• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 12
  • 6
  • 6
  • 5
  • 2
  • 1
  • Tagged with
  • 86
  • 86
  • 28
  • 27
  • 17
  • 15
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

A CG-FFT Based Fast Full Wave Imaging Method and its Potential Industrial Applications

Yu, Zhiru January 2015 (has links)
<p>This dissertation focuses on a FFT based forward EM solver and its application in inverse problems. The main contributions of this work are two folded. On the one hand, it presents the first scaled lab experiment system in the oil and gas industry for through casing hydraulic fracture evaluation. This system is established to validate the feasibility of contrasts enhanced fractures evaluation. On the other hand, this work proposes a FFT based VIE solver for hydraulic fracture evaluation. This efficient solver is needed for numerical analysis of such problem. The solver is then generalized to accommodate scattering simulations for anisotropic inhomogeneous magnetodielectric objects. The inverse problem on anisotropic objects are also studied.</p><p>Before going into details of specific applications, some background knowledge is presented. This dissertation starts with an introduction to inverse problems. Then algorithms for forward and inverse problems are discussed. The discussion on forward problem focuses on the VIE formulation and a frequency domain solver. Discussion on inverse problems focuses on iterative methods.</p><p>The rest of the dissertation is organized by the two categories of inverse problems, namely the inverse source problem and the inverse scattering problem. </p><p>The inverse source problem is studied via an application in microelectronics. In this application, a FFT based inverse source solver is applied to process near field data obtained by near field scanners. Examples show that, with the help of this inverse source solver, the resolution of unknown current source images on a device under test is greatly improved. Due to the improvement in resolution, more flexibility is given to the near field scan system.</p><p>Both the forward and inverse solver for inverse scattering problems are studied in detail. As a forward solver for inverse scattering problems, a fast FFT based method for solving VIE of magnetodielectric objects with large electromagnetic contrasts are presented due to the increasing interest in contrasts enhanced full wave EM imaging. This newly developed VIE solver assigns different basis functions of different orders to expand flux densities and vector potentials. Thus, it is called the mixed ordered BCGS-FFT method. The mixed order BCGS-FFT method maintains benefits of high order basis functions for VIE while keeping correct boundary conditions for flux densities and vector potentials. Examples show that this method has an excellent performance on both isotropic and anisotropic objects with high contrasts. Examples also verify that this method is valid in both high and low frequencies. Based on the mixed order BCGS-FFT method, an inverse scattering solver for anisotropic objects is studied. The inverse solver is formulated and solved by the variational born iterative method. An example given in this section shows a successful inversion on an anisotropic magnetodielectric object. </p><p>Finally, a lab scale hydraulic fractures evaluation system for oil/gas reservoir based on previous discussed inverse solver is presented. This system has been setup to verify the numerical results obtained from previously described inverse solvers. These scaled experiments verify the accuracy of the forward solver as well as the performance of the inverse solver. Examples show that the inverse scattering model is able to evaluate contrasts enhanced hydraulic fractures in a shale formation. Furthermore, this system, for the first time in the oil and gas industry, verifies that hydraulic fractures can be imaged through a metallic casing.</p> / Dissertation
52

Método de otimização assitido para comparação entre poços convencionais e inteligentes considerando incertezas / Assited optimization method for comparison between conventional and intelligent wells considering uncertainties

