• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 5
  • 1
  • Tagged with
  • 33
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Statistical methods for feature extraction in shape analysis and bioinformatics

Le Faucheur, Xavier Jean Maurice 05 April 2010 (has links)
The presented research explores two different problems of statistical data analysis. In the first part of this thesis, a method for 3D shape representation, compression and smoothing is presented. First, a technique for encoding non-spherical surfaces using second generation wavelet decomposition is described. Second, a novel model is proposed for wavelet-based surface enhancement. This part of the work aims to develop an efficient algorithm for removing irrelevant and noise-like variations from 3D shapes. Surfaces are encoded using second generation wavelets, and the proposed methodology consists of separating noise-like wavelet coefficients from those contributing to the relevant part of the signal. The empirical-based Bayesian models developed in this thesis threshold wavelet coefficients in an adaptive and robust manner. Once thresholding is performed, irrelevant coefficients are removed and the inverse wavelet transform is applied to the clean set of wavelet coefficients. Experimental results show the efficiency of the proposed technique for surface smoothing and compression. The second part of this thesis proposes using a non-parametric clustering method for studying RNA (RiboNucleic Acid) conformations. The local conformation of RNA molecules is an important factor in determining their catalytic and binding properties. RNA conformations can be characterized by a finite set of parameters that define the local arrangement of the molecule in space. Their analysis is particularly difficult due to the large number of degrees of freedom, such as torsion angles and inter-atomic distances among interacting residues. In order to understand and analyze the structural variability of RNA molecules, this work proposes a methodology for detecting repetitive conformational sub-structures along RNA strands. Clusters of similar structures in the conformational space are obtained using a nearest-neighbor search method based on the statistical mechanical Potts model. The proposed technique is a mostly automatic clustering algorithm and may be applied to problems where there is no prior knowledge on the structure of the data space, in contrast to many other clustering techniques. First, results are reported for both single residue conformations- where the parameter set of the data space includes four to seven torsional angles-, and base pair geometries. For both types of data sets, a very good match is observed between the results of the proposed clustering method and other known classifications, with only few exceptions. Second, new results are reported for base stacking geometries. In this case, the proposed classification is validated with respect to specific geometrical constraints, while the content and geometry of the new clusters are fully analyzed.
22

Structural and pharmacological studies of synthetic and endogenous opioid receptor ligands

Patel, Dinesh January 1992 (has links)
The interaction of a diverse set of opioid alkaloids and peptides with various opioid receptors has been examined using biochemical and pharmacological techniques. Structural information on the compounds was obtained from single crystal X-ray diffraction and nuclear magnetic resonance studies, and modelled by computational methods. The introduction of a dithiocarbazate moiety into the 7a-position of a bridged thebaine was shown to afford a degree of μ selectivity in this class of nonselective compounds. X-ray diffraction analysis of this compound and comparison with the structure of [Met5]enkephalin showed the importance of the sulphydryl moiety. The conformation of [Leu5]enkephalin, in which the amino acid methionine is replaced by leucine, at the same receptor is unlikely to be similar. A series of morphinan derivatives which had been developed as μ-antagonists were evaluated. Substitution patterns of the morphinan ring nucleus and their effect upon activity were examined. X-ray analysis of several key compounds was performed. Unexpectedly a 3-hydroxymorphinan-6-one analogue showed an ability to differentiate apparently similar opioid Kreceptors. The implications in terms of K-receptor subtypes are discussed. The opioid receptor binding characteristics of structurally diverse K-receptor ligands were examined in two different buffer systems. Electrostatic modelling of the K-ligands, based upon crystal structure coordinates, was performed. From electrostatic potential maps a requirement for ligands acting at Kreceptors is postulated. Solution conformations of the endogenous K-ligand, dynorphin A(1-8), were determined by nuclear magnetic resonance studies and compared with the wo preferring [Leu5]enkephalin. Models were proposed based upon dihedral angles determined from HCtl-NH coupling constants, amide proton-deuteron exchange and amide proton temperature coefficient data. Candidate conformations were shown to be stable under dynamic simulation conditions. Electrostatic modelling of a chosen dynorphin An-8) conformation gave results comparable with the observed electrostatic model of the K-ligands. The proposed model is discussed in terms of its suitability as a retro-model for the active site ofthe K-opioid receptor.
23

Étude structurale conformationnelle des toxines de l’anthrax par cryo-microscopie et dynamique moléculaire

