• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 288
  • 2
  • Tagged with
  • 290
  • 290
  • 175
  • 175
  • 175
  • 175
  • 175
  • 173
  • 157
  • 150
  • 139
  • 132
  • 122
  • 102
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Desempeño sísmico de muros de quincha tradicional mediante el método del espectro de capacidad

Silva Mercado, Roberto Marcio 06 July 2018 (has links)
Uno de los sistemas constructivos tradicionales más utilizados en territorio sudamericano es la quincha. Particularmente en Perú, este sistema fue muy popular en los periodos colonial y republicano debido al poco peso y características flexibles que hicieron que la quincha sea reconocida como un material resistente frente a las solicitaciones sísmicas, frecuentes en territorio sudamericano. El sistema estructural de la quincha tradicional ha funcionado correctamente, evidencia de ello son los numerosos edificios y construcciones históricas que han permanecido de pie durante los largos periodos de historia virreinal y republicana del Perú. Sin embargo, actualmente estas estructuras son vulnerables y sufren el riesgo de perder estabilidad debido al deterioro, falta de cuidado y mantenimiento que han sufrido. Si bien las características del sistema constructivo de la quincha tradicional han hecho que se reconozca como “material antisísmico”, se atribuye este rasgo a las características de sus materiales; sin embargo, su sistema estructural también posee aportes interesantes en cuanto a sus propiedades antisísmicas. Es por ello que el presente trabajo estudia el comportamiento sísmico del sistema estructural de la quincha tradicional y busca identificar su grado de desempeño, para los niveles de sismo según la normativa sísmica peruana, por medio de un análisis sísmico estático no lineal, denominado método del espectro de capacidad (MEC), cuyo objetivo principal es determinar el punto de desempeño de una estructura cuando se ve sometido a una solicitación sísmica. La metodología es aplicada en muros de quincha de dos tipologías distintas: con citara (MA) y con diagonal (MB), utilizando los resultados de los ensayos cíclicos de corte coplanar desarrollados dentro del marco del proyecto “Seismic Retrofitting Project”, convenio entre el Instituto Getty de Conservación (CGI) y la Pontificia Universidad Católica del Perú (PUCP). Adicionalmente, se replica el método en un panel directamente extraído del segundo nivel del Hotel Comercio, casona típica del Centro Histórico de Lima. Los resultados obtenidos muestran que el sistema estructural de los muros de quincha tradicional posee un amplio rango de deformación, que le permite sobrellevar de forma satisfactoria las demandas sísmicas solicitadas por un movimiento en su base, identificando un buen desempeño frente a los niveles sísmicos de la norma peruana. / Tesis
62

