nous avons alors mis en place une démarche basée sur une méthode numérique (Finite Intgeration Technique) qui permet une identification naturelle des grandeurs du modèle thermique. Cette démarche nécessite d'homogénéiser le bobinage en le remplaçant par un seul matériau homogène équivalent permettant de reproduire le même comportement thermique du cas réel du bobinage. Pour ce faire, plusieurs techniques d'homogénéisation ont été employées. Nous nous sommes également intéressés aux différentes configurations des conducteurs dans l'encoche en vue d'obtenir une meilleure évacuation de la chaleur dans le bobinage des machines électriques. La démarche proposée dans ce travail a pout objectif d'obtenir des modèles thermiques simplifiés qui peuvent être réduit à un seul nœud pour calculer la température du point chaud. La validité des modèles est évaluée par comparaison aux éléments finis en considérant deux formes géométriques de l'encoche : une encoche simple puis une encoche de géométrie plus complexe que l'on retrouve dans une machine à commutation de flux.
53

Conception et réalisation d'un système électronique ambulatoire pour l'évaluation de la microcirculation cutanée

Toumi, Dareen 10 September 2012 (has links) (PDF)
La microcirculation est constituée d'un réseau vasculaire qui comprend les artérioles, les veinules et les capillaires. La microcirculation cutanée est un paramètre physiologique important pour les applications cliniques avancées comme le syndrome de Raynaud ou la prévention des escarres. De nombreuses méthodes non ambulatoires ont été développées afin de mesurer la microcirculation sanguine. La tendance actuelle dans le domaine des technologies pour la santé est la miniaturisation des capteurs et de leurs instrumentations associées pour les rendre non-invasifs, portables par le patient et ainsi adaptés aux mesures ambulatoires en conditions réelles, ou appelées aussi " écologiques ". Le manuscrit présente la conception et la réalisation d'un système électronique miniaturisé ambulatoire (µHématron), permettant de réaliser un monitoring continu, en temps réel de la conductivité thermique tissulaire qui est l'image de la microcirculation dans les capillaires. La première expérimentation effectuée a pour l'objectif de confronter le système µHématron avec un moniteur de fluxmétrie laser Doppler, au cours d'une étude destinée à évaluer le confort thermique chez l'homme. Ainsi, une étude d'influence de la température de différentes ambiances sur un certain nombre de paramètres de la peau de sujets sains, y compris la microcirculation cutanée, a été réalisée. Les corrélations obtenues entre les variations des deux signaux des deux instrumentations pour les ambiances neutres, chaudes et froides sont présentées. La deuxième expérimentation est consacrée à l'étude préliminaire de l'effet global des bas médicaux de compression sur la microcirculation cutanée des membres inférieurs de sujets sains. Grâce à l'instrumentation ambulatoire, la microcirculation a pu être évaluée de façon continue pour différentes postures des sujets : allongée, assise, débout et en marche, et ce, pour des différentes classes de bas de compression (I, II, et III). Cette étude a permis d'améliorer la compréhension de l'effet de ces bas sur les sujets sains.
54

Problèmes de diffusion pour des chaînes d'oscillateurs harmoniques perturbées

Simon, Marielle 17 June 2014 (has links) (PDF)
L'équation de la chaleur est un phénomène macroscopique, émergeant après une limite d'échelle diffusive (en espace et en temps) d'un système d'oscillateurs couplés. Lorsque les interactions entre oscillateurs sont linéaires, l'énergie évolue de manière balistique, et la conductivité thermique est infinie. Certaines non-linéarités doivent donc apparaître au niveau microscopique, si l'on espère observer une diffusion normale. Pour apporter de l'ergodicité, on ajoute à la dynamique déterministe une perturbation stochastique qui conserve l'énergie. En premier lieu nous étudions la dynamique Hamiltonienne d'un système d'oscillateurs linéaires, perturbé par un bruit stochastique dégénéré conservatif. Ce dernier transforme à des temps aléatoires les vitesses en leurs opposées. On montre que l'évolution macroscopique du système est caractérisée par un système parabolique non-linéaire couplé pour les deux lois de conservation du modèle. Ensuite, nous supposons que les oscillateurs évoluent en environnement aléatoire. La perturbation stochastique est très dégénérée, et on prouve que le champ de fluctuations de l'énergie à l'équilibre converge vers un processus d'Ornstein-Uhlenbeck généralisé dirigé par l'équation de la chaleur.Il est désormais connu que les systèmes unidimensionnels présentent une diffusion anormale lorsque le moment total est conservé en plus de l'énergie. Dans une troisième partie, on considère deux perturbations, l'une préservant le moment, l'autre détruisant cette conservation. En faisant décroître l'intensité de la seconde perturbation, on observe une transition de phase entre un régime de diffusion normale et un régime de superdiffusion.
55

