• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Boundary WZW, G/H, G/G and CS Theories

Andreas.Cap@esi.ac.at 21 August 2001 (has links)
No description available.
2

Conformal Symmetry In Field Theory

Huyal, Ulas 01 February 2011 (has links) (PDF)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
3

Aspects of Higher Spin Theories Conformal Field Theories and Holography

Raju, Avinash January 2017 (has links) (PDF)
This dissertation consist of three parts. The first part of the thesis is devoted to the study of gravity and higher spin gauge theories in 2+1 dimensions. We construct cosmological so-lutions of higher spin gravity in 2+1 dimensional de Sitter space. We show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary CFT partition function, and reduces to Gibbons-Hawking thermodynamics in the spin-2 case. By using a prescription of Maldacena, we relate the thermodynamics of these solutions to those of higher spin black holes in AdS3. For the case of negative cosmological constant we show that interpreting the inverse AdS3 radius 1=l as a Grassmann variable results in a formal map from gravity in AdS3 to gravity in flat space. The underlying reason for this is the fact that ISO(2,1) is the Inonu-Wigner contraction of SO(2,2). We show how this works for the Chern-Simons actions, demonstrate how the general (Banados) solution in AdS3 maps to the general flat space solution, and how the Killing vectors, charges and the Virasoro algebra in the Brown-Henneaux case map to the corresponding quantities in the BMS3 case. Our results straightforwardly generalize to the higher spin case: the flat space higher spin theories emerge automatically in this approach from their AdS counterparts. We also demonstrate the power of our approach by doing singularity resolution in the BMS gauge as an application. Finally, we construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, the left-moving solution has Drinfeld-Sokolov reduced form, but on the right-moving solution all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the “most general” AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine sl(3)k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. The second part is devoted to the problem of Neumann boundary condition in Einstein’s gravity. The Gibbons-Hawking-York (GHY) boundary term makes the Dirichlet problem for gravity well defined, but no such general term seems to be known for Neumann boundary conditions. In our work, we view Neumann boundary condition not as fixing the normal derivative of the metric (“velocity”) at the boundary, but as fixing the functional derivative of the action with respect to the boundary metric (“momentum”). This leads directly to a new boundary term for gravity: the trace of the extrinsic curvature with a specific dimension-dependent coefficient. In three dimensions this boundary term reduces to a “one-half” GHY term noted in the literature previously, and we observe that our action translates precisely to the Chern-Simons action with no extra boundary terms. In four dimensions the boundary term vanishes, giving a natural Neumann interpretation to the standard Einstein-Hilbert action without boundary terms. We also argue that a natural boundary condition for gravity in asymptotically AdS spaces is to hold the renormalized boundary stress tensor density fixed, instead of the boundary metric. This leads to a well-defined variational problem, as well as new counter-terms and a finite on-shell action. We elaborate this in various (even and odd) dimensions in the language of holographic renormalization. Even though the form of the new renormalized action is distinct from the standard one, once the cut-off is taken to infinity, their values on classical solutions coincide when the trace anomaly vanishes. For AdS4, we compute the ADM form of this renormalized action and show in detail how the correct thermodynamics of Kerr-AdS black holes emerge. We comment on the possibility of a consistent quantization with our boundary conditions when the boundary is dynamical, and make a connection to the results of Compere and Marolf. The difference between our approach and microcanonical-like ensembles in standard AdS/CFT is emphasized. In the third part of the dissertation, we use the recently developed CFT techniques of Rychkov and Tan to compute anomalous dimensions in the O(N) Gross-Neveu model in d = 2 + dimensions. To do this, we extend the “cow-pie contraction” algorithm of Basu and Krishnan to theories with fermions. Our results match perfectly with Feynman diagram computations.
4

Non compact conformal field theories in statistical mechanics / Théories conformes non compactes en physique statistique

