Spelling suggestions: "subject:"conformal field theory"" "subject:"nonformal field theory""
81 |
Aspects of Higher Spin Theories Conformal Field Theories and HolographyRaju, Avinash January 2017 (has links) (PDF)
This dissertation consist of three parts. The first part of the thesis is devoted to the study of gravity and higher spin gauge theories in 2+1 dimensions. We construct cosmological so-lutions of higher spin gravity in 2+1 dimensional de Sitter space. We show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary CFT partition function, and reduces to Gibbons-Hawking thermodynamics in the spin-2 case. By using a prescription of Maldacena, we relate the thermodynamics of these solutions to those of higher spin black holes in AdS3. For the case of negative cosmological constant we show that interpreting the inverse AdS3 radius 1=l as a Grassmann variable results in a formal map from gravity in AdS3 to gravity in flat space. The underlying reason for this is the fact that ISO(2,1) is the Inonu-Wigner contraction of SO(2,2). We show how this works for the Chern-Simons actions, demonstrate how the general (Banados) solution in AdS3 maps to the general flat space solution, and how the Killing vectors, charges and the Virasoro algebra in the Brown-Henneaux case map to the corresponding quantities in the BMS3 case. Our results straightforwardly generalize to the higher spin case: the flat space higher spin theories emerge automatically in this approach from their AdS counterparts. We also demonstrate the power of our approach by doing singularity resolution in the BMS gauge as an application. Finally, we construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, the left-moving solution has Drinfeld-Sokolov reduced form, but on the right-moving solution all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the “most general” AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine sl(3)k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions.
The second part is devoted to the problem of Neumann boundary condition in Einstein’s gravity. The Gibbons-Hawking-York (GHY) boundary term makes the Dirichlet problem for gravity well defined, but no such general term seems to be known for Neumann boundary conditions. In our work, we view Neumann boundary condition not as fixing the normal derivative of the metric (“velocity”) at the boundary, but as fixing the functional derivative of the action with respect to the boundary metric (“momentum”). This leads directly to a new boundary term for gravity: the trace of the extrinsic curvature with a specific dimension-dependent coefficient. In three dimensions this boundary term reduces to a “one-half” GHY term noted in the literature previously, and we observe that our action translates precisely to the Chern-Simons action with no extra boundary terms. In four dimensions the boundary term vanishes, giving a natural Neumann interpretation to the standard Einstein-Hilbert action without boundary terms. We also argue that a natural boundary condition for gravity in asymptotically AdS spaces is to hold the renormalized boundary stress tensor density fixed, instead of the boundary metric. This leads to a well-defined variational problem, as well as new counter-terms and a finite on-shell action. We elaborate this in various (even and odd) dimensions in the language of holographic renormalization. Even though the form of the new renormalized action is distinct from the standard one, once the cut-off is taken to infinity, their values on classical solutions coincide when the trace anomaly vanishes. For AdS4, we compute the ADM form of this renormalized action and show in detail how the correct thermodynamics of Kerr-AdS black holes emerge. We comment on the possibility of a consistent quantization with our boundary conditions when the boundary is dynamical, and make a connection to the results of Compere and Marolf. The difference between our approach and microcanonical-like ensembles in standard AdS/CFT is emphasized.
In the third part of the dissertation, we use the recently developed CFT techniques of Rychkov and Tan to compute anomalous dimensions in the O(N) Gross-Neveu model in d = 2 + dimensions. To do this, we extend the “cow-pie contraction” algorithm of Basu and Krishnan to theories with fermions. Our results match perfectly with Feynman diagram computations.