Prédiction de la conductance thermique d'interface silicium métal : utilisation de la dynamique moléculaire

Cruz, Carolina Abs Da 13 October 2011 (has links) (PDF)
L'intérêt pour les propriétés thermiques de matériaux nanostructurés est croissant. Ces matériaux sont conçus pour être inclus dans les dispositifs micro-électroniques et les systèmes micro électromécaniques (MEMS) dont le comportement et la fiabilité dépendent fortement de l'évacuation de la chaleur générée. Les matériaux multicouches diélectrique/métal sont de bons candidats pour la conversion thermoélectrique et leur utilisation est envisagée pour diminuer les températures maximales dans les systèmes microélectroniques. La diminution de l'épaisseur des couches permet de diminuer la conductivité thermique, conduisant à un plus grand facteur de mérite de conversion thermoélectrique. Cette diminution est due à la diminution de la conductivité thermique intrinsèque de chaque couche lorsque leur épaisseur décroit jusqu'à des dimensions du même ordre de grandeur que le libre parcours moyen des porteurs de chaleur et à l'influence croissante de la conductance d'interface. La prédiction de la conductivité thermique de tels systèmes passe donc par une simulation fiable du transfert de chaleur aux interfaces. La dynamique moléculaire (DM) est un outil particulièrement bien adapté à ce type d'études. Cependant les résultats des simulations dépendent fortement des potentiels interatomiques utilisés. La comparaison des propriétés prédites à l'aide des différents potentiels interatomiques avec les valeurs expérimentales permet de valider les potentiels pour prédire les propriétés concernées. Dans le premier chapitre, les fonctions mathématiques et les paramètres utilisés dans les potentiels interatomiques sont explicités. Dans le deuxième chapitre, l'objectif est de proposer une méthodologie pour sélectionner les potentiels les plus appropriés pour les études de transfert de chaleur. Cette méthodologie est illustrée pour le Si qui est le semi-conducteur le plus utilisé au sein de dispositifs microélectroniques et MEMS ainsi que pour l'Au, l'Ag et le Cu qui sont les métaux les plus souvent considérés. La conductivité thermique du Si massif est calculée, en utilisant la dynamique moléculaire hors d'équilibre (DMNE) avec trois potentiels parmi les cinq évalués précédemment pour valider cette évaluation. Le système diélectrique/métal qui a été le plus étudié avec la dynamique moléculaire mais également de manière expérimentale jusqu'à présent est certainement le système Si/Au. Les films de Cu et Ag sur des substrats de Si orienté sont les principales combinaisons dans les circuits intégrés de grande échelle. Une paramétrisation du potentiel de type MEAM est développée pour calculer les interactions Si/Au, Si/Ag et Si/Cu dans la troisième partie de ce travail. Les potentiels croisés sont utilisés pour prédire la conductance d'interface et développer les courbes de densité d'états pour les interfaces Si/Au Si/Ag et Si/Cu.
56

Effet de la température sur le comportement des barrières de confinement

Tang, Anh Minh 11 1900 (has links) (PDF)
Le présent travail étudie le comportement des barrières ouvragées d'argile gonflante compactée proposées pour le stockage des déchets radioactifs en grande profondeur sous des sollicitations thermo-hydro-mécaniques. La bentonite MX80 a été choisie pour cette étude. Premièrement, une étude expérimentale sur la conductivité thermique de la bentonite compactée a été réalisée. Cette étude a mis en évidence l'effet de la masse volumique sèche, de la teneur en eau, de la fraction volumique des composants du sol, de la microstructure et de la minéralogie. Cette étude expérimentale a donné lieu à la proposition d'un modèle théorique pour estimer la conductivité thermique des bentonites compactées. Deuxièmement, après une étude sur l'étalonnage de la succion générée par solution saline saturée en fonction de la température, on a réalisé les essais de détermination de la courbe de rétention d'eau à différentes températures. Les résultats expérimentaux ont montré une réduction de la capacité de rétention d'eau du sol due à l'échauffement. Cet effet a été ensuite simulé par une modélisation simple basée sur la tension surfacique eau-air. Troisièmement, une nouvelle cellule isotrope permettant un contrôle simultané de succion, de température, et de contrainte mécanique a été développée. Avec cette cellule, une étude expérimentale sur le comportement thermo-mécanique de la bentonite compactée non-saturée a été réalisée. Finalement, un modèle a été proposé pour simuler les comportements thermo-hydro-mécaniques observés expérimentalement.
57