Evaluación de la respuesta sísmica no lineal de reservorios elevados tipo intze

Huaringa Huamaní, Pamela Grace 04 May 2016 (has links)
Los reservorios elevados son estructuras esenciales para el abastecimiento de agua de una población, por lo que no deberían quedar inoperativos luego de ocurrido un sismo. No obstante, la experiencia ha demostrado que para sismos de gran magnitud estas estructuras presentan daños, llegando incluso a colapsar. En esta tesis se ha realizado el análisis de dos reservorios tipo INTZE, considerando la no linealidad a flexocompresión del fuste con el objetivo de analizar la respuesta no lineal frente a diferentes solicitaciones símicas. Los reservorios (R-1 y R-2) fueron modelados con elementos tipo frame en el programa Sap2000 a los cuales se les asignó masas concentradas resultantes de la discretización del fuste y la cuba. Para el análisis del fuste se consideraron secciones agrietadas y no agrietadas. La plasticidad fue considerada en los dos primeros tramos mediante una rótula plástica como elemento tipo hinge. Las dimensiones de los reservorios y el refuerzo vertical y horizontal de los fustes se obtuvieron de los planos estructurales provistos por la empresa de agua potable SEDAPAL. Los diagramas momento curvatura asignados a las rótulas fueron calculados con el programa Sap2000 a partir de las dimensiones del fuste, refuerzo vertical del fuste, carga vertical y comportamiento no lineal del material, y fueron validados previamente con una hoja de cálculo. Para modelar el agua se empleó el modelo simplificado de Housner que considera una masa convectiva y otra impulsiva. El análisis se realizó a partir de cuatro acelerogramas peruanos (sismos de 1966, 1970, 1974 y 2007) normalizados de acuerdo a lo indicado en el ASCE/SEI 07-5 para el sismo de diseño y el sismo máximo considerado. Se utilizó el método de integración numérica de Newmark. Por otro lado, se realizó el análisis dinámico lineal con el espectro de respuesta obtenido con los parámetros de la NTE E.030 y el ACI350.3. Las respuestas de interés a analizar fueron los momentos volcantes, la fuerza cortante basal, el desplazamiento en el extremo del reservorio y la ductilidad demandada en el fuste. Se concluyó que para los acelerogramas analizados el momento volcante y la fuerza cortante basal de los reservorios R-1 y R-2 muestran una tendencia decreciente a medida que disminuye el volumen de agua. El desplazamiento máximo en el extremo de los reservorios no siempre se obtiene para el caso del reservorio lleno, pero el promedio de los desplazamientos da resultados mayores para dicho caso. En ese sentido, considerar sólo el caso de carga lleno para reservorios de similares características resulta conservador para el cálculo de la demanda de corte, momento y desplazamiento. No se observó una tendencia para el caso de la ductilidad demandada. Con respecto a las capacidades, el reservorio R-1 tiene mayor resistencia que el reservorio R-2, en una proporción similar al refuerzo vertical colocado (dos a uno). A su vez el reservorio R-2 tiene una mayor ductilidad que reservorio R-2, pero la diferencia va disminuyendo a medida que se aumenta la carga vertical. Con respecto al análisis dinámico de superposición modal, se observó que las respuestas están por debajo del promedio de la demanda obtenida a partir de los acelerogramas. Se recomienda reevaluar el factor de reducción espectral de la masa inductiva empleado para los reservorios elevados con soporte tipo fuste, si es que se emplea el espectro peruano de la Norma E.030 para el análisis. El acelerograma del sismo del año 1974 entregó las mayores demandas sísmicas para el caso de los reservorios llenos, ya que los periodos de dichas estructuras se encuentran dentro de su rango de periodos predominantes. El rango de periodos predominantes del sismo del año 2007 se encuentra por debajo de los periodos obtenidos para los reservorios vacío, semilleno y lleno, aunque el resultado depende también del periodo convectivo del agua, el cual puede coincidir con algunos de los picos del espectro de Fourier del acelerograma estudiado, incrementando la respuesta. Por otro lado, también se realizó el análisis de los reservorios sin considerar el efecto hidrodinámico del agua, y se obtuvo respuestas más conservadoras. Para el caso analizado eso significó un incremento de la curvatura demandada en más del doble. Por ello, si se realiza el análisis no lineal de reservorios para determinar la ductilidad demandada, se recomienda tomar en cuenta el comportamiento hidrodinámico del agua. Se determinó que para estructuras poco esbeltas como las estudiadas el efecto P-Δ es despreciable, ya que la relación entre el desplazamiento máximo en el extremo del reservorio con respecto al diámetro del fuste es pequeña. Finalmente, se indica que el refuerzo por corte colocado en ambos fustes cumple con los criterios de resistencia, considerando un factor de reducción igual a tres. Sin embargo, el refuerzo existente no cumple con los criterios de capacidad, en donde se busca asegurar que la estructura resista la demanda de corte asociado a su máximo momento resistente en el fuste. / Tesis
63

Respuesta no-lineal de estructuras de concreto armado de un piso sometidas a solicitaciones sísmicas bi-direccionales con ángulos de incidencia variables

Florez Ttito, Alexander Rubenil 04 March 2013 (has links)
El Perú se encuentra en una zona de alta sismicidad y los sismos muestran lo vulnerables que son las edificaciones. La norma de diseño sismorresistente de estructuras E.030, no toma en cuenta la bi-direccionalidad del sismo. La norma asume que las acciones sísmicas actúan independientemente en cada una de las dos direcciones principales ortogonales o aproximadamente ortogonales del edificio. La acción sísmica separada es válida si la dirección predominante es coincidente con una de las direcciones principales. Si el sismo tiene dos componentes horizontales de acciones simultáneas importantes, además el agravante que el movimiento sísmico experimenta cambios en la dirección de incidencia y magnitud durante la ocurrencia del evento. Se puede suponer entonces que las respuestas calculadas por el análisis que indican las normas que no consideran la direccionalidad del sismo, no sean las verdaderas respuestas que se generan en las estructuras. / Tesis
64