|
82 |
Conformal Invariance and Liouville Field Theory / Invariância Conforme e Teoria de Campo de LiouvilleLaura Raquel Rado Díaz 01 June 2015 (has links)
In this work, we make a brief review of the Conformal Field Theory in two dimensions,in order to understand some basic definitions in the study of the Liouville Field Theory, which has many application in theoretical physics like string theory, general relativity and supersymmetric gauge field theories. In particular, we focus on the analytic continuation of the Liouville Field Theory, context in which an interesting relation with the Chern-Simons Theory arises as an extension of its well-known relation with the Wess-Zumino-Witten model. Thus, calculating correlation functions by using the complex solutions of the Liouville Theory will be crucial aim in this work in order to test the consistency of this analytic continuation. We will consider as an application the time-like version of the Liouville Theory, which has several applications in holographic quantum cosmology and in studying tachyon condensates. Finally, we calculate the three-point function for the Wess-Zumino-Witten model for the standard Kac-Moody level k > 2 and the particular case 0 < k < 2, the latter has an interpretation in time-dependent scenarios for string theory. Here we will find an analogue relation we find by comparing the correlation function of the time-like and space-like Liouville Field Theory. / Neste trabalho, nós fazemos uma breve revisão da Teoria de Campo Conforme em duas dimensões, a fim de entender algumas denições básicas do estudo da Teoria de Campo de Liouville, que tem muitas aplicações em física teórica como a teoria das cordas, a relatividade geral e teorias de campo de calibre supersimétricas. Em particular, vamos nos concentrar sobre a continuação analítica da Teoria de Campo de Liouville, contexto no qual uma interessante relação com a Teoria de Chern-Simons surge como uma extensão de sua relação conhecida com o modelo de Wess-Zumino-Witten. Assim, o cálculo das funções de correlação usando as soluções complexas da Teoria Liouville será o objectivo fundamental neste trabalho, a fim de testar a consistência da continuação analítica. Vamos considerar como uma aplicação a versão time-like da Teoria de Liouville, que tem várias aplicações em cosmologia quântica holográfica e no estudo de condensados de tachyon. Finalmente, calculamos a função de três pontos para o modelo de Wess-Zumino-Witten no nível de Kac-Moody k > 2 e o caso particular 0 < k < 2, este último tem uma interpretação em cenários dependentes do tempo para a teoria das cordas. Aqui nós vamos encontrar uma relação análoga ao que temos para a função de correlação do space-like e time-like na Teoria de Campo de Liouville.
|
83 |
Anomalous Dimensions in the WF O(N) Model with a Monodromy Line DefectSöderberg, Alexander January 2017 (has links)
General ideas in the conformal bootstrap program are covered. Both numerical and analytical approaches to the bootstrap equation are reviewed to show how it can be manipulated in different ways. Further analytical approaches are studied for theories with defects. We consider the three-dimensional CFT at the corresponding WF fixed point in the O(N) \phi^4 model with a co-dimension two, monodromy defect. Anomalous dimensions for bulk- and defect-local fields as well as one of the OPE coefficients are found to the first loop order. Implications of inserting this defect and constraints that arises from symmetries of the theory are investigated.