Matériaux composites Aluminium/Carbone : architecture spécifique et propriétés thermiques adaptatives / Development of bulk MMC materials with specific architectures and thermal properties

Chamroune, Nabil 26 September 2018 (has links)
Les matériaux composites à matrice métallique (CMM) sont actuellement étudiés pour être utilisés dans de nombreux domaines d’application. L’une des applications potentielles concerne leur utilisation en tant que drain thermique pour les modules de puissance. Pour cette application, deux conditions sont requises : une conductivité thermique (CT) élevée pour évacuer la chaleur générée par la puce électronique et un coefficient d’expansion thermique (CTE) proche du substrat céramique (2-8×10-6 /K) utilisé dans le module de puissance.Ainsi des matériaux composites à matrice aluminium (Al : CT de 217 W/m.K et CTE de 24×10-6 /K) et à renfort plaquette de graphite (GF : CT de 1000 W/m.K et CTE de -1×10-6 /K dans le plan de la plaquette) ont été élaborés. Ces matériaux composites ont été fabriqués par Métallurgie des Poudres (MP) conventionnelle mais aussi par un procédé original nommé Flake Powder Metallurgy (FPM). Ce procédé, qui consiste à utiliser une poudre métallique à morphologie plaquette, a permis d’optimiser l’orientation des renforts plaquette dans un plan perpendiculaire à la direction de densification sous l’action d’une pression uniaxiale. De plus, ce procédé a permis d’obtenir une meilleure adhésion entre la matrice et le renfort comparé aux matériaux composites élaborés par MP conventionnelle. Cela a abouti à une amélioration de la CT qui est passée de 400 W/m.K à 450 W/m.K pour un taux de renfort de 50%vol. Néanmoins, concernant la dilatation thermique, des CTE de 21,8×10-6 /K et 21,7×10-6 /K ont été obtenus par MP et FPM respectivement, ce qui est incompatible avec l’application visée.Pour surmonter cette problématique, des matériaux composites à renfort multiple ont été élaborés par frittage en phase liquide. Ainsi des fibres de carbone (FC) ont été rajoutées à l’aluminium et aux plaquettes de graphite. L’ajout de ce second renfort au graphite a permis de diminuer de manière importante le CTE des composites Al/(GF+FC) avec une faible proportion en FC tout en maintenant une haute CT. De plus les matériaux composites Al/(GF+FC) présentent des CTE nettement inférieurs aux composites Al/FC avec un %vol. de FC équivalent. Ainsi des matériaux composites Al/(GF+FC) ont été élaborés par frittage en phase liquide permettant d’obtenir une CT de 400 W/m.K (comparable à la CT du cuivre) et un CTE de 8×10-6 /K (comparable au CTE de l’alumine). De plus la légèreté de l’aluminium confère aux matériaux composites Al/C une faible densité (d=2,4). Par conséquent, les matériaux développés dans cette étude sont prometteur en tant que drain thermique léger, notamment dans le domaine de l’électronique embarquée. / Many carbon/metal composites are currently used in several applications. One of them concerns their use as heat sinks in microelectronics. Concerning this application, two conditions are required: a high thermal conductivity (TC) in order to evacuate the heat generated by the electronic chip and a coefficient of thermal expansion (CTE) similar to the used material type of the electronic device (2-8×10-6 /K).Therefore, graphite flakes (GF; TC: 1000 W/m.K and CTE: -1×10-6 /K in the graphite plane) reinforced aluminum matrix (Al; TC: 217 W/m.K and CTE: 25×10-6 /K) composites were fabricated. These composite materials were fabricated by Powder Metallurgy (PM) and Flake Powder Metallurgy (FPM). This process, which consist to use a flattened metallic powder, helped to improve the in-plane orientation (perpendicular to the pressure direction) of GF under uniaxial pressure. Moreover, this process provided a better Al-C interface thanks to a planar contact between the matrix and the reinforcements. This resulted in an improvement of the CT from 400 W/m.K to 450 W/m.K for a reinforcement content of 50 vol.%. Nevertheless, regarding thermal dilation, CTEs of 21.8×10-6 /K and 21.7×10-6 /K were obtained by MP and FPM respectively, which is incompatible with the intended application.To overcome this problem, composite materials with multiple reinforcement were developed by solid-liquid phase sintering. Then, carbon fibers (CF) have been added to aluminum and graphite flakes. The addition of CF to GF reinforcement reduced significantly the CTE of the Al/(GF+CF) composites with a small proportion of CF, while preserving a high TC. In addition, the Al/(GF+FC) composite materials have significantly lower CTEs than the Al/CF composites with a equivalent vol.% of CF. Therefore, Al/(GF+CF) composite materials were developed by solid-liquid phase sintering to obtain a TC of 400 W/m.K (comparable to the TC of copper) and a CTE of 8×10-6 /K (comparable to the CTE of alumina). In addition, the lightweight of aluminum gives composite materials Al/C a low density (d = 2.4 g/cm3). Therefore, the composite materials developed in this study are promising as a lightweight heat sink in microelectronic industries.
58