Reforzamiento estructural de muros de ladrillo pandereta con mallas para tarrajeo y electrosoldada

Cevallos Pezo, Oscar Manuel, Díaz Cóndor, Víctor Joel 20 October 2018 (has links)
En el Perú existen numerosas viviendas construidas con ladrillos pandereta, el más económico del mercado, éstos son utilizados para la construcción de muros portantes. El uso del ladrillo pandereta está prohibido para muros estructurales, excepto en la zona 1 según la Norma Técnica de Albañilería E.070. Esta tendencia de uso masivo de ladrillos pandereta, se evidencia especialmente en distritos emergentes en donde, en su mayoría de casos, son viviendas típicas autoconstruidas sin asesoría técnica. Evidentemente ante el problema señalado, se debe tomar medidas preventivas para tener un nivel de desempeño óptimo en las estructuras, en el supuesto que ocurra un sismo de magnitudes considerables. Por tanto, a través de esta investigación, se busca comparar la resistencia, comportamiento mecánico y costo asociado de muros sin reforzamiento (sólo tarrajeados) con muros reforzados con malla para tarrajeo y malla electrosoldada. Para este proyecto se construyó nueve muretes a escala reducida con ladrillos pandereta, tres de ellos construidos de manera tradicional, otros tres reforzados con mallas para tarrajeo y finalmente tres muretes reforzados con mallas electrosoldadas. Estos muretes fueron construidos y sometidos a ensayos de compresión diagonal en el laboratorio de estructuras de la PUCP determinando su resistencia al corte, comportamiento y propiedades mecánicas de los muretes reforzados. / Tesis
65

Integración de ingeniería inversa y modelamiento numérico para la evaluación sísmica de construcciones históricas de adobe

Noel Tapia, María Fernanda 01 June 2017 (has links)
El extenso legado de construcciones históricas de tierra en el Perú se encuentra en constante riesgo debido principalmente a la elevada actividad sísmica que afecta al país y a la fragilidad del adobe como material de construcción. En consecuencia, el valor histórico y cultural de estos monumentos, así como la vida de los visitantes se encuentran bajo peligro inaceptable. Con la finalidad de reducir la vulnerabilidad es necesario desarrollar modelos precisos para el análisis sísmico, capaces de simular el comportamiento no lineal de la albañilería y un desempeño bien definido. Es por ello que la presente investigación pretende establecer una metodología basada en técnicas avanzadas no intrusivas de ingeniería inversa y en métodos no lineales simplificados. Se propone el uso en conjunto de escáner láser terrestre (TLS) y fotogrametría como proceso estratégico para la obtención de modelos 3D precisos, debido a su efectividad en la rápida y confiable adquisición de datos. Asimismo, se implementan técnicas para la construcción de modelos CAD que faciliten el proceso de discretización. Ensayos de identificación modal también son empleados para la obtención de los parámetros dinámicos de la estructura y consecuentemente la calibración del modelo numérico construido. Para la evaluación sísmica se ha adoptado un enfoque basado en el desplazamiento, utilizando la metodología no lineal simplificada N2 (Fajfar, 2000). Además, se propone analizar el desempeño estructural en base al nivel de daño probable desarrollado en la edificación ante diferentes escenarios sísmicos. La investigación también busca evaluar la aplicabilidad de dicho procedimiento, utilizando como caso de estudio la iglesia de San Juan Bautista de Huaro ubicada en Cusco, Perú. Este templo data del siglo XVI y se destaca por sus impresionantes pinturas murales que cubren la totalidad del interior de la iglesia, demostrando la fusión del estilo andino y el arte colonial. Sin embargo, la falta de mantenimiento y ocurrencia de eventos sísmicos ha conllevado a su mal estado de conservación desde un punto de vista estructural. Los resultados de la evaluación sísmica de la iglesia evidenciaron que sufriría daño sustancial a fuerte en el caso de un sismo raro con periodo de retorno de 475 años Según la clasificación de daño de la Escala Macrosísmica Europea (EMS-98) esto significaría el desarrollo de grietas generalizadas en los muros, caídas de piezas considerables de recubrimiento y falla de elementos no estructurales individuales como los tímpanos. Asimismo, en el caso de un sismo muy raro (970 años) la estructura alcanzaría un nivel de daño muy fuerte que conllevaría a la falla parcial estructural de muros y techos. Se ha podido identificar durante el análisis los elementos estructurales críticos que controlan el comportamiento global y el nivel de daño durante un evento sísmico. Uno de ellos es la fachada principal, cuyo desplome es el primer mecanismo de colapso de la estructura. Debido a la vulnerabilidad en la que se encuentra la iglesia es altamente recomendable intervenir la construcción con la finalidad de proteger su valor cultural y arquitectónico. / Tesis
66