Vernier, Eric 27 April 2015 (has links)
Les comportements critiques des systèmes de mécanique statistique en 2 dimensions ou de mécanique quantique en 1+1 dimensions, ainsi que certains aspects des systèmes sans interactions en 2+1 dimensions, sont efficacement décrits par les méthodes de la théorie des champs conforme et de l'intégrabilité, dont le développement a été spectaculaire au cours des 40 dernières années. Plusieurs problèmes résistent cependant toujours à une compréhension exacte, parmi lesquels celui de la transition entre plateaux dans l'Effet Hall Quantique Entier. La raison principale en est que de tels problèmes sont généralement associés à des théories non unitaires, ou théories conformes logarithmiques, dont la classification se révèle être d'une grande difficulté mathématique. Se tournant vers la recherche de modèles discrets (chaînes de spins, modèles sur réseau), dans l'espoir en particulier d'en trouver des représentations en termes de modèles exactement solubles (intégrables), on se heurte à la deuxième difficulté représentée par le fait que les théories associées sont la plupart du temps non compactes, ou en d'autres termes qu'elles donnent lieu à un continuum d'exposants critiques. En effet, le lien entre modèles discrets et théories des champs non compactes est à ce jour loin d'être compris, en particulier il a longtemps été cru que de telles théories ne pouvaient pas émerger comme limites continues de modèles discrets construits à partir d'un ensemble compact de degrés de libertés, par ailleurs les seuls qui donnent a accès à une construction systématique de solutions exactes.Dans cette thèse, on montre que le monde des modèles discrets compacts ayant une limite continue non compacte est en fait beaucoup plus grand que ce que les quelques exemples connus jusqu'ici auraient pu laisser suspecter. Plus précisément, on y présente une solution exacte par ansatz de Bethe d'une famille infinie de modèles(les modèles $a_n^{(2)}$, ainsi que quelques résultats sur les modèles $b_n^{(1)}$, où il est observé que tous ces modèles sont décrits dans un certain régime par des théories conformes non compactes. Parmi ces modèles, certains jouent un rôle important dans la description de phénomènes physiques, parmi lesquels la description de polymères en deux dimensions avec des interactions attractives et des modèles de boucles impliqués dans l'étude de modèles de Potts couplés ou dans une tentative de description de la transition entre plateaux dans l'Effet Hall par un modèle géométrique compact.On montre que l'existence insoupçonnéede limite continues non compacts pour de tels modèles peut avoir d'importantes conséquences pratiques, par exemple dans l'estimation numérique d'exposants critiques ou dans le résultats de simulations de Monte Carlo. Nos résultats sont appliqués à une meilleure compréhension de la transition theta décrivant l'effondrement des polymères en deux dimensions, et des perspectives pour une potentielle compréhension de la transition entre plateaux en termes de modèles sur réseaux sont présentées. / The critical points of statistical mechanical systems in 2 dimensions or quantum mechanical systems in 1+1 dimensions (this also includes non interacting systems in 2+1 dimensions) are effciently tackled by the exact methods of conformal fieldtheory (CFT) and integrability, which have witnessed a spectacular progress during the past 40 years. Several problems have however escaped an exact understanding so far, among which the plateau transition in the Integer Quantum Hall Effect,the main reason for this being that such problems are usually associated with non unitary, logarithmic conformal field theories, the tentative classification of which leading to formidable mathematical dificulties. Turning to a lattice approach, andin particular to the quest for integrable, exactly sovable representatives of these problems, one hits the second dificulty that the associated CFTs are usually of the non compact type, or in other terms that they involve a continuum of criticalexponents. The connection between non compact field theories and lattice models or spin chains is indeed not very clear, and in particular it has long been believed that the former could not arise as the continuum limit of discrete models built out of acompact set of degrees of freedom, which are the only ones allowing for a systematic construction of exact solutions.In this thesis, we show that the world of compact lattice models/spin chains with a non compact continuum limit is much bigger than what could be expected from the few particular examples known up to this date. More precisely we propose an exact Bethe ansatz solution of an infinite family of models (the so-called $a_n^{(2)}$ models, as well as some results on the $b_n^{(1)}$ models), and show that all of these models allow for a regime described by a non compact CFT. Such models include cases ofgreat physical relevance, among which a model for two-dimensional polymers with attractive interactions and loop models involved in the description of coupled Potts models or in a tentative description of the quantum Hall plateau transition by somecompact geometrical truncation. We show that the existence of an unsuspected non compact continuum limit for such models can have dramatic practical effects, for instance on the output of numerical determination of the critical exponents or ofMonte-Carlo simulations. We put our results to use for a better understanding of the controversial theta transition describing the collapse of polymers in two dimensions, and draw perspectives on a possible understanding of the quantum Hall plateautransition by the lattice approach.
5