Pinto, Marcio Augusto Sampaio, 1977- 11 April 2013 (has links)
Orientador: Denis José Schiozer / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências / Made available in DSpace on 2018-08-24T00:34:10Z (GMT). No. of bitstreams: 1 Pinto_MarcioAugustoSampaio_D.pdf: 5097853 bytes, checksum: bc8b7f6300987de2beb9a57c26ad806a (MD5) Previous issue date: 2013 / Resumo: Neste trabalho, um método de otimização assistido é proposto para estabelecer uma comparação refinada entre poços convencionais e inteligentes, considerando incertezas geológicas e econômicas. Para isto é apresentada uma metodologia dividida em quatro etapas: (1) representação e operação dos poços no simulador; (2) otimização das camadas/ou blocos completados nos poços convencionais e do número e posicionamento das válvulas nos poços inteligentes; (3) otimização da operação dos poços convencionais e das válvulas nos poços inteligentes, através de um método híbrido de otimização, composto pelo algoritmo genético rápido, para realizar a otimização global, e pelo método de gradiente conjugado, para realizar a otimização local; (4) uma análise de decisão considerando os resultados de todos os cenários geológicos e econômicos. Esta metodologia foi validada em modelos de reservatórios mais simples e com configuração de poços verticais do tipo five-spot, para em seguida ser aplicada em modelos de reservatórios mais complexos, com quatro poços produtores e quatro injetores, todos horizontais. Os resultados mostram uma clara diferença ao aplicar a metodologia proposta para estabelecer a comparação entre os dois tipos de poços. Apresenta também a comparação entre os resultados dos poços inteligentes com três tipos de controle, o reativo e mais duas formas de controle proativo. Os resultados mostram, para os casos utilizados nesta tese, uma ampla vantagem em se utilizar pelo menos uma das formas de controle proativo, ao aumentar a recuperação de óleo e VPL, reduzindo a produção e injeção de água na maioria dos casos / Abstract: In this work, an assisted optimization method is proposed to establish a refined comparison between conventional and intelligent wells, considering geological and economic uncertainties. For this, it is presented a methodology divided into four steps: (1) representation and operation of wells in the simulator, (2) optimization of the layers /blocks with completion in conventional wells and the number and placement of the valves in intelligent wells; (3) optimization of the operation of the conventional and valves in the intelligent, through a hybrid optimization method, comprising by fast genetic algorithm, to perform global optimization, and the conjugate gradient method, to perform local optimization; (4) decision analysis considering the results of all geological and economic scenarios. This method was validated in simple reservoir models and configuration of vertical wells with five-spot type, and then applied to a more complex reservoir model, with four producers and four injectors wells, all horizontal. The results show a clear difference in applying the proposed methodology to establish a comparison between the two types of wells. It also shows the comparison between the results of intelligent wells with three types of control, reactive and two ways of proactive control. The results show, for the cases used in this work, a large advantage to use intelligent wells with at least one form of proactive control, to enhance oil recovery and NPV, reducing water production and injection in most cases / Doutorado / Reservatórios e Gestão / Doutor em Ciências e Engenharia de Petróleo
53

Implementierung eines parallelen vorkonditionierten Schur-Komplement CG-Verfahrens in das Programmpaket FEAP

Meisel, Mathias, Meyer, Arnd 30 October 1998 (has links)
A parallel realisation of the Conjugate Gradient Method with Schur-Complement preconditioning, based on a domain decomposition approach, is described in detail. Special kinds of solvers for the resulting interiour and coupling systems are presented. A large range of numerical results is used to demonstrate the properties and behaviour of this solvers in practical situations.
54

Parallel Preconditioners for Plate Problem

Matthes, H. 30 October 1998 (has links)
This paper concerns the solution of plate bending problems in domains composed of rectangles. Domain decomposition (DD) is the basic tool used for both the parallelization of the conjugate gradient method and the construction of efficient parallel preconditioners. A so-called Dirich- let DD preconditioner for systems of linear equations arising from the fi- nite element approximation by non-conforming Adini elements is derived. It is based on the non-overlapping DD, a multilevel preconditioner for the Schur-complement and a fast, almost direct solution method for the Dirichlet problem in rectangular domains based on fast Fourier transform. Making use of Xu's theory of the auxiliary space method we construct an optimal preconditioner for plate problems discretized by conforming Bogner-Fox-Schmidt rectangles. Results of numerical experiments carried out on a multiprocessor sys- tem are given. For the test problems considered the number of iterations is bounded independent of the mesh sizes and independent of the number of subdomains. The resulting parallel preconditioned conjugate gradient method requiresO(h^-2 ln h^-1 ln epsilon^-11) arithmetical operations per processor in order to solve the finite element equations with the relative accuracy epsilon.
55

Preconditioned iterative methods for monotone nonlinear eigenvalue problems

Solov'ëv, Sergey I. 11 April 2006 (has links)
This paper proposes new iterative methods for the efficient computation of the smallest eigenvalue of the symmetric nonlinear matrix eigenvalue problems of large order with a monotone dependence on the spectral parameter. Monotone nonlinear eigenvalue problems for differential equations have important applications in mechanics and physics. The discretization of these eigenvalue problems leads to ill-conditioned nonlinear eigenvalue problems with very large sparse matrices monotone depending on the spectral parameter. To compute the smallest eigenvalue of large matrix nonlinear eigenvalue problem, we suggest preconditioned iterative methods: preconditioned simple iteration method, preconditioned steepest descent method, and preconditioned conjugate gradient method. These methods use only matrix-vector multiplications, preconditioner-vector multiplications, linear operations with vectors and inner products of vectors. We investigate the convergence and derive grid-independent error estimates of these methods for computing eigenvalues. Numerical experiments demonstrate practical effectiveness of the proposed methods for a class of mechanical problems.
56