Fabre, Lucien 01 1900 (has links)
Les toxines de l’anthrax font partie de la famille des toxines A-B dans laquelle la moitié B se fixe à la membrane de la cellule permettant par la suite la translocation de la moitié A. Dans le cas de l’anthrax, la moitié B est représentée par le Protective Antigen (PA) et la moitié A par les deux protéines Edema Factor (EF) et Lethal Factor (LF). Après le recrutement par les récepteurs cellulaires (CMG2 et TEM8), PA s’organise en heptamère. Il peut fixer jusqu'à 3 ligands (EF et LF) avant d'être endocyté. Les modèles actuels de PA suggèrent que la baisse de pH à l’intérieur des endosomes permet un changement de conformation de la forme pré-pore vers la forme pore et que les ligands EF et LF passeraient au travers le pore pour entrer dans le cytoplasme. Cependant, le diamètre du pore est environ dix fois inférieur à celui des ligands (10 Å contre 100 Å). Un processus de folding/unfolding a été proposé mais demeure controversé. Afin d'identifier le processus de passage des facteurs EF et LF dans le cytoplasme, nous avons déterminé par cryo-microscopie électronique combinée avec l’analyse d’image les structures tridimensionnelles des complexes formés par PA et LF aux étapes prépore et pore. Par la suite, une étude complémentaire par dynamique moléculaire nous a permis de modéliser à haute résolution les différentes interactions qui ont lieu au sein du complexe. La structure 3D du complexe prépore combiné à 3 LF a été déterminée à une résolution de 14 Å. Nous avons aussi calculé une structure préliminaire du complexe pore également combiné à 3 LF Celles-ci n’ont jamais été résolues auparavant et leur connaissance permet d’envisager l’étude en profondeur du mécanisme infectieux de l’Anthrax in vivo. / The anthrax toxins are part of the A-B toxin family in which the B moiety binds to the cell membrane allowing subsequent translocation of the A moiety. In the case of anthrax, the B moiety consists of the Protective Antigen (PA), and the A moiety is composed of the two proteins Edema Factor (EF) and the Lethal Factor (LF). After being recruited by the cell receptors (CGM2 or TEM8), PA organizes itself into a heptamer. It can bind up to three ligands (either EF or LF) before being endocytosed. Current models suggest that the decrease of pH inside the endosomes allows a conformational change of PA from a prepore form to a pore form that allows the EF and LF ligands to pass through the pore and enter the cytoplasm. However, the pore diameter is about ten times smaller than the diameter of the ligands (10Å versus 100Å). A process of ligand folding / unfolding has been proposed, but remains controversial. To identify the mechanism by which EF and LF enter the cytoplasm, we have used cryo-electron microscopy and three-dimensional image analysis to determine the 3D structure of the PA-LF complexes in the pre-pore and pore conformations. Then, we used molecular dynamics to modelise at high resolution the different interactions that occur within the complex. The 3D structure of the pre-pore complex bound with three LF ligands has been determined at 14Å resolution. We also calculated a preliminary structure of the LF-bound pore complex. These structures have never been reported before. They provide the necessary information to study in depth the mechanism of anthrax infection in vivo.
24

Étude structurale conformationnelle des toxines de l’anthrax par cryo-microscopie et dynamique moléculaire