Vulnerabilidad sísmica de las viviendas de albañilería confinada en la ciudad de Cajamarca

Bazán Arbildo, Joen Eduardo 02 February 2017 (has links)
El objeto principal de esta investigación es la de conocer y estudiar las características técnicas de las viviendas construidas en la ciudad de Cajamarca; se estimó el comportamiento sísmico de las mismas y su consecuente vulnerabilidad sísmica. Para dicho estudio se eligió toda la ciudad; es decir, la zona urbana y peri-urbana (zonas de expansión urbana que aún no son incluidas en el Plan de Desarrollo Urbano de la ciudad). Se estudiaron 120 viviendas ya construidas, representativas de una determinada manzana y/o zona y distribuidas en las 03 pendientes de terreno que presenta la ciudad. Además como complemento y anexo al presente estudio se realizó seguimientos de obra a 18 viviendas en proceso constructivo. El trabajo de campo se 1nic1a con la aplicación de una Ficha de Encuesta; en la que se recopila los datos referidos al proceso constructivo y a la estructuración de cada una de las viviendas; también se toma en cuenta la ubicación y la calidad de la construcción. Las viviendas encuestadas fueron elegidas como representativas de acuerdo a la distribución cuantitativa del sistema estructural más usado en la ciudad, en este caso el de Albañilería Confinada cuyas unidades de albañilería son ladrillos artesanales de arcilla cocida; para verificar dicha distribución se realizó un conteo minucioso de todas las edificaciones considerando el número de pisos y su respectiva tipología estructural y ubicadas en cada sector, barrio, urbanización, pueblo joven, asociación de vivienda y en zonas periféricas de toda la ciudad de Cajamarca, llegando a la conclusión de que los 03 sistemas estructurales predominantes son: viviendas de albañilería (confinada) de ladrillos de arcilla con 56.4%, viviendas de albañilería de adobe con 23.4% y viviendas de albañilería de tapial con 17.2%. Los demás sistemas estructurales encontrados en la ciudad corresponden sólo al 3%, los cuales abarcan a edificaciones aporticadas (escuelas, colegios, hospitales, edificios comerciales, entidades públicas y hoteles). El consecutivo trabajo de gabinete consistió en procesar la información obtenida en campo para cada vivienda. Para ello se utilizó una Ficha de Reporte, la cual resume las características técnicas de las viviendas, y considera un análisis sísmico simplificado. Todas las viviendas analizadas son de diafragma rígido, se estudia el comportamiento sísmico para los casos de sismo raro y sismo frecuente. Finalmente se determina el diagnóstico sísmico de la vivienda indicando su grado de vulnerabilidad ante dichos eventos sísmicos. De la investigación se concluye que la construcción de las viviendas se realiza sólo con la ayuda de un maestro de obra y pocas veces interviene el Ingeniero Civil, siendo más frecuente su intervención en la etapa de elaboración del proyecto. El escaso conocimiento técnico con que cuentan estos obreros genera condiciones negativas que influyen en la seguridad física de las viviendas. Se encuentran viviendas mal ubicadas, con deficiente cantidad de muros en el sentido paralelo a la calle, muros y tabiques sin confinamientos, muros pésimamente construidos. De las 120 viviendas analizadas ante sismo raro el 65% de viviendas presentan una vulnerabilidad sísmica alta, el 17.5% VS media y el 17.5% VS Baja. Al mismo tiempo este informe nos da una idea clara y general de las condiciones actuales de las viviendas, de cómo se viene construyendo y cual es la tendencia, en la ciudad, en lo que a proceso constructivo de albañilería confinada se refiere. Finalmente, se proponen recomendaciones técnicas preliminares para mejorar el comportamiento sísmico de las viviendas y reducir su vulnerabilidad. / Tesis
67