|
84 |
Intrication dans des systèmes quantiques à basse dimension / Entanglement in low-dimensional quantum systemsStephan, Jean-Marie 12 December 2011 (has links)
On a compris ces dernières années que certaines mesures d'intrications sont un outil efficace pour la compréhension et la caractérisation de phases nouvelles et exotiques de la matière, en particulier lorsque les méthodes traditionnelles basées sur l'identification d'un paramètre d'ordre sont insuffisantes. Cette thèse porte sur l'étude de quelques systèmes quantiques à basse dimension où un telle approche s'avère fructueuse. Parmi ces mesures, l'entropie d'intrication, définie via une bipartition du système quantique, est probablement la plus populaire, surtout à une dimension. Celle-ci est habituellement très difficile à calculer en dimension supérieure, mais nous montrons ici que le calcul se simplifie drastiquement pour une classe particulière de fonctions d'ondes, nommées d'après Rokhsar et Kivelson. L'entropie d'intrication peut en effet s'exprimer comme une entropie de Shannon relative à la distribution de probabilité générée par les composantes de la fonction d'onde du fondamental d'un autre système quantique, cette fois-ci unidimensionnel. Cette réduction dimensionnelle nous permet d'étudier l'entropie aussi bien par des méthodes numériques (fermions libres, diagonalisations exactes, ...) qu'analytiques (théories conformes). Nous argumentons aussi que cette approche permet d'accéder facilement à certaines caractéristiques subtiles et universelles d'une fonction d'onde donnée en général.Une autre partie de cette thèse est consacrée aux trempes quantiques locales dans des systèmes critiques unidimensionnels. Nous insisterons particulièrement sur une quantité appelée écho de Loschmidt, qui est le recouvrement entre la fonction d'onde avant la trempe et la fonction d'onde à temps t après la trempe. En exploitant la commensurabilité du spectre de la théorie conforme, nous montrons que l'évolution temporelle doit être périodique, et peut même être souvent obtenue analytiquement. Inspiré par ces résultats, nous étudions aussi la contribution de fréquence nulle à l'écho de Loschmidt après la trempe. Celle-ci s'exprime comme un simple produit scalaire -- que nous nommons fidélité bipartie -- et est une quantité intéressante en elle-même. Malgré sa simplicité, son comportement se trouve être très similaire à celui de l'entropie d'intrication. Pour un système critique unidimensionnel en particulier, notre fidélité décroît algébriquement avec la taille du système, un comportement rappelant la célèbre catastrophe d'Anderson. L'exposant est universel et relié à la charge centrale de la théorie conforme sous-jacente. / In recent years, it has been understood that entanglement measures can be useful tools for the understanding and characterization of new and exotic phases of matter, especially when the study of order parameters alone proves insufficient. This thesis is devoted to the study of a few low-dimensional quantum systems where this is the case. Among these measures, the entanglement entropy, defined through a bipartition of the quantum system, has been perhaps one of the most heavily studied, especially in one dimension. Such a quantity is usually very difficult to compute in dimension larger than one, but we show that for a particular class of wave functions, named after Rokhsar and Kivelson, the entanglement entropy of an infinite cylinder cut into two parts simplifies considerably. It can be expressed as the Shannon entropy of the probability distribution resulting from the ground-state wave function of a one-dimensional quantum system. This dimensional reduction allows for a detailed numerical study (free fermion, exact diagonalizations, \ldots) as well as an analytic treatment, using conformal field theory (CFT) techniques. We also argue that this approach can give an easy access to some refined universal features of a given wave function in general.Another part of this thesis deals with the study of local quantum quenches in one-dimensional critical systems. The emphasis is put on the Loschmidt echo, the overlap between the wave function before the quench and the wave function at time t after the quench. Because of the commensurability of the CFT spectrum, the time evolution turns out to be periodic, and can be obtained analytically in various cases. Inspired by these results, we also study the zero-frequency contribution to the Loschmidt echo after such a quench. It can be expressed as a simple overlap -- which we name bipartite fidelity -- and can be studied in its own right. We show that despite its simple definition, it mimics the behavior of the entanglement entropy very well. In particular when the one-dimensional system is critical, this fidelity decays algebraically with the system size, reminiscent of Anderson's celebrated orthogonality catastrophe. The exponent is universal and related to the central charge of the underlying CFT.
|
85 |
AdS/CFT correspondence and c-extremizationGoranci, Roberto January 2017 (has links)
In this project we review the method of using c-extremization and computing anomalies to obtain AdS/CFT theories. We start with a quick introduction to CFT's and AdS/CFT correspondence which gives us the tools to later understand the 2D N= (2,0) SCFT and its gravity duals in particular AdS_5xS^5 and AdS_7xS^4 compactified on Riemann surfaces.