Fabre, Lucien 01 1900 (has links)
Les toxines de l’anthrax font partie de la famille des toxines A-B dans laquelle la moitié B se fixe à la membrane de la cellule permettant par la suite la translocation de la moitié A. Dans le cas de l’anthrax, la moitié B est représentée par le Protective Antigen (PA) et la moitié A par les deux protéines Edema Factor (EF) et Lethal Factor (LF). Après le recrutement par les récepteurs cellulaires (CMG2 et TEM8), PA s’organise en heptamère. Il peut fixer jusqu'à 3 ligands (EF et LF) avant d'être endocyté. Les modèles actuels de PA suggèrent que la baisse de pH à l’intérieur des endosomes permet un changement de conformation de la forme pré-pore vers la forme pore et que les ligands EF et LF passeraient au travers le pore pour entrer dans le cytoplasme. Cependant, le diamètre du pore est environ dix fois inférieur à celui des ligands (10 Å contre 100 Å). Un processus de folding/unfolding a été proposé mais demeure controversé. Afin d'identifier le processus de passage des facteurs EF et LF dans le cytoplasme, nous avons déterminé par cryo-microscopie électronique combinée avec l’analyse d’image les structures tridimensionnelles des complexes formés par PA et LF aux étapes prépore et pore. Par la suite, une étude complémentaire par dynamique moléculaire nous a permis de modéliser à haute résolution les différentes interactions qui ont lieu au sein du complexe. La structure 3D du complexe prépore combiné à 3 LF a été déterminée à une résolution de 14 Å. Nous avons aussi calculé une structure préliminaire du complexe pore également combiné à 3 LF Celles-ci n’ont jamais été résolues auparavant et leur connaissance permet d’envisager l’étude en profondeur du mécanisme infectieux de l’Anthrax in vivo. / The anthrax toxins are part of the A-B toxin family in which the B moiety binds to the cell membrane allowing subsequent translocation of the A moiety. In the case of anthrax, the B moiety consists of the Protective Antigen (PA), and the A moiety is composed of the two proteins Edema Factor (EF) and the Lethal Factor (LF). After being recruited by the cell receptors (CGM2 or TEM8), PA organizes itself into a heptamer. It can bind up to three ligands (either EF or LF) before being endocytosed. Current models suggest that the decrease of pH inside the endosomes allows a conformational change of PA from a prepore form to a pore form that allows the EF and LF ligands to pass through the pore and enter the cytoplasm. However, the pore diameter is about ten times smaller than the diameter of the ligands (10Å versus 100Å). A process of ligand folding / unfolding has been proposed, but remains controversial. To identify the mechanism by which EF and LF enter the cytoplasm, we have used cryo-electron microscopy and three-dimensional image analysis to determine the 3D structure of the PA-LF complexes in the pre-pore and pore conformations. Then, we used molecular dynamics to modelise at high resolution the different interactions that occur within the complex. The 3D structure of the pre-pore complex bound with three LF ligands has been determined at 14Å resolution. We also calculated a preliminary structure of the LF-bound pore complex. These structures have never been reported before. They provide the necessary information to study in depth the mechanism of anthrax infection in vivo.
25

Gas-phase and Solution-phase Peptide Conformations Studied by Ion Mobility-mass Spectrometry and Molecular Dynamics Simulations

Chen, Liuxi 2012 August 1900 (has links)
Ion mobility spectrometry (IMS) separates ions on the basis of ion-neutral collision cross-sections (CCS, [omega]), which are determined by the geometry or conformation of the ions. The size-based IM separation can be extended to distinguish conformers that have different shapes in cases where shape differences influence the accessible surface area of the molecule. In recent years, IM has rapidly evolved as a structural characterization technique, which has applied on various structural biology problems. In this work, IMS is combined with molecular dynamics simulation (MDS), specially the integrated tempering sampling molecular dynamics simulation (ITS-MDS) to explore the gas-phase conformation space of two molecular systems (i) protonated tryptophan zipper 1 (trpzip1) ions and its six derivatives (ii) alkali metal ion (Na, K and Cs) adducts of gramicidin A (GA). The structural distributions obtained from ITS-MDS are compared well with results obtained from matrix-assisted laser desorption ionization-ion mobility-mass spectrometry (MALDI-IM-MS) for trpzip 1 series and electrospray ionization-ion mobility-mass spectrometry (ESI-IM-MS) for alkali metal ion adducts of GA. Furthermore, the solvent dependence on conformational preferences of the GA dimer is investigated using a combination of mass spectrometry techniques, viz. ESI-IM-MS and hydrogen/deuterium exchange (HDX)-MS, and MDS. The IM experiments reveal three distinct gramicidin A species, detected as the sodium ion adduct ions, [2GA + 2Na]²⁺, and the equilibrium abundances of the dimer ions varies with solvent polarity. The solution phase conformations are assigned as the parallel and anti-parallel [beta]-helix dimer, and the anti-parallel dimer is the preferred conformation in non-polar organic solvent. The calculated CCS profiles by ITS-MDS agree very well with the experimentally measured CCS profiles, which underscore the utility of the method for determining candidate structures as well as the relative abundances of the candidate structures. The benefit of combining ion mobility measurements with solution-phase H/D exchange is allowing identifications and detail analysis of the solution-phase subgroup conformations, which cannot be uncovered by one method alone.
26

Insights into the Role of Structural Modification on the Surface Molecular Interactions Probed Using Sum Frequency Generation Spectroscopy

Premadasa, Uvinduni I. 02 June 2020 (has links)
No description available.
27

Determining Protein Conformational Ensembles by Combining Machine Learning and SAXS / Bestämning av konformationsensembler hos protein genom att kombinera maskininlärning med SAXS