Conception, fabrication et caractérisation d'un capteur de conductivité thermique à base de nanofils de silicium / Design, fabrication and characterization of a silicon nanowire based thermal conductivity detector

Ruellan, Jérémie 06 May 2015 (has links)
Les nanofils semiconducteurs sont aujourd’hui le sujet de nombreuses recherches pour leurs propriétés physiques intéressantes. S’appuyant plus spécifiquement sur les propriétés thermiques des nanostructures, l’objectif de cette thèse est de démontrer la faisabilité d’un capteur de conductivité thermique conçu à partir de nanofils de silicium pour des applications en tant que jauge Pirani ou détecteur de gaz. Le travail réalisé aborde les questions posées par la réduction de taille des objets telles que l’augmentation du bruit ou la conduction thermique en régime de raréfaction et élabore des solutions à ces problématiques. Le manuscrit aborde l’ensemble des étapes nécessaires à la réalisation d’un capteur, à savoir la conception des dispositifs, s’appuyant sur une étude détaillée du comportement physique des objets utilisés, la fabrication sur plaque 200mm de ces capteurs par la salle blanche du CEA-Leti en ayant recours aux techniques classiques de la microélectronique et enfin leur caractérisation en tant qu’instrument de mesure de pression (jauge Pirani) ou en tant que capteur de concentration de gaz. Le travail réalisé s’intègre dans un projet plus global de réalisation d’un système de détection de gaz portatif pour l’analyse de l’air ou de l’eau / Semiconducting nanowires are nowadays the topic of numerous research for their interesting physical properties. Relying more specifically on the thermal properties of nanostructures, the purpose of this thesis is to demonstrate the feasibility of a thermal conductivity detector based on silicon nanowires for pressure sensing (Pirani gauge) or gas detection. The work presented herein addresses the questions raised by the reduction of the objects size such as the increase of the noise or the thermal conduction in a rarefied gas and tries to bring a solution to those problematics. This work deals with all the steps required for the realization of such devices. That is, the design and simulation of the sensor, based on a detailed study of the physical behavior of the objects, the fabrication of such devices on 200mm wafers by the CEA-Leti cleanroom using standard microelectronics processes and finally their characterization as a pressure sensor and gas detector. The work presented here is part of a wider project that aims at developing of a portable gas detection system for air or water analysis.
59

Effet de l’orientation et de l’état des surfaces/interfaces sur les propriétés thermiques des semi-conducteurs nano-structurés / Effect of the surfaces/interfaces orientation and state on the thermal properties of nanostructured semi-conductors