|
86 |
Duality of Gaudin ModelsFilipp Uvarov (9121400) 29 July 2020 (has links)
<div>We consider actions of the current Lie algebras $\gl_{n}[t]$ and $\gl_{k}[t]$ on the space $\mathfrak{P}_{kn}$ of polynomials in $kn$ anticommuting variables. The actions depend on parameters $\bar{z}=(z_{1}\lc z_{k})$ and $\bar{\alpha}=(\alpha_{1}\lc\alpha_{n})$, respectively.</div><div>We show that the images of the Bethe algebras $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}\subset U(\gl_{n}[t])$ and $\mathcal{B}_{\bar{z}}^{\langle k \rangle}\subset U(\gl_{k}[t])$ under these actions coincide.</div><div></div><div>To prove the statement, we use the Bethe ansatz description of eigenvectors of the Bethe algebras via spaces of quasi-exponentials. We establish an explicit correspondence between the spaces of quasi-exponentials describing eigenvectors of $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}$ and the spaces of quasi-exponentials describing eigenvectors of $\mathcal{B}_{\bar{z}}^{\langle k \rangle}$.</div><div></div><div>One particular aspect of the duality of the Bethe algebras is that the Gaudin Hamiltonians exchange with the Dynamical Hamiltonians. We study a similar relation between the trigonometric Gaudin and Dynamical Hamiltonians. In trigonometric Gaudin model, spaces of quasi-exponentials are replaced by spaces of quasi-polynomials. We establish an explicit correspondence between the spaces of quasi-polynomials describing eigenvectors of the trigonometric Gaudin Hamiltonians and the spaces of quasi-exponentials describing eigenvectors of the trigonometric Dynamical Hamiltonians.</div><div></div><div>We also establish the $(\gl_{k},\gl_{n})$-duality for the rational, trigonometric and difference versions of Knizhnik-Zamolodchikov and Dynamical equations.</div>
|
87 |
Opérateurs monopôles dans les transitions hors d'un liquide de spin de DiracDupuis, Éric 08 1900 (has links)
Dans la description à basse énergie de systèmes fortement corrélés,
les champs de jauge peuvent émerger comme excitations collectives
couplées à des quasiparticules fractionalisées. En particulier, certains
aimants bidimensionnels dits frustrés sont décrits par un liquide
de spin de Dirac comportant une symétrie de jauge U(1) compacte.
La description infrarouge est donnée par une théorie conforme des
champs, soit l'électrodynamique quantique en 2+1 dimensions avec
2N saveurs de fermions sans masse. Dans les aimants typiques, N=2
ou 4. L'aspect compact du champ de jauge implique également l'existence
d'excitations topologiques, soit des instantons créés, dans ce contexte,
par des opérateurs monopôles.
Cette thèse porte sur les transitions de phase quantiques à partir
d'un liquide de spin de Dirac et les propriétés des monopôles aux
points critiques correspondants. Ces transitions sont induites en
activant diverses interactions de type Gross-Neveu. Dans tous les
cas à l'étude, la dimension d'échelle des monopôles est obtenue grâce
à la correspondance état-opérateur et à un développement en 1/N.
L'accent est d'abord mis sur une transition de confinement-déconfinement
vers une phase antiferromagnétique décrite par la condensation d'un
monopôle. Une levée de dégénérescence est observée au point critique
alors que certaines dimensions d'échelle de monopôles sont réduites
par rapport à leur valeur dans le liquide de spin de Dirac. Cette
hiérarchie est caractérisée quantitativement en comparant les dimensions
d'échelle dans des secteurs distincts du spin magnétique à l'ordre
dominant en 1/N, puis qualitativement par une analyse en théorie
des représentations. Des exposants critiques pour d'autres observables
dans la théorie non compacte sont également obtenus. Enfin, deux transitions
vers des liquides de spin topologiques, soit le liquide de spin chiral
et le liquide de spin Z2, sont considérées. Les dimensions anormales
des monopôles sont obtenues à l'ordre sous-dominant en 1/N. Ces
résultats permettent de vérifier une dualité conjecturée avec un modèle
bosonique et la valeur d'un coefficient universel pour les théories
de jauge U(1) / In strongly correlated systems, gauge fields can emerge as collective
excitations coupled to fractionalized quasiparticles. In particular,
certain frustrated two-dimensional quantum magnets are described by
a Dirac spin liquid which has a U(1) gauge symmetry. The infrared
description is given by a conformal field theory, namely quantum electrodynamics
in 2+1 dimensions with 2N flavours of massless fermions. In
typical magnets, N=2 or 4. The compact aspect of the gauge field
also implies the existence of topological excitations corresponding
to instantons, which are created by monopole operators in this context.