Eriksson Lidbrink, Samuel January 2023 (has links)
In structural biology, immense effort has been put into discovering functionally relevant atomic resolution protein structures. Still, most experimental, computational and machine learning-based methods alone struggle to capture all the functionally relevant states of many proteins without very involved and system-specific techniques. In this thesis, I propose a new broadly applicable method for determining an ensemble of functionally relevant protein structures. The method consists of (1) generating multiple protein structures from AlphaFold2 by stochastic subsampling of the multiple sequence alignment (MSA) depth, (2) screening these structures using small-angle X-ray scattering (SAXS) data and a structure validation scoring tool, (3) simulating the screened conformers using short molecular dynamics (MD) simulations and (4) refining the ensemble of simulated structures by reweighting it against SAXS data using a bayesian maximum entropy (BME) approach. I apply the method to the T-cell intracellular antigen-1 (TIA-1) protein and find that the generated ensemble is in good agreement with the SAXS data it is fitted to, in contrast to the original set of conformations from AF2. Additionally, the predicted radius of gyration is much more consistent with the experimental value than what is predicted from a 450 ns long MD simulation starting from a single structure. Finally, I cross-validate my findings against small-angle neutron scattering (SANS) data and find that the method-generated ensemble, although not in a perfect way, fits some of the SANS data much better than the ensemble from the long MD simulation. Since the method is fairly automatic, I argue that it could be used by non-experts in MD simulations and also in combination with more advanced methods for more accurate results. I also propose generalisations of the method by tuning it to different biological systems, by using other AI-based methods or a different type of experimental data. / Inom strukturbiologi har ett stort arbete lagts på att bestämma funktionellt relevanta proteinstrukturer på atomnivå. Dock så har de flesta experimentella, simuleringsbaserade och maskinlärningsbaserade metoderna svårigheter med att ensamma bestämma alla funktionellt relevanta strukturer utan väldigt involverade och system-specifika tekniker. I den här masteruppsatsen föreslår jag en ny allmänt applicerbar metod för att bestämma ensembler av funktionellt relevanta proteinstrukturer. Metoden består utav (1) generering av ett flertal proteinkonformationer från AlphaFold2 (AF2) genom att stokastiskt subsampla djupet för multisekvenslinjering, (2) välja ut en delmängd av dessa konformationer med hjälp av small angle X-ray scattering (SAXS) och ett strukturvalideringsverktyg, (3) simulera de utvlada konformationerna med hjälp av korta molekyldynamiksimuleringar (MD-simuleringar) och (4) förfina ensemblen av simulerade konformationer genom att vikta om dem utgående från SAXS-data med en Bayesian Maximum Entropy-metod. Jag applicerar min föreslagna metod på proteinet T-cell intracellular antigen-1 och finner att den genererade ensemblen har en god anpassning till den SAXS-profil den är anpassad till, till skillnad från ensemblen av konformationer direkt genererade av AF2. Dessutom är den förutspådda tröghetsradien mycket mer konsekvent med den experimentellt förutspådda radien än vad som förutspås utifrån en 450 ns lång MD-simulering utgående från en ensam struktur. Slutgiltigen korsvaliderar jag mina upptäckter mot data från small-angle neutron scattering (SANS) och finner att den metod-genererade ensemblen, om än inte på ett perfekt sätt, passar en del av SANS-datan mycket bättre än ensemblen från den långa MD simulationen. Då metoden är ganska automatisk så argumenterar jag för att den med fördel kan användas av icke-experter inom MD simuleringar och dessutom kombineras med mer avancerade metoder för ännu bättre resultat. Jag föreslår också generaliseringar av metoden genom att kunna anpassa den till olika biologiska system, genom att använda andra AI-baserade metoder eller att använda andra typer av experimentell data.
28

Model Development and Application of Molecular Simulations for the Study of Proton Transport in Bulk Water and for the Prediction of Dipole Moments of Organic Compounds

Asthana, Abhishek 05 December 2012 (has links) (PDF)
The present work demonstrates the application of molecular simulations (MD) in two different areas: proton transport in bulk water and estimation of the dipole moment of polar organic compounds. In both areas, relatively few successful and robust methodologies exist. In the first part, a new polarizable water model is developed for MD simulations of the proton transport process. The model was parametrized from a combination of quantum chemical calculations and experimental water properties. The model was implemented in MD simulation studies of liquid water at room temperature, as well as with excess protons. For pure water the model gave good agreement with experimental properties. The proton transport rate for a single excess proton also gave a good match with the experimental value. The water model was further extended to include chloride ions. At 0.2 M concentration the resulting density and structure agreed well with experiment, and the proton transport rate was found to be slightly reduced. The model was further extended to include multiple excess protons. For the second part of the project, an open source ab initio MD program, SIESTA, was used to perform simulations of several organic compounds which potentially have multiple stable conformations, to determine their average dipole moments. A series of methods was developed. The most robust method involved modifications to the SIESTA code and statistical analysis of the resulting configurations, in order to more accurately predict the average dipole moment. The resulting dipole moments were in good agreement with the experimental values for cases in which experimental values were reliable. Based on this study, a general method to estimate the average dipole moment of any compound is proposed.
29