Estudio analítico de vulnerabilidad sísmica de edificios de muros de ductilidad limitada (EMDL) en la costa central del Perú

Reyes Virhuez, César Abraham 01 June 2017 (has links)
En los últimos años, se ha intensificado la construcción de edificios de muros de ductilidad limitada (EMDL) por poseer un menor costo de construcción con relación a edificios tradicionales, enfocado para sectores emergentes. Sin embargo, aún no se tienen registros de su comportamiento ante eventos sísmicos por ser construcciones nuevas. Las investigaciones que se han realizado evaluaron el desempeño sísmico solamente para el estado límite de colapso [1] o está basado en la opinión de expertos [2]. El objetivo del proyecto es contribuir a mejorar la seguridad de las viviendas peruanas mediante el estudio analítico de la vulnerabilidad sísmica de edificios de muros de ductilidad limitada (EMDL) ante diversas intensidades sísmicas para la costa central del Perú. Para ello, primero se caracterizó la tipología a través de un modelo representativo y se evaluaron las respuestas sísmicas de la estructura mediante un Análisis Dinámico Incremental (IDA, por sus siglas en inglés) [3]. Luego, se obtuvieron curvas de fragilidad para cada demanda sísmica, que mide su probabilidad de excedencia. Finalmente, se obtuvo el desempeño sísmico a través de curvas de vulnerabilidad que estiman el costo de reparación esperado, basado en el reporte FEMA 58 [4]. Los resultados obtenidos permitirán evaluar las pérdidas económicas de la tipología de vivienda EMDL y posibilitarán la elaboración de planes de reparación después de un evento sísmico. / Tesis
68

Disposiciones sísmicas de diseño y análisis en base a desempeño aplicables a edificaciones de concreto armado