A Method for Characterizing the Properties of Industrial Foams

Salisbury, Shaun M. 10 August 2005 (has links) (PDF)
Assessing the effect of foam layers on transport phenomena is of significant interest in many industries, so a method for predicting foam layer properties has been developed. A model of the propagation of radiation from an amplitude-modulated laser beam through a non-absorbing foam layer has been developed using diffusion theory. Measurements predicted by diffusion theory were compared to results generated using Monte Carlo methods for a variety of foam layer properties in both the time-domain and the frequency-domain. The properties that were varied include the layer thickness, the scattering coefficient, and the asymmetry parameter. Layer thicknesses between 8.5 mm and 18 cm were considered. Values of the scattering coefficient ranged from about 600 m-1 to 14000 m-1, while the asymmetry parameter varied between 0 and 1. A conjugate-gradient algorithm was used to minimize the difference between simulated Monte Carlo measurements and diffusion theory predicted measurements. A large set of simulated measurements, calculated at various source-detector separations and three discrete frequencies were used to predict the layer properties. Ten blind cases were considered and property predictions were made for each. The predicted properties were within approximately 10% of the actual values, and on average the errors were approximately 4%. Predictions of the reduced scattering coefficient were all within approximately 5% with the majority being within 3%. Predictions of L were all within approximately 10% with the majority being within 7%. Attempts to separate g from the reduced scattering coefficient were unsuccessful, and it was determined that implementation of different source models might make such attempts possible. It was shown that with a large number of measurements, properties could be accurately predicted. A method for reducing the number of measurements needed for accurate property estimation was developed. Starting with a single measurement location, property predictions were made. An approach for updating the optimal detector location, based on the current estimate of the properties, was developed and applied to three cases. Property predictions for the three cases were made to within 10% of the actual values. A maximum of three measurement locations were necessary to obtain such predictions, a significant reduction as compared to the previously illustrated method.
57

Improvements on Heat Flux and Heat Conductance Estimation with Applications to Metal Castings

Xue, Xingjian 13 December 2003 (has links)
Heat flux and heat conductance at the metal mold interface plays a key role in controlling the final metal casting strength. It is difficult to obtain these parameters through direct measurement because of the required placement of sensors, however they can be obtained through inverse heat conduction calculations. Existing inverse heat conduction methods are analyzed and classified into three categories, i.e., direct inverse methods, observer-based methods and optimization methods. The solution of the direct inverse methods is based on the linear relationship between heat flux and temperature (either in the time domain or in the frequency domain) and is calculated in batch mode. The observer-based method consists on the application of observer theory to the inverse heat conduction problem. The prominent characteristic in this category is online estimation, but the methods in this category show weak robustness. Transforming estimation problems into optimization problems forms the methods in the third category. The methods in third category show very good robustness property and can be easily extended to multidimensional and nonlinear problems. The unknown parameters in some inverse heat conduction methods can be obtained by a proposed calibration procedure. A two-index property evaluation (accuracy and robustness) is also proposed to evaluate inverse heat conduction methods and thus determine which method is suitable for a given situation. The thermocouple dynamics effect on inverse calculation is also analyzed. If the thermocouple dynamics is omitted in the inverse calculation, the time constant of thermocouple should be as small as possible. Finally, a simple model is provided simulating the temperature measurement using a thermocouple. FEA (Finite Element Analysis) is employed to simulate temperature measurement.
58

Space-Time Finite Element Analysis on Graphics Processing Unit Computing Platform

Luckshetty, Harish Kumar 19 April 2012 (has links)
No description available.
59

Iterative Methods for the Reconstruction of Tomographic Images with Unconventional Source-detector Configurations