Design And Access To Disallowed And Unusual Conformers Of Peptides In Crystals And In Solution : Structural Consequences Of The Imidate And Thioimidate Isosteres For The Peptide Bond

Reddy, N Damodara 12 1900 (has links) (PDF)
This thesis entitled “Design and Access to Disallowed and Unusual Conformers of Peptides in Crystals and in Solution: Structural Consequences of the Imidate and Thioimidate Isosteres for the Peptide bond” is divided into eight chapters. Imidate Modification The range of disallowed dihedral angles for residues in peptides is governed by their local steric and electrostatic clashes. Rare tolerances of violations in these angles are attributed to distortions in both local and global bond characteristics of the peptides. Discerning the origins of such disallowed angles and the consequent distortions in body of the peptides is essential, for a complete understanding of the protein fold, to improve the crystal database for validation of rare but acceptable residue conformations and for validation and improvement of theoretical models that evaluate the interactions that define the Ramachandran space. Unlike for the ordered secondary structures such as β-sheets α-helices and β-turns currently there are no models for residues constrained in disallowed folds. We reasoned that residues may be stabilized in disallowed folds in peptides if a neighbouring group and The range of disallowed dihedral angles ( , ψ) for residues in peptides is governed by their hence its local unfavorable clashes can be selectively modified to a motif that favors such space Steric clashes of the type H•••Xi±n involving the backbone amide hydrogen (H) contribute to ~60% of disallowed ,ψspace. Conversion of an amide to an imidate (A→I) will remove the corresponding H and hence the steric clashes related to it in peptides. Importantly, this will introduce an H-bond acceptor N (of imidate) in place of an H-bond donor NH (of amide), which will allow formation of unusual H-bonding interactions between the imidate N and the neighbouring Hs and hence constrain residues in otherwise inaccessible dihedral angles. The conversion of A→I is challenging owing to difficulties in selective synthesis, stability and purification of the imidate motif. We address all these concerns by the selective conversion of a backbone amide in peptides to the relatively stable cyclic 5,6-dihydro-4H-1,3-oxazine imidate isostere, by an intra¬molecular nucleophilic cyclo-O-alkylation reaction. Chapter 1:SectionB: Autocyclo-O-Alkylation of N-(3-Bromopropyl)amides into 2-Alkyl-5,6-Dihydro-4H-1,3-Oxazinehydrobromides We are describing the reactivity of N-(3-bromopropyl)amides that are precursors for 2-peptide-5,6-dihydro-4H-1,3-oxazine. The starting materials, 3-bromopropylamides, were synthesized in good yields by coupling the corresponding carboxylic acids and anhydrides with 3-bromopropylaminehydrobromide using standard mixed anhydride peptide coupling protocol. N-(3-bromopropyl)-acylamides are unstable during the isolation. Time-dependent 1H NMR of all the acetamides revealed that they underwent clean auto-cyclization to form the corresponding 2-alkyl-5,6-dihydro-4H-1,3-oxazine hydrobromides following first order rate. The salts were easily isolated in high purity by trituration of the mixtures with ether. The t1/2 of autocycliation of decreased upon increase in electron density on the R-carbon. Notably, the tert-butyl substituent cyclized significantly faster than acetamide which have enolizable hydrogens at the R-carbon. Thus, the cyclization rate is affected predominantly by the inductive effect of the R-carbon substituents. The formamide remained stable and unchanged due to the poor electron-donating ability of hydrogen. Chapter 1: Section C: Intramolecular Hydrogen Bond Assistance Improves Autocyclization in N-(3-Bromopropyl)amides The autocyclisation do not go to 100% completion. This is because the released hydrobromic acid quenches the nucleophilicity of amide carbonyl oxygen. In order to scavenge hydro bromic acid, we used 1 equivalent of DIEA base is acting only acid scavenger which conformed by unaffecting the reaction rate upon increasing equivalents of DIEA. We found that autocyclisation of N-(3-bromopropyl)amides rates in peptides involved in intramolecular backbone H-bonding interactions improve the autocyclization rates significantly than unstructured (random coil) peptides. Even with in the ordered structures the rate depends on the proximity of H-bonding distances as well as the H-bond acceptor strength. Half-life of autocyclisation in various peptide secondary structures are determined from time variant 1H NMR studies performed