This thesis focuses on quantum phase transitions out of a Dirac spin
liquid and the properties of monopoles at the corresponding critical
points. These transitions are driven by activating various types of
Gross-Neveu interactions. In all the cases studied, the scaling dimension
of monopoles are obtained using the state-operator correspondence
and a 1/N expansion. The confinement-deconfinement transition to
an antiferromagnetic order produced by a monopole condensate is first
studied. A degeneracy lifting is observed at the critical point, as
certain monopoles have their scaling dimension reduced in comparison
with the value in the Dirac spin liquid. This hierarchy is charactized
quantitatively by comparing monopole scaling dimensions in distinct
magnetic spin sector at leading-order in 1/N, and qualitatively
by an analysis in representation theory. Critical exponents of various
other operators are obtained in the non-compact model. Transitions
to two topological spin liquids, namely a chiral spin liquid and a
Z2 spin liquid, are also considered. Anomalous dimensions of
monopoles are obtained at sub-leading order in 1/N. These results
allow the verification of a conjectured duality with a bosonic model
and the value of a universal coefficient in U(1) gauge theories.
|
88 |
Quantum Error Correction in Quantum Field Theory and GravityKeiichiro Furuya (16534464) 18 July 2023 (has links)
<p>Holographic duality as a rigorous approach to quantum gravity claims that a quantum gravitational system is exactly equal to a quantum theory without gravity in lower spacetime dimensions living on the boundary of the quantum gravitational system. The duality maps key questions about the emergence of spacetime to questions on the non-gravitational boundary system that are accessible to us theoretically and experimentally. Recently, various aspects of quantum information theory on the boundary theory have been found to be dual to the geometric aspects of the bulk theory. In this thesis, we study the exact and approximate quantum error corrections (QEC) in a general quantum system (von Neumann algebras) focused on QFT and gravity. Moreover, we study entanglement theory in the presence of conserved charges in QFT and the multiparameter multistate generalization of quantum relative entropy.</p>
|
89 |
Dynamics of D-branes in curved backgroundsFredenhagen, Stefan 16 September 2002 (has links)
In den letzten Jahren hat die Erforschung von Branen zu vielen neuen Einsichten in String- und M-Theorie geführt. Ein Großteil dieser Forschung behandelte den Fall großen Volumens, wo geometrische Methoden zuverlässige Informationen liefern. Die Extrapolation in den Bereich, wo die endliche Ausdehnung des Strings wichtig wird (`stringy regime'), erfordert gewöhnlich neue Methoden aus der konformen Feldtheorie mit Randbedingungen. Branen auf Gruppenmannigfaltigkeiten ermöglichen einen guten Zugang zu diesem Problem. Obwohl sie nichttriviale Hintergründe beschreiben, was zu vielen interessanten Effekten führt, sind sie immer noch gut beherrschbar. Sie dienen auch als Bausteine bei den Restklassen- und Orbifoldkonstruktionen von im Wesentlichen allen bekannten konformen Modellen. Die vorliegende Arbeit untersucht die Dynamik von Branen auf Gruppenmannigfaltigkeiten und Restklassenmodellen. In einem bestimmten Grenzfall wird die Dynamik von nichtkommutativen Eichtheorien regiert. Viele der Prozesse lassen sich in den Bereich extrapolieren, wo Stringeffekte eine Rolle spielen. Sie äußern sich als Renormierungsgruppenflüsse auf den zweidimensionalen Weltflächentheorien mit Rändern. Solche Flüsse sind auch von Interesse in der Festkörpertheorie, wo sie Randphänomene in eindimensionalen Systemen beschreiben. Wesentliche Daten über diese dynamischen Prozesse sind in Ladungen von D-Branen kodiert. Wir werden