Mukkananchery, Abey 01 January 2005 (has links)
X-ray computed tomography (CT) holds a critical role in current medical practice for the evaluation of patients, particularly in the emergency department and intensive care units. Expensive high resolution stationary scanners are available in radiology departments of most hospitals. In many situations however, a small, inexpensive, portable CT unit would be of significant value. Several mobile or miniature CT scanners are available, but none of these systems have the range, flexibility or overall physical characteristics of a truly portable device. The main challenge is the design of a geometry that optimally trades image quality for system size. The goal of this work has been to develop analysis tools to help simulate and evaluate novel system geometries. To test the tools we have developed, three geometries have been considered in the thesis, namely, parallel projections, clam-shell and parallel plate geometries. The parallel projections geometry is commonly used in reconstruction of images by filtered back projection technique. A clam-shell structure consists of two semi-cylindrical braces that fold together over the patient's body and connect at the top. A parallel plate structure uses two fixed flat or curved plates on either side of the patient's body and image from fixed sources/detectors that are gated on and off so as to step the X-ray field through the body. The parallel plate geometry has been found to be the least reliable of the three geometries investigated, with the parallel projections geometry being the most reliable. For the targeted application, the clam-shell geometry seems to be the solution with more chances to succeed in the short term. We implemented the Van Cittert iterative technique for the reconstruction of images from projections. The thesis discusses a number of variations on the algorithm, such as the use of the Conjugate Gradient Method, several choices for the initial guess, and the incorporation of a priori information to handle the reconstruction of images with metal inserts.
60

Resolução de um problema térmico inverso utilizando processamento paralelo em arquiteturas de memória compartilhada / Resolution of an inverse thermal problem using parallel processing on shared memory architectures

Ansoni, Jonas Laerte 03 September 2010 (has links)
A programação paralela tem sido freqüentemente adotada para o desenvolvimento de aplicações que demandam alto desempenho computacional. Com o advento das arquiteturas multi-cores e a existência de diversos níveis de paralelismo é importante definir estratégias de programação paralela que tirem proveito desse poder de processamento nessas arquiteturas. Neste contexto, este trabalho busca avaliar o desempenho da utilização das arquiteturas multi-cores, principalmente o oferecido pelas unidades de processamento gráfico (GPUs) e CPUs multi-cores na resolução de um problema térmico inverso. Algoritmos paralelos para a GPU e CPU foram desenvolvidos utilizando respectivamente as ferramentas de programação em arquiteturas de memória compartilhada NVIDIA CUDA (Compute Unified Device Architecture) e a API POSIX Threads. O algoritmo do método do gradiente conjugado pré-condicionado para resolução de sistemas lineares esparsos foi implementado totalmente no espaço da memória global da GPU em CUDA. O algoritmo desenvolvido foi avaliado em dois modelos de GPU, os quais se mostraram mais eficientes, apresentando um speedup de quatro vezes que a versão serial do algoritmo. A aplicação paralela em POSIX Threads foi avaliada em diferentes CPUs multi-cores com distintas microarquiteturas. Buscando um maior desempenho do código paralelizado foram utilizados flags de otimização as quais se mostraram muito eficientes na aplicação desenvolvida. Desta forma o código paralelizado com o auxílio das flags de otimização chegou a apresentar tempos de processamento cerca de doze vezes mais rápido que a versão serial no mesmo processador sem nenhum tipo de otimização. Assim tanto a abordagem utilizando a GPU como um co-processador genérico a CPU como a aplicação paralela empregando as CPUs multi-cores mostraram-se ferramentas eficientes para a resolução do problema térmico inverso. / Parallel programming has been frequently adopted for the development of applications that demand high-performance computing. With the advent of multi-cores architectures and the existence of several levels of parallelism are important to define programming strategies that take advantage of parallel processing power in these architectures. In this context, this study aims to evaluate the performance of architectures using multi-cores, mainly those offered by the graphics processing units (GPUs) and CPU multi-cores in the resolution of an inverse thermal problem. Parallel algorithms for the GPU and CPU were developed respectively, using the programming tools in shared memory architectures, NVIDIA CUDA (Compute Unified Device Architecture) and the POSIX Threads API. The algorithm of the preconditioned conjugate gradient method for solving sparse linear systems entirely within the global memory of the GPU was implemented by CUDA. It evaluated the two models of GPU, which proved more efficient by having a speedup was four times faster than the serial version of the algorithm. The parallel application in POSIX Threads was evaluated in different multi-core CPU with different microarchitectures. Optimization flags were used to achieve a higher performance of the parallelized code. As those were efficient in the developed application, the parallelized code presented processing times about twelve times faster than the serial version on the same processor without any optimization. Thus both the approach using GPU as a coprocessor to the CPU as a generic parallel application using the multi-core CPU proved to be more efficient tools for solving the inverse thermal problem.

Page generated in 0.0632 seconds