at 60 mM peptide concentration in CDCl3 at 32 oC. Chapter 2: Section A: Synthesis and Isolation of 5,6 Dihydro-4H-1,3-Oxazine Containing Peptidomimetics We have introduced 5,6-Dihydro-4H-1,3-oxazine as the imidate isostere at C-terminus of a number of peptides through NaH (base) mediated intramolecular cyclo-O-alkylation of N-(3-bromopropyl)amides. The amide to imidate (A→I) modification reaction is faster (1-5.5 h), Exhibiting no electronic and structural effects under these conditions. The side product NaBr can be easily separated by filtration through celite. No side products were observed and there is no need of further purification to get pure 1,3-oxazines in quantitative yields in all the peptidomimetics. Using this synthetic protocol we have synthesised a variety of 1,3-oxazine containing peptide analogues including aliphatic, branched aliphatic, polar side chains and larger peptides. We show that the retention of configuration at Cαof peptides during the base mediated cyclo-O-alkylation reaction. that the C5i.structures are more populated at Aib due to operation of The Thorpe-Ingold effect. The strength of hydrogen bonding interaction in C5i structure is similar to those of the highly buried backbone hydrogen bonding interaction found in the middle of a model 310-helical peptide as indicated by DMSO titration experiments. Chapter 3: Section A: Consequences of "Disallowed" Conformations on Constrained β-Turn Peptides Here we are describe the consequence of disallowed conformations the on a C-terminus of a type-II β-turn. We choose stereochemically constrained Type-II β-turn Pro-Aib dipeptide analogue which is the ideal model to mirror the structural effects of introducing the A→I modification at the C-terminus. The imidate containing peptidomimetic crystallised in dichloromethane and hexane mixture. Analysis of crystal structure revealed that Aib NH is involved in 3-centered H-bonding interactions with the N of oxazine and N of proline. This constrains Aib in a conformation that is natively disallowed to it. The (, ) angles of Aib residue fall in the (180,0) region which is strictly disallowed for natural peptides due to steric clashes involving the back bone amide N-H. More importantly there are two C•••O interactions which are accomidated in the crystal structures. Both oxygen‟s were place in staggered orientation of the Pro oxygen (OPro) between the two β-CH3 groups of Aib, which is again strictly disallowed in natural peptides due to strong C•••Oi-1 hard sphere clashes. However no vdW space violations are observed between these atoms. Chapter 3: Section B: Conformational Effects of “Disallowed Aib on a 310-Helical peptide In order to investigate the origins and consequences of “disallowed” conformations on a folded helical peptide body, the conformationally stable peptide sequence Boc-Leu1-Aib2-Ala3-Leu4-Aib5-Ala6-Phe7-Aib8-OMe (310-helix-OMe)was chosen which is known to adopt 310-helix in crystal structure. Analyses of the ROESY spectra, DMSO titration experiments, and CD spectra of 310-helix-OMe and its Oxa analogue reveal that their solution conformations are identical to those of the crystal structure of 310-helix-OMeSix sequential i+3→i intramolecular backbone H-bonds stabilize the 310-helical peptide fold in both peptides in solvents of varying polarity. The N-terminal and central segments of the helical molecules are quite structurally rigid and are not deformed. The presence of the disallowed Aib*8 residue in Oxa analogue has a clear conformational effect mainly on the residue Phe7. It looks like the Phe7 amide H is involved in shielding, the Aib*8 amide H through a bifurcated hydrogen bonding interactions with the nitrogen of oxazine and carbonyl oxygen of Ala6 residue. Maximum structural distortion effect on the registers closest to the putative imidate bond. Our results show that “disallowed folds need not denature order in the peptide fold”. Chapter 4: Synthetic Methods for Introducing the A → I Modification anywhere along the Peptide Chain Here we describe the incorporation of imidate isostere in the middle of any peptide sequence. In Oxa selectivity is towards 5-exo-cyclo-O-alkylation in 1 : 4. In Thi it is towards 6-exo-cyclo-S-alkylation in 3 : 1 ratio. This is because of better nucleophile of sulphur (S). We saw that Thi is stable to peptide coupling, N-and C-terminus protection, deprotection conditions and can be easily incorporated in middle of peptide. Chapter 5: Section A: Cis-trans Isomerism in the X-Pro Peptide Bond In tertiary amides like X-Pro peptides having high propensity to access cis conformations due to similar environment in both cis and trans around