Asmat Garaycochea, Christian Alberto 29 September 2016 (has links)
La ingeniería sismo resistente ha seguido un desarrollo importante en los procedimientos de análisis sísmico en los últimos años. Uno de los principales factores que sustentan este desarrollo es la aparición de herramientas computacionales que permiten realizar cálculos más complejos. Sin embargo, a lo largo de este desarrollo, se han presentado sismos de gran magnitud que nos obligan a cuestionar los métodos empleados y la necesidad de investigar sobre el comportamiento completo de las estructuras ante sismos severos. El análisis sísmico comúnmente empleado se basa en un método elástico lineal, en la cual se amplifican las cargas para llegar a casos de solicitaciones últimas. Por otro lado, el diseño de elementos de concreto armado (y de muchos otros materiales) se realiza en una etapa de rotura o de resistencia última. A este procedimiento en conjunto se le conoce como “Diseño en base a resistencia” o “Diseño por factores de carga y resistencia” (Load and Resistance Factor Design, LRFD). Sin embargo, este método de diseño, por basarse en fuerzas, no contempla las fallas posibles por deformación que se pueden presentar en el comportamiento no lineal de los componentes de la estructura. Por ejemplo, la influencia de tener un piso blando, el comportamiento de unas columnas cortas o la capacidad de tener suficiente redundancia en la estructura son temas que no pueden ser revisados de manera analítica mediante métodos elásticos. Estas posibles fallas podrían llevar a la estructura a un estado cercano al colapso. En general, la deficiencia de los métodos en base a fuerzas es la de no poder disponer en la evaluación el comportamiento de la estructura luego de superar los límites elásticos de los componentes y de los materiales. Si se pudiese disponer de la historia del comportamiento inelástico de la estructura, se podría ajustar el diseño con el fin poder proporcionar a la estructura mayor capacidad, principalmente ante cargas sísmicas. Es por ello que las diferentes normas internacionales brindan recomendaciones o lineamientos que intentan evitar fallas o comportamientos no deseados para la estructuras. Por otro lado, el diseño realizado en la etapa de rotura no establece como requisito indispensable el cálculo de la ductilidad disponible en los elementos y, mucho menos, la verificación de la capacidad de la estructura de formar rótulas plásticas sin alcanzar el colapso bajo las cargas sísmicas. Para estos casos también existen recomendaciones para proporcionar a los elementos mayor ductilidad y para disponer de rótulas plásticas más largas, aunque estas hipótesis no podrán ser evaluadas empleando métodos elásticos de análisis. Es por ello que los últimos códigos y normas consideran un “Diseño en base a desplazamiento” o “Diseño en base a desempeño”, los cuales requieren del cálculo de la ductilidad de los componentes y de la estructura, comparándolos con la ductilidad demandada por los sismos máximos considerados. Estas exigencias son generalmente aplicadas a edificaciones sumamente importantes o a estructuras con elementos de disipación de energía, como aisladores o amortiguadores. Cabe mencionar que, a pesar de no haberse mencionado antes, la rigidez de la estructura cumple un rol muy importante al mantener la integridad de los elementos no estructurales y reducir la percepción del movimiento sísmico. Esta rigidez se va degradando conforme la estructura disipe energía mediante la formación de rótulas plásticas. Es por ello que el cálculo y la verificación de los desplazamientos y de las derivas en el rango inelástico es una parte fundamental en el “Diseño en base a desempeño”. El desempeño exigido para cada estructura puede variar según la funcionalidad y la importancia que tenga la edificación. Por ejemplo, un hospital, al ser una edificación que debe mantenerse funcional luego del sismo, debe generar pocas rótulas plásticas en el sismo severo en relación a las que puede ser capaz de presentar. De tal manera, la estructura mantiene niveles bajos de daños, la rigidez se degrada en menor medida y es económicamente reparable. Por otro lado, una edificación menor, como una vivienda, puede tener mayor pérdida de rigidez y mayor cantidad de rótulas plásticas, pero manteniendo su estabilidad y evitando el colapso de la estructura. Por motivos económicos y de funcionalidad, es necesario diferenciar los enfoques de desempeño exigidos para cada tipo de edificación. Es por ello que el Comité VISION 2000 de la Asociación de Ingenieros Estructurales de California (SEAOC, 1995) definió niveles de desempeño sísmico exigidos según la importancia de las edificaciones. En resumen, para estructuras que se encuentran en zonas con alta sismicidad, es necesario tener un enfoque basado en fuerzas, en deformaciones y en ductilidad para cumplir con el nivel de desempeño establecido, según sea el caso. Actualmente, existen herramientas que agilizan y simplifican el cálculo considerando propiedades y métodos no lineales, como el DRAIN-2DX, DRAIN-3DX, PERFORM-3D y SAP2000. (Inel y Baytan, 2006) Muchos de los edificios dañados debido a últimos terremotos ocurridos, han sido diseñados y construidos bajo los principios de diseño sísmico más modernos. Es probable que estos daños sean producto de la falta de comprensión del comportamiento de los materiales estructurales bajo cargas dinámicas y el comportamiento inelástico de los diferentes sistemas estructurales. (Villaverde, 2007). Se han propuesto diferentes métodos, entre simplificados y complejos, para desarrollar análisis estáticos y dinámicos no lineales, de los cuales algunos han sido incluidos como alternativas de análisis en reglamentos y códigos internacionales (Fajfar, 2002). Aun así, es difícil saber si estas herramientas nos permiten evaluar el desempeño de las estructuras debido a solicitaciones que producen al colapso. (Villaverde, 2007) En contraparte de estos nuevos procedimientos que pretenden ser más “exactos”, existe una enorme participación de variables que no pueden tener la misma precisión que estos procedimientos. El ejemplo inmediato es la amplificación del movimiento del terreno, pues es un valor que varía por una gran cantidad de aspectos. Otro ejemplo claro es el amortiguamiento considerado en la estructura, pues es un parámetro dinámico que también es dependiente del daño de la estructura. Es por todo lo mencionado que es necesario estudiar el concepto del comportamiento de las estructuras antes de sumergirse en la tarea de buscar número “precisos” y “exactos”. En los siguientes capítulos se describirá la filosofía actual en la ingeniería sismo resistente y los conceptos necesarios para lograr el comportamiento sísmico requerido de cada estructura. / Tesis
69

Evaluación experimental de una propuesta de reforzamiento estructural para las edificaciones escolares construidas antes de 1997, Perú