Verdier, Maxime 01 October 2018 (has links)
Ce travail porte sur l'étude du transport de chaleur dans le Silicium cristallin nanostructuré et l’effet de l’amorphisation. La conductivité thermique de diverses nanostructures est calculée à l'aide de deux méthodes numériques : la Dynamique Moléculaire et la résolution de l'équation de transport de Boltzmann par technique Monte Carlo. Les matériaux contenant des nanopores sphériques sont d'abord examinés et l'importance de la densité de surfaces de diffusion est mise en évidence. Puis des nanofilms à pores cylindriques périodiques, souvent appelés cristaux phononiques, sont étudiés. La densité d'états calculée par Dynamique Moléculaire ne montre pas de modifications majeures des propriétés des porteurs de chaleur (phonons). En revanche, les résultats montrent que l'orientation des surfaces, la disposition des pores ou la présence d’une couche de silicium oxydé ou amorphisé peuvent jouer un rôle important pour la dissipation de la chaleur. Ensuite, le transport de chaleur dans les nanofils est étudié, notamment l'évolution radiale de la conductivité thermique. Cette dernière est maximale au centre des nanofils et décroît en s'approchant de la surface du nanofil. Des structures composées de nanofils interconnectés, appelées réseaux de nanofils, sont également étudiées; elles possèdent des conductivités extrêmement basses. Enfin, l'effet de la rugosité et de l'amorphisation des surfaces sur le transport thermique est analysé pour différents types de nanostructures. Ces deux derniers phénomènes contribuent fortement à la réduction de la conductivité thermique, qui peut prendre des valeurs très basses en gardant une fraction cristalline importante. Cela ouvre de nouvelles perspectives pour le contrôle de cette propriété à travers le design des matériaux / This study deals with heat transport in crystalline nanostructured silicon and the impact of amorphization. The thermal conductivity of various nanostructures is computed with two numerical methods: Molecular Dynamics and Monte Carlo resolution of the Boltzmann transport equation. First, materials with spherical nanopores are investigated and the importance of the surface density is highlighted. Then, nanofilms with periodic cylindrical pores, often called phononic crystals, are studied. The density of states computed with Molecular Dynamics does not show major modifications of the heat carriers (phonons) properties. However, results show that the surfaces orientation, the pore distribution and the existence of native oxide or amorphous layers may have an important impact on the thermal conductivity. Then, heat transport in nanowires is studied, in particular the radial evolution of the thermal conductivity. The latter one is maximum at the center of the nanowire and decreases when approaching the nanowire surface. Structures made from interconnected nanowires, called nanowire networks, are also studied; they have an extremely low thermal conductivity. Finally, the impact of the roughness and amorphization of the surfaces on thermal transport is analyzed for different types of nanostructures. The two latter phenomena contribute strongly to the reduction of the thermal conductivity, which can reach very low values while keeping an important crystalline fraction.It opens new perspectives for the control of this property with material designing
60

Modélisation du transport thermique dans des matériaux thermoélectriques / Modeling of thermal transport properties of thermoelectric materials

Andrea, Luc 08 April 2016 (has links)
Les matériaux thermoélectriques permettent de convertir de l'énergie thermique en énergie électrique. Leur rendement de conversion trop faible limite cependant leur utilisation à grande échelle. Plusieurs voies d'optimisation sont utilisés afin d'augmenter les rendements de conversion en diminuant la conductivité thermique. Dans cette thèse, nous modélisons les propriétés de transport thermique des matériaux half-Heusler parfaits et dopés qui présentent des propriétés thermoélectriques intéressantes. La méthode repose sur la théorie de la fonctionnelle de la densité pour calculer les propriétés harmoniques et anharmoniques des composés parfaits et déterminer les temps de vie des phonons. Ensuite, ces derniers sont utilisés pour écrire une équation de transport de Boltzmann pour la densité de phonons dont la résolution donne accès à la conductivité thermique. L'inclusion de défauts ponctuels a pour objectif de réduire la conductivité thermique par diffusion des phonons. Pour modéliser leur effet dans un régime de forte concentration une méthode champ moyen a été développée et appliquée aux half-Heusler. Pour traiter le régime dilué, une méthode faisant appel aux fonctions de Green a été utilisée. Ces deux méthodes montrent que des réductions significatives de conductivité thermique des composés NiTiSn, NiZrSn et NiHfSn sont déjà obtenues pour des concentrations de 10 % en dopants. / Thermoelectric materials provide a way to convert thermal energy into electrical energy. Nonetheless, their low efficiency is the main obstacle for global scale applications. Experimentally, specific treatments can lead to great improvement in the efficiency, mainly by lowering the thermal conductivity. This thesis is aimed at calculating from first principles, the thermal transport properties in perfect and doped half-Heusler thermoelectric materials. We begin with a theoretical analysis of the harmonic and anharmonic properties of phonons for perfect phases.The density functional theory is used to deduce the phonons lifetime from phonon-phonon interactions. The lifetimes are integrated into the Boltzmann transport equation for the phonon density, which solution allows us to compute fully ab initio the lattice thermal conductivity. The purpose of point defects is to scatter the phonons and thus reduce thermal conductivity. We developed two methods to account for the defects on thermal transport. The first one, based on a mean field approach, is suitable for the high concentration regimes. The second one in the framework of Green functions theory is used for dilute regimes. Both methods consistently show that the main reduction of thermal conductivity is already obtained within around 10 % of solute elements in NiTiSn, NiZrSn and NiHfSn.

Page generated in 0.0877 seconds