the Cof X. X-Pro peptide bonds, constrained in s-cis conformations are prevalently found in the turn regions of peptides with the residue „X‟ in the i+1position and Pro at the i+2position of the β¬turn. These types of turns are termed as the type VI β-turns. For better understanding of the molecular recognition at specific cis X-Pro peptide bonds in biological events, the structure and dynamics of various constrained cis X-Pro peptide bond analogues with varying steric and electronic perturbations have been studied. Many models have been developed for stabilizing cis conformer by perturbation of molecular recognition surface of proline by employing steric and electronic interaction. In biological functions proline molecular recognition surface and cis X-Pro peptide bond more important. There is need of novel method for stabilizing X-Pro peptide bond in cis conformer without modifying the pyrolidine ring in proline. Chapter 5: Section B: Biasing the cis/trans Equilibrium in X Pro Peptides using Reverse ni → ni-1 * Interactions Here we present our findings that peptidomimetics containing the 5,6-dihydro-4H-1,3¬oxazine (Oxa) and 5,6-dihydro-4H-1,3-thiazine (Thi) functional groups at the C-terminus of Pro selectively and remotely stabilize the s-cis rotamers of the preceding pyrrolyl (Xaa-Pro) 3° amide bonds, while conserving these recognition elements. The cis/trans equilibrium of Xaa-Pro peptide bonds is shifted significantly in favor of the satirically disfavored cis isomers in these peptidomimetics (upto ~90%). We also provide evidence for the influence of an unusual n→ πi-1 * interaction in the cis, and the n)(n repulsion in the trans, conformers of these molecules to beat the origin of such the origin of such cis stabilization. Chapter 6: Steric Interactions in the cis Piv-Pro Peptide Bond The inaccessibility of cis Piv-Pro rotamer in any peptide is believed to be because the steric clashes between substituents on CX and CPro are unavoidable in this conformer. Here we access the cisPiv-Pro conformer in crystal structure of Piv-Pro-Aib-OMe and that it is sufficiently flexible to undergo bond distortions and avoid all steric clashes between substituents on CPiv and CPro . It is however the unavoidable distortions in the dihedral angle of the Prothe cisPiv-Proconformer. The cisPiv -Pro conformer is indeed accessible, if such distortions are accommodated in the peptide. Chapter 7: Steric and Electronic Interactions in the cis Isomer of Piv-Pro Peptide Bond in Solution We have studied the electronic and steric interactions and the conformational equilibrium in two sets of homologous peptides, X-Pro-Aib-OMe (which contain Aib) and X-Pro-NH-Me, where X is acetyl, propionyl, isobutyryl and pivaloyl, in solvents of varying polarities consisting of carbontetrachloride, chloroform or dimethylsulfoxide, by means of their 1H and 13C-NMR, and FT-IR spectra. Formation of n * interactions between the carbonyls that flank the Aib residue, influences the alleviation of steric interactions that are believed to preclude access to the cis conformer of the Piv-Pro peptide bond. The cis Piv-Pro conformer is observable in the Aib containing peptides, at ambient conditions by FT-IR and at temperatures as low as 273 K by NMR. We estimate that the steric interactions contribute < 0.5 kcal/mol to the conformational free energy of X-Pro peptide bond isomerism, irrespective of the steric bulk on the acyl (X) group. The relative strengths of intramolecular hydrogen bonding interactions involving the X-Pro peptide motif in different conformers of these peptides influence their relative conformational stabilities. Chapter 8: Remote Effect of Oxa and Thi Functional Groups on cis-trans Isomerism at X-Pro Peptide Bonds The C5a interaction at Pro residue occurs in the transition states for the intramolecular acid catalysis of cis → trans isomerization in peptidyl prolyl isomerases (PPIs) and enables the decrease in transition energy barrier for the isomerization process. We show that the NPro….HAib interactions in C5a structures can be remotely effected in order to control in equilibrium constant values of the cis/trans isomerism (Kc/t) in X-Pro¬Aib-Oxa and Thi containing peptides. By this method we observed improvement in Kc/t values from 0.18 in esters to 0.56 in Thi and 0.66 in Oxa containing peptides. Analyses of the ROESY spectra, DMSO titration experiments, variable temperature experiments and FT-IR spectra of R-CO-Pro-Aib-Oxa (R = Me, Et, iPr) and its Thi analogues reveals that both interactions (C5a and C5i) are persistent in cis and trans conformers of this peptidomimetics. (for structural formula pl. see the abstract.)
30