Perturbative and non-perturbative analysis of defect correlators in AdS/CFT

Bliard, Gabriel James Stockton 21 December 2023 (has links)
In dieser Arbeit betrachten wir zwei Ansätze zur Untersuchung von Korrelationsfunktionen in eindimensionalen konformen Feldtheorien mit Defekten (dCFT1), insbesondere solche, die durch 1/2-BPS-Wilson-Linien-Defekte in den drei- und vierdimensionalen superkonformen Theorien definiert sind, die für die AdS/CFT-Korrespondenz relevant sind. Zunächst verwenden wir den analytischen konformen Bootstrap, um zwei Beispiele von Defektkorrelatoren auszuwerten. Der Vier-Punkt-Korrelator des Verschiebungs-Supermultipletts, das auf der 1/2-BPS-Wilson-Linie in der ABJM-Theorie eingefügt ist, wird bis zur dritten Ordnung in einer starken Kopplungsexpansion berechnet und reproduziert die expliziten Witten-Diagramm-Berechnungen erster Ordnung. Anschließend wird der Fünf-Punkt-Korrelator von 1/2-BPS-Operatoren, die auf der 1/2-BPS-Wilson-Linie in N=4 Super-Yang-Mills eingefügt sind, untersucht und in einer starken Kopplungsexpansion bis zur ersten Ordnung gebootstrapped. Anschließend werden die CFT1-Daten extrahiert, die bestätigen, dass das Mischen von Operatoren die anomale Dimension erster Ordnung nicht beeinflusst. Der zweite Ansatz betrachtet die allgemeine Struktur von Korrelatoren in effektiven Theorien in AdS2. Es werden alle skalaren n-Punkt-Kontakt-Witten-Diagramme für externe Operatoren mit ganzzahligem konformem Gewicht berechnet. Effektive Theorien in AdS2, die durch eine Wechselwirkungslagrange mit einer beliebigen Anzahl von Ableitungen definiert sind, werden dann betrachtet und mit Hilfe eines neuen Formalismus der Mellin-Amplituden für 1d-CFTs bis zur ersten Ordnung gelöst. Schließlich wird die diskretisierte Wirkung der Cusped-Wilson-Linie als alternative Möglichkeit zur Gewinnung nicht-perturbativer Daten vorgestellt: durch die Gitterfeldtheorie. / In this thesis, we consider two approaches to the study of correlation functions in one-dimensional defect Conformal Field Theories (dCFT1), in particular those defined by 1/2-BPS Wilson line defects in the three- and four-dimensional superconformal theories relevant in the AdS/CFT correspondence. In the first approach, we use the analytic conformal bootstrap to evaluate two examples of defect correlators. The four-point correlator of the displacement supermultiplet inserted on the 1/2-BPS Wilson line in ABJM theory is computed to the third order in a strong-coupling expansion and reproduces the explicit first-order Witten diagram calculations. The CFT1 data are then extracted from this correlator, and the operator mixing is solved at first order. Consequently, all-order results are derived for the part of the correlator with the highest logarithm power, uniquely determining the double-scaling limit. Then, the five-point correlator of 1/2-BPS operators inserted on the 1/2-BPS Wilson line in =4 super Yang-Mills are studied. The superblocks are derived for all channels of the OPE, and the five-point correlator is bootstrapped to first order in a strong coupling expansion. The CFT1 data are then extracted, confirming that operator mixing does not affect the first-order anomalous dimension. The second approach considers the general structure of correlators in effective theories in AdS2. All scalar n-point contact Witten diagrams for external operators of integer conformal weight are computed. Effective theories in AdS2 defined by an interaction Lagrangian with an arbitrary number of derivatives are then considered and solved to first order using a new formalism of Mellin amplitudes for 1d CFTs. Finally, the cusped Wilson line discretised action is presented as an alternative way to obtain non-perturbative data: through Lattice Field Theory.

Page generated in 0.0786 seconds