Ramirez Garcia, Pamela Del Rocio 25 November 2017 (has links)
El presente trabajo se desarrolla dentro del marco del convenio entre el Banco Mundial, el CISMID y la PUCP, titulado “Propuesta técnica de actualización del Reglamento Nacional de Edificaciones (RNE) para incorporar el reforzamiento incremental en las edificaciones escolares tipo 780 construidas antes de 1997". Esta tesis se centra en el estudio de la respuesta dinámica de dos módulos con características de un aula representativa de un edición escolar tipo 780 construido antes de 1997 (tipo 780-Pre), sin y con reforzamiento, a través de ensayos en una mesa vibradora unidireccional. El edificio escolar tipo 780-Pre, presenta el problema de columnas cortas y elevada flexibilidad lateral. La técnica de reforzamiento estudiada consistió en la inserción de diagonales de acero en forma de cruz integrados a un marco de acero entre los pórticos de CA existentes. Además, consistió separar los tabiques de albañilearía mediante juntas de una determinada longitud y medida. Los módulos fueron escalados en la proporción de 1:2 debido a la capacidad del simulador de sismos del laboratorio de estructuras de la PUCP. Además, los módulos se construyeron siguiendo el proceso constructivo convencional, tanto los pórticos de CA como las estructuras de refuerzo de acero. Para los ensayos de simulación dinámica (fases) en la mesa vibradora, los módulos se instrumentaron con sensores de desplazamiento lineal y con acelerómetros. Antes de dar inicio a cada fase, se hizo un ensayo de vibración libre. Cada fase corresponde a un desplazamiento nominal de la señal comprimida del registro de aceleraciones correspondiente al terremoto del 31 de Mayo de 1970. Cada módulo fue sometido a cuatro (4) fases y cinco (5) vibraciones libres. Los resultados de los ensayos demuestran que: (1) Se logró reproducir la falla tipo corte de los edificios escolares 780 - Pre, en el módulo (Módulo 780 - Pre) según lo previsto por el análisis teórico, el módulo después del ensayo no perdió su estabilidad global. (2) Con el sistema de reforzamiento con marcos y diagonales de acero y la liberación de juntas (a partir de 50 cm de la base del parapeto) se evitó la formación de columna corta en el módulo y lo cual dio inicio a la falla por exo-compresión. (3) El sistema de reforzamiento permitió mejorar considerablemente el desempeño del módulo, reduciendo los daños en cada fase de ensayo de simulación dinámica. / Tesis
70

Respuesta torsional de edificios sísmicamente aislados en el Perú. Comparación de métodos estáticos y dinámicos

Aguilar Chuquimia, Henry Antonio 21 January 2019 (has links)
El creciente desarrollo de proyectos en el Perú, que involucran el uso de aisladores sísmicos, trae consigo la necesidad de investigar en detalle ciertos aspectos que influyen en la respuesta estructural de estas edificaciones, un aspecto relevante y recientemente actualizado en el estándar ASCE 7-16 es el relacionado a la respuesta torsional de sistemas sísmicamente aislados. En razón de lo indicado, es reconocido que la demanda sísmica característica de una región particular influye sobre la respuesta que posean las estructuras, por ello, el presente trabajo discute sobre la aplicación directa de las expresiones para estimar la máxima respuesta torsional de estructuras sísmicamente aisladas en el Perú, según el código ASCE 7 en sus versiones 2010 y 2016; para tal propósito, múltiples análisis numéricos se realizaron sobre la base de estructuras aporticadas, estableciéndose en las mismas: tres relaciones de aspecto en planta, dos alturas típicas, tres porcentajes diferentes de excentricidad (del orden de 0%, 5% y 10%) y múltiples acciones sísmicas espectro-compatibles, aplicadas de forma bidireccional, tanto para demandas de diseño (con Tr=500 años) como para máximas consideradas (con Tr=2500 años). Encontrándose finalmente, que para el caso de suelos rígidos y zonificación sísmica 4 del Perú, es posible plantear expresiones de mejor ajuste basadas en los códigos ASCE 7-10 y ASCE 7-16, todo ello establecido como producto del análisis de las relaciones entre métodos estáticos y dinámicos (espectral y tiempo-historia). / Tesis

Page generated in 0.2994 seconds