Étude de l’issue diastéréomérique impliquant la réduction radicalaire d’α-bromoesters adjacents à un tétrahydropyrane substitué

Viens, Frédérick 09 1900 (has links)
Cet ouvrage traite de la formation diastéréosélective de tétrahydropyranes 3,7-cis et 3,7-trans polysubstitués. Des méthodologies de cycloétherification et de C-glycosidation en tandem avec une réduction radicalaire y sont décrites (pyranes 3,7- trans) tandis qu’une haloéthérification en tandem avec le même processus radicalaire conduit aux pyranes 3,7-cis. Suite à des travaux antérieurs du laboratoire, des études ont été réalisées afin de comprendre l’influence de la stéréochimie des substituants en position C3, C6, C7 et C8 sur l’issue diastéréochimique lors d’un transfert d’hydrure sous contrôle exocyclique sur un centre radicalaire adjacent à un tétrahydropyrane (C2). Ces études ont permis de solutionner les problèmes de diastéréosélectivité rencontrés lors des réductions radicalaires des centres en C2 de divers fragments élaborés d’ionophores (e.g. zincophorine, salinomycine, narasine…) réalisées par notre groupe. Des études conformationnelles réalisées sur des pyranes di- ou tri-substitués ont permis de comprendre les diastéréosélectivités notées lors du processus radicalaire en fonction des stéréochimies relatives des centres précédemment cités. En particulier, l’utilisation d’un bicycle rigide (trans-octahydrochromène) a permis de montrer l’importance du positionnement spatial (axial ou équatorial) de la chaîne portant le centre radicalaire. Par la suite, nous avons pu mettre en évidence une amplification des ratios en faveur du produit de réduction radicalaire 2,3-anti lorsque la réaction est réalisée en présence d’un acide de Lewis monodentate encombré (MAD). L’optimisation du contrôle endocyclique lors du transfert d’hydrure a permis de générer la stéréochimie complémentaire 2,3-syn. L’utilisation du TTMSS comme source d’hydrure combinée à l’utilisation d’un acide de Lewis bidentate tel que MgBr2·OEt2 a permis l’obtention d’excellentes sélectivités en faveur du produit endocyclique. Des études RMN 13C ainsi que le titrage des ions Mg2+ en solution ont été effectués afin de comprendre la nature des complexes impliqués. Finalement, ces études ont permis la formation stéréocontrôlée de centres stéréogéniques adjacents à un THP, motifs fréquement rencontrés dans certains policétides. Elles permettent ainsi d’envisager la synthèse de polyéthers de type ionophore et d’autres molécules d’intérêt biologique. / This work describes the diastereoselective formation of polysubstituted 3,7-cis and 3,7-trans tetrahydropyrans. Tandem radical reduction/cycletherification and tandem radical reduction/C-glycosidation methodologies are depicted for 3,7-trans pyrans formation while tandem radical reduction/haloetherification lead to 3,7-cis pyrans. Following previous work in the laboratory, studies have been conducted to better understand the stereochemical influence that substituents in the C3, C6, C7 and C8 positions have on the diastereoselectivity of a hydride transfer radical reaction on a radical center with an adjacent tetrahydropyran (exocyclic control). These studies have helped to solve diastereoselectivity problems encountered with C2 radical reductions in different ionophore fragments (e.g. zincophorin, salinomycin, narasin ...) that were investigated by our group. Conformational studies performed on di-or tri-substituted pyrans have helped to understand the diastereoselectivities observed in the radical process of the stereochemical centers mentioned above. In particular, the use of a bicycle frame (trans-octahydrochromene) showed the importance of the spatial positioning (axial or equatorial) of the radical center chain. Subsequently, we were able to demonstrate an increase ratios for the 2,3-anti radical reduction product when the reaction was performed in the presence of a bulky monodentate Lewis acid (MAD). Optimization of hydride transfer under endocyclic control has generated the complementary 2,3-syn stereochemistry. Use of TTMSS as a hydride source combined with the use of a bidentate Lewis acid such as MgBr2·OEt2 allowed for the formation of endocyclic products with excellent selectivities. 13C NMR studies and titration of Mg2+ ions in solution were performed to understand the nature of the complexes involved. Finally, these studies led to the stereocontrolled formation of stereogenic centers adjacent to a THP, motifs frequently encountered in polyketides. This work thus involves the synthesis of polyether ionophore-type fragments and other molecules of biological interest.

Page generated in 0.0774 seconds