die Resultate, die wir über Prozesse zwischen verschiedenen Brankonfigurationen erhalten, mit der Vermutung vergleichen, dass die Ladungen Werte in getwisteten K-Gruppen annehmen. / In recent years, the study of branes has led to many new insights into string and M-theory. Much of this study was done in the large-volume regime where geometric techniques provide reliable information. The extrapolation into the stringy regime usually requires new methods from boundary conformal field theory. Branes on group manifolds give us a good handle on this issue. Although they describe non-trivial backgrounds leading to many interesting effects, they are still tractable. They also serve as building blocks in the coset and orbifold constructions of essentially all known conformal models. The present thesis investigates the dynamics of branes on group manifolds and coset models. In some limiting regime, the dynamics are governed by non-commuta\-tive gauge theories. Many of the processes can be extrapolated to the stringy regime. They manifest themselves as renormalization group flows on the two-dimensional worldsheet theories with boundaries. Such flows are of interest also in condensed matter theory where they describe boundary phenomena in one-dimensional systems. Essential data on these dynamical processes are encoded in D-brane charges. We will compare the obtained results on processes between brane configurations with the conjecture that the charges take their values in twisted K-groups.
|
90 |
Line defects in conformal field theory / From weak to strong couplingBarrat, Julien 14 March 2024 (has links)
Die konforme Feldtheorie findet in verschiedenen Bereichen Anwendungen, von statistischen Systemen in der Nähe kritischer Punkte bis hin zur Quantengravitation durch die AdS/CFT-Korrespondenz. Diese Theorien unterliegen starken Einschränkungen, die eine systematische nicht-perturbative Analyse ermöglichen. Konforme Defekte bieten eine kontrollierte Möglichkeit, die Symmetrie zu brechen und neue physikalische Phänomene einzuführen,
während wichtige Vorteile der zugrunde liegenden konformen Symmetrie erhalten bleiben. Diese Dissertation untersucht konforme Liniendefekte sowohl im schwachen als auch im starken Kopplungsregimes. Es werden zwei verschiedene Klassen von Modellen untersucht. Wir konzentrieren uns zuerst auf die supersymmetrische Wilson-Linie in N = 4 Super Yang-Mills, die als ideales Testfeld für die Entwicklung innovativer Techniken wie dem analytischen
konformen Bootstrap dient. Die zweite Klasse besteht aus magnetische Linien in Yukawa-Modellen, die faszinierende Anwendungen in 3d kondensierten Materiesystemen haben. Diese Systeme haben das Potenzial, Phänomene des Standardmodells in einem Niedrigenergieszenario nachzubilden. / Conformal field theory finds applications across diverse fields, from statistical systems at criticality to quantum gravity through the AdS/CFT correspondence. These theories are subject to strong constraints, enabling a systematic non-perturbative analysis. Conformal defects provide a controlled means of breaking the symmetry, introducing new physical phenomena while preserving crucial benefits of the underlying conformal symmetry. This thesis investigates conformal line defects in both the weak- and strong-coupling
regimes. Two distinct classes of models are studied. First, we focus on the supersymmetric Wilson line in N = 4 Super Yang–Mills, which serves as an ideal testing ground for the development of innovative techniques such as the analytic conformal bootstrap. The second class consists of magnetic lines in Yukawa models, which have fascinating applications in 3d condensed-matter systems. These systems have the potential to emulate phenomena observed in the Standard Model in a low-energy setting.
|
Page generated in 